Reminder

Let N be a manifold of dimension n and M a manifold of dimension n.

- The rank at p ∈ N of a smooth map f : N → M is the rank of its differential f_{*,p} : T_pN → T_{f(p)}M.
- The rank is always ≤ min(m, n), where m = dim M and n = dim N.

Constant Rank Theorem

The constant rank theorem for smooth maps between Euclidean spaces (see Appendix B) has the following analogue for smooth maps between manifolds.

Theorem (Constant Rank Theorem; Theorem 11.1)

Suppose that M is a manifold of dimension m and N is a manifold of dimension n. Let $f : N \to M$ be a smooth map that has constant rank k near a point $p \in N$. Then, there are a chart (U, ϕ) centered at p in N and a chart (V, ψ) centered at f(p) in M such that, for all $(r^1, ..., r^n) \in \phi(U)$, we have

$$\left(\psi\circ f\circ\phi^{-1}\right)(r^1,\ldots,r^n)=(r^1,\ldots,r^k,0,\ldots,0).$$

Remark

If k = m, then

 $(\psi \circ f \circ \phi^{-1})(r^1,\ldots,r^n) = (r^1,\ldots,r^m).$

Constant Rank Theorem

Remark

Suppose that $(U, \phi) = (U, x^1, ..., x^n)$ is a chart centered at p and $(V, \psi) = (V, y^1, ..., y^m)$ is a chart centered at f(p) such that $(\psi \circ f \circ \phi^{-1})(r^1, ..., r^n) = (r^1, ..., r^k, 0, ..., 0).$ • For any $q \in U$, we have $\phi(q) = (x^1(q), ..., x^n(q))$ and $\psi(f(q)) = (y^1 \circ f(q), ..., y^m \circ f(q)).$ • Thus, $(y^1 \circ f(q), ..., y^m \circ f(q)) = \psi(f(q)) = (\psi \circ f \circ \phi^{-1})(\phi(q))$ $= (\psi \circ f \circ \phi^{-1})(x^1(q), ..., x^n(q))$ $= (x^1(q), ..., x^k(q), 0, ..., 0).$ • Therefore, relative to the local coordinates $(x^1, ..., x^n)$ and $(y^1, ..., y^m)$ the map f is such that $(x^1, ..., x^n) \longrightarrow (x^1, ..., x^k, 0, ..., 0).$

Constant Rank Theorem

A consequence of the constant rank theorem is the following extension of the regular level set theorem (Theorem 9.9) (see Tu's book).

Theorem (Constant-Rank Level Set Theorem; Theorem 11.2)

Let $N :\to M$ be a smooth map and $c \in M$. If f has constant rank k in a neighborhood of the level set $f^{-1}(c)$ in N, then $f^{-1}(c)$ is a regular submanifold of codimension k.

Remark

A neighborhood of a subset $A \subset N$ is an open set containing A.

Example (Orthogonal group; Example 11.3)

The orthogonal group O(n) is the subgroup of $GL(n, \mathbb{R})$ of matrices A such that $A^T A = I_n$ (identity matrix),

- This is the level set $f^{-1}(I_n)$, where $f : GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$, $A \to A^T A$.
- It can be shown that f has constant rank (in fact it has rank $k = \frac{1}{2}n(n+1)$).
- Therefore, by the constant-rank level set theorem O(n) is a regular submanifold of $GL(n, \mathbb{R})$ (of codimension $\frac{1}{2}n(n+1)$).

The Immersion and Submersion Theorems

Reminder

Suppose that M is a manifold of dimension m and N is a manifold of dimension n, and let $f : N \to M$ be a smooth map.

- f is an immersion at p if $f_{*,p} : T_p N \to T_{f(p)} M$ is injective.
- f is a submersion at p if $f_{*,p} : T_p N \to T_{f(p)} M$ is surjective.

Remark

Equivalently,

f is an immersion at $p \iff n \le m$ and rk $f_{*,p} = n$,

f is a submersion at $p \iff n \ge m$ and $\operatorname{rk} f_{*,p} = m$.

As we always have rk $f_{*,p} \leq \min(m, n)$, we see that

f immersion/submersion at $p \iff f_*, p$ has maximal rank.

Facts

Set $k = \min(m, n)$, and denote by $\mathbb{R}_{\max}^{m \times n}$ the set of $m \times n$ matrices $A \in \mathbb{R}^{m \times n}$ of maximal rank.

- An $m \times n$ -matrix has maximal rank if and only if it has a non-zero $k \times k$ -minor.
- The minors are polynomials in the coefficients of matrices, and hence are continuous functions.
- Thus, if a matrix A has a non-zero $k \times k$ -minor, then this minor is non-zero for any matrix that is sufficiently close to A, and so those matrices have maximal rank.
- It follows that $\mathbb{R}_{\max}^{m \times n}$ is a neighbourhood of each of its elements, and hence is an open set in $\mathbb{R}^{m \times n}$.

The Immersion and Submersion Theorems

Facts

Suppose that $f : N \to M$ is a smooth map. Let $(U, x^1, ..., x^n)$ be chart about p in M and $(V, y^1, ..., y^m)$ a chart about f(p) in M. Set $U_{\max} = \{q \in U; f_{*,q} \text{ has maximal rank}\}.$

• If $q \in U$, then $f_{*,q} : T_q M \to T_{f(q)}$ is represented by the matrix $J(q) := [\partial f^i / \partial x^j(q)]$, with $f^i = y^i \circ f$, and hence rk $f_{*,q} = \operatorname{rk} J(q)$. Thus,

$$U_{\max} = \{q \in U; J(q) \in \mathbb{R}_{\max}^{m \times n}\} = J^{-1}(\mathbb{R}_{\max}^{m \times n}).$$

- It can be shown that $q \to J(F)(q)$ is C^{∞} , and hence is continuous.
- As $\mathbb{R}_{\max}^{m \times n}$ is open, it follows that U_{\max} is open as well.
- In particular, if f_{*} has maximal rank at p, then it has maximal rank near p.

As a consequence we obtain:

Proposition (Proposition 11.4)

If a smooth map $f : N \to M$ is a immersion (resp., a submersion) at a point $p \in N$, then it is an immersion (resp., submersion) near p. In particular, it has constant rank near p.

The Immersion and Submersion Theorems

By combining the previous proposition with the constant rank theorem we obtain the following result.

Theorem (Theorem 11.5)

Let $f : N \rightarrow M$ be a smooth map.

1 Immersion Theorem. If f is an immersion at p, then there are a chart (U, ϕ) centered at p in N and a chart (V, ψ) centered at f(p) in M such that near $\phi(p)$ we have

$$(\psi \circ f \circ \phi^{-1})(r^1,\ldots,r^n) = (r^1,\ldots,r^n,0,\ldots,0)$$

2 Submersion Theorem. If f is a submersion at p, then there are a chart (U, ϕ) centered at p in N and a chart (V, ψ) centered at f(p) in M such that near $\phi(p)$ we have

$