Constant Rank Theorem

Let N be a manifold of dimension n and M a manifold of
dimension n.

@ The rank at p € N of a smooth map f : N — M is the rank of
its differential £, , : T,N — Tf(p)M.

@ The rank is always < min(m, n), where m = dim M and
n=dimN\.
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Constant Rank Theorem

The constant rank theorem for smooth maps between Euclidean
spaces (see Appendix B) has the following analogue for smooth
maps between manifolds.

Theorem (Constant Rank Theorem; Theorem 11.1)

Suppose that M is a manifold of dimension m and N is a manifold
of dimension n. Let f : N — M be a smooth map that has
constant rank k near a point p € N. Then, there are a chart

(U, ¢) centered at p in N and a chart (V,1) centered at f(p) in
M such that, for all (r*,...,r") € ¢(U), we have

(wofogb_l)(rl,...,r”):(rl,...,rk,O,...,O).

If Kk = m, then

(pofop ) (rt...,r™)y=(rt,....rM).
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Constant Rank Theorem

Suppose that (U, ¢) = (U,x*,...,x") is a chart centered at p and
(V,9) = (V,y! ...,y™) is a chart centered at f(p) such that

(zpofo¢_1)(r1,...,r"):(rl,...,rk,O,...,O).

e For any g € U, we have ¢(q) = (x*(q),...,x"(q)) and
w(f(q)):(ylof(q),...,ymof(q)).
@ Thus,
(v'of(a),.-..¥y"of(a)) =¢(f(q)) = (o fos™) (¢(q))
= (pofogp” )( () .,x"(q))

= (Xl(q),..., ..,0).
@ Therefore, relative to the local coordinates (x*, ..., x") and
(yl,...,y™) the map f is such that
(xt, ... x™) — (xh, .. x5,0,...,0).
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Constant Rank Theorem

A consequence of the constant rank theorem is the following

extension of the regular level set theorem (Theorem 9.9) (see Tu's
book).

Theorem (Constant-Rank Level Set Theorem; Theorem 11.2)

Let N :— M be a smooth map and c € M. If f has constant rank
k in a neighborhood of the level set f~1(c) in N, then f~1(c) is a
regular submanifold of codimension k.

A neighborhood of a subset A C N is an open set containing A.




Constant Rank Theorem

Example (Orthogonal group; Example 11.3)

The orthogonal group O(n) is the subgroup of GL(n, R) of
matrices A such that AT A = I, (identity matrix),

@ This is the level set f~1(/,), where f : GL(n,R) — GL(n, R),
A— ATA.

@ It can be shown that f has constant rank (in fact it has rank
k= Zn(n+1)).

@ Therefore, by the constant-rank level set theorem O(n) is a
regular submanifold of GL(n,R) (of codimension 3n(n + 1)).

v

The Immersion and Submersion Theorems

Suppose that M is a manifold of dimension m and N is a manifold
of dimension n, and let f : N — M be a smooth map.

o fis an immersion at p if f, 1 ToN — T¢,)M is injective.

o fis a submersion at p if . p: TpN — T¢,)M is surjective.

Remark

| A

Equivalently,

f is an immersion at p <= n < m and rkf, , = n,

f is a submersion at p <= n > m and rkf, , = m.

As we always have rk f, , < min(m, n), we see that

f immersion /submersion at p <= f,, p has maximal rank.

N,




The Immersion and Submersion Theorems

Set k = min(m, n), and denote by R77X" the set of m X n matrices
A € R™*" of maximal rank.

@ An m X n-matrix has maximal rank if and only if it has a
non-zero k X k-minor.

@ The minors are polynomials in the coefficients of matrices,
and hence are continuous functions.

@ Thus, if a matrix A has a non-zero k X k-minor, then this
minor is non-zero for any matrix that is sufficiently close to A,
and so those matrices have maximal rank.

o It follows that R7X" is a neighbourhood of each of its

elements, and hence is an open set in R™*",

The Immersion and Submersion Theorems

Suppose that f : N — M is a smooth map. Let (U, x%,...,x") be
chart about p in M and (V,y!,...,y™) a chart about f(p) in M.
Set Umax = {q € U; f, 4 has maximal rank}.

o If g€ U, then £, 5 : T¢M — Tg(q) is represented by the
matrix J(q) := [0f'/0x/(q)], with f' =y’ o f, and hence
rk fr.q = rkJ(g). Thus,

Umax = {q € U; J(q) € RIZM} = J~H(RMXM).

@ It can be shown that g — J(F)(q) is C*, and hence is
continuous.

@ As RX" is open, it follows that Unax is open as well.

@ In particular, if f, has maximal rank at p, then it has maximal
rank near p.
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The Immersion and Submersion Theorems

As a consequence we obtain:

Proposition (Proposition 11.4)

If a smooth map f : N — M is a immersion (resp., a submersion)
at a point p € N, then it is an immersion (resp., submersion) near
p. In particular, it has constant rank near p.
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The Immersion and Submersion Theorems

By combining the previous proposition with the constant rank
theorem we obtain the following result.

Theorem (Theorem 11.5)

Let f : N — M be a smooth map.

©Q Immersion Theorem. /f f is an immersion at p, then there
are a chart (U, ¢) centered at p in N and a chart (V1))
centered at f(p) in M such that near ¢(p) we have

(¢ofo¢_1)(r1,...,r”):(rl,...,r”,O,...,O).

@ Submersion Theorem. If f is a submersion at p, then there
are a chart (U, ¢) centered at p in N and a chart (V)
centered at f(p) in M such that near ¢(p) we have

(Wofog ) (rt . oo rm Mt )y = (rt ™).
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The Immersion and Submersion Theorems

@ The immersion theorem implies that if f : N — M is an
immersion then, for every p € N, there are a chart
(U,x,...,x") centered at pin N and a chart (V,y!,..., y™)
centered at f(p) in M relative to which f is such that

(%) (Xl,...,x”)—>(x1,...,x",0,...,0).

e Conversely, If f satisfies (x), then, setting f' = y'of, we have

[0 /0xd] = [ax"/ an] - [0 2 ] .

Om—n m—n

In particular, [0f'/0x/] has maximal rank, which implies that
f is an immersion near p.
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The Immersion and Submersion Theorems

@ The submersion theorem implies that if f : N — M is a
submersion then, for every p € N, there are a chart
(U,x,...,x") centered at pin N and a chart (V,y!,...,y™)
centered at f(p) in M relative to which f is such that

X x ,...,x”)—>(x1,...,xm).

@ The projection (x!, ..., x™ x™ 1 . x™) — (x}, ..., x™) is
an open map (see Problem A.7). This implies that f maps

any neighborhood of p onto a neighborhood of f(p).

@ As this is true for every p € N, we see that f is an open map.
Therefore, we obtain:

A

Corollary (Corollary 11.6)

Every submersion f : N — M is an open map.

13/30



Images of Smooth Maps

Let us look at some examples of smooth maps f : R — R2.

Example (Example 11.7)

Let £(t) = (t2, t3).

@ This is a one-to-one map, since t — t3 is one-to-one.

@ As f/(0) = (0,0) the differential f. ¢ is zero, and so f is not an
immersion at 0.

® The image of f is the cuspidal cubic y? = x3.

y

Images of Smooth Maps

Example (Example 11.8)
Let f(t) = (t> —1,t3 —t).

o As f'(t) = (2t,3t2 — 1) # (0,0) the differential f, is
one-to-one everywhere, and hence f is an immersion.

@ However, f is not one-one since (1) = f(—1) = (0,0).

@ The image of f is the nodal cubic y? = x?(x + 1) (see Tu's

book).
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Image of Smooth Maps

Example (The Figure-eight; Example 11.12)
Set | = (—7/2,37/2), and let f : | — R?, t — (cost,sin2t).

(ST
g
NS ¢
B
(9]
vl

e f'(t) = (—sint,2cos2t) # (0,0), and so f is an immersion.
@ f is one-to-one, and so f is a bijection onto its image (/).
@ The inverse map f~1: f(I) — I is not continuous: if
t — (37/2)~, then f(t) — (0,0) = f(7/2), but
F(f(t) =t — 3n/2 & 1.

In particular, f: | — f(/) is not a homeomorphism.
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Image of Smooth Maps
(Symmary

Summary

As the previous examples show:
@ A one-to-one smooth map need not be an immersion.
@ An immersion need not be one-to-one.

@ A one-to-one immersion need not be a homeomorphism onto
its image.

Definition

A smooth map f : N — M is called an embedding if f is an
immersion and a homeomorphism onto its image f(/N) with respect
to the subspace topology.

A one-to-one immersion f : N — M is an embedding if and only if

it Is an open map.

17 /30



Image of Smooth Maps

The importance of embeddings stems from the following result.

Theorem (Theorem 11.13)

If f: N— M is an embedding, then its image f(N) is a regular
submanifold in M.
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Image of Smooth Maps
Proof of Theorem 1113 |

Proof of Theorem 11.13.

@ As f is an immersion, by the immersion theorem, for any
p € N, there are a chart (U,x!,...,x") centered at p in N
and a chart (V,y!, ..., y™) centered at f(p) relative to which
f is such that (xl,...,X”) — (Xl,...,x”,O,...,O). Thus,

f(U)={qe V;y""(q)="--=y"(q) =0}

@ As f : N — f(N) is a homeomorphism, f(U) is an open set in
f(N) with respect to the subspace topology. That is, there is
an open V' in M such that f(U) = V' N f(N).

@ Thus,
VAV Nf(N)=VNfU)=fU)={y"t=...=y™ =0}.

Thatis, (VN V/,y', ..., y™) is an adapted chart relative to
f(N) near f(p) in M.

@ It follows that f(N) is a regular submanifold.
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Image of Smooth Maps

We have the following converse of the previous theorem.

Theorem (Theorem 11.14)

If N is a regular submanifold in M, then the inclusion i : N — M is
an embedding.
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Image of Smooth Maps
Proof of Theorem 1114 |

Proof of Theorem 11.14.
Let N be a regular submanifold in M.

@ As N has the subspace topology, the inclusion i : N — M is a
homeomorphism onto its image.

@ As N is a regular submanifold, near every p € N, there is an
adapted chart (U, x!,...,x™) near p in M such that
(UNN,x%, ...,x") is a chart in N near p and

UNN = {x" =... = x™=0}.
@ Therefore, relative to the charts (U N N, x1, ... ,x") and
(U,x!,...,x™) the inclusion i : N — M is such that
(Xl,...,Xn) — (Xl,...,Xn,O,...,O).

@ By a previous remark, it follows that the map i : N — M is an
Immersion near p.

[l

v
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Image of Smooth Maps

© The images of smooth embeddings are called embedded
submanifolds.

© The previous two results show that the regular submanifolds
and embedded submanifolds are the same objects.

© The images of one-to-one immersions are called immersed
submanifolds.

The figure-eight is an immersed submanifold in R? (but this is not
a regular submanifold).

v
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Smooth Maps into a Submanifold

Suppose that f : N — M is smooth map such that f(N) is
contained in a given subset S C M. If S is manifold, then is the
induced map f : N — S smooth as well?

Theorem (Theorem 11.15)

Suppose that f : N — M is a smooth map whose image is
contained in a regular submanifold S in M. Then the induced map
f:N— S is smooth.

© The above result does not hold if S is only an immersed
submanifold (see Tu's book).

© The converse holds. As S is a regular submanifold, the
inclusion / : S — M is smooth. Thus, if f : N — Sis a
smooth map, theniof : N — M is a C* map that induces f.

o
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Smooth Maps into a Submanifold

Proof of Theorem 11.15.

Set m=dimM and s=dim S, and let p € N.

@ As S is a regular submanifold and f(p) € S, there is an
adapted chart (V,%) = (V,y!,...,y™) near f(p) in M. Then
(VNS,¥s)=(VNS,yl, ..., y%) is a chart near f(p) in S.

o As f is a C>®-map, the functions y’ o f are C*™ on
U := f~1(V) (which is an open neighbourhood of p in N
since f is continuous).

@ On f}(V) we have ¢psof = (ylof,...,y*of), and so
Ysof: f (V) — R®is a smooth map.

e As (VN S,1s) is chart for S, it follows from Proposition 6.15
that the induced map f : f~1(V) — S is smooth, and hence
is smooth near p.

[l

v
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Smooth Maps into a Submanifold

Example (Multiplication map of SL(n, R); Example 11.16)
SL(n,R) is the subgroup of GL(n,R) of matrices of determinant 1.

@ This is a regular submanifold in GL(n,R) (Example 9.11), and
so the inclusion ¢ : SL(n,R) < GL(n,R) is a smooth map.

@ By Example 6.21 we have a smooth multiplication map,
p: GL(n,R) x GL(n,R) — GL(n, R).
@ We thus get a smooth map,
po (v xe):SL(n,R) x SL(n,R) — GL(n, R).

@ As it takes values in SL(n,R), and SL(n,R) is a regular
submanifold in GL(n,R), we get a smooth multiplication map,

SL(n,R) x SL(n,R) — SL(n, R).
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Smooth Maps into a Submanifold

Theorem 11.5 and its converse are especially useful when M = R™.
In this case we have:

Corollary

Let S be a regular submanifold in R™ and f : N — R™ a map such
that f(N) C S. Set f = (f,...,f™). Then TFAE:

(i) f is smooth as a map from N to S.
(ii) f is smooth as a map from N to R™.

(iii) The components f1,... f™ are smooth functions on N.
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The Tangent Space to a Submanifold in R

Let f : R"™1 — R be a smooth function with no critical points on
its zero set N = f—1(0).
@ By the regular level set theorem N is a regular submanifold in
R+ of dimension n.
@ Then the inclusion i : N — R™*! is an embedding, and so, for
every p € N, the differential i, : T,N — T,R™1 is injective.

@ We thus can identify the tangent space T,N with a subspace
of T,DR"Jrl ~ R™1 More precisely, we regard it as a subspace
of R"*! through p.

o Thus, any v € T,N, is identified with a vector (v1,...v"),
which is then identified with the point x = p + (vi,..., v").
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The Tangent Space to a Submanifold in R

@ Set p=(pl,...,p""1) and x = (x,...,x"1). Let
c: (—€ €) — R™1! be a smooth curve such that c(0) = p,
c’(0) = v, and ¢(t) € N, i.e., f(c(t)) = 0. Then

o Of - Of
0= %| F(e(0) = SO 55 (c(0) = Yo v 5 (o)
o As v/ = x' — p’, we see that (x!,..., x") satisfies,
() Yo - p) =0

@ As p is a regular point, %(p) =+ 0 for some i, and so the
solution set of (*) has dimension n.

@ As dim N = n, the tangent space T,N has dimension n, and
so it is identified with the full solution set of (x).

o
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Therefore, we obtain the following result:

Proposition

Let f : R"™1 — R be a smooth function with no critical points on
its zero set N = f=1(0). If p= (p*,...,p" 1) is a point in N,
then the tangent space T,N is defined by the equation,

() (P — p) =

Equivalently, T,N is identified with the hyperplane through p that
is normal to the gradient vector (9f /Ox*(p), ..., 0f /Ox"T1(p)).
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The Tangent Space to a Submanifold in R

Example (Tangent plane to a sphere)

The sphere S? C R3 is the zero set of
f(x,y,z) =x*>+y>+2z° — 1.

@ We have Y Y Py
T o, L _p, Loy,
ax 0 oy P 5z

@ Thus, at p=(a,b,c) € S? the tangent plane has equation,

TP =)+ (o) — )+ S (p)z = ) =0,

< a(x—a)+b(y—b)+c(z—c)=0,
— ax+ by + cz = a® + b% + 2,
<= ax+ by +cz=1.
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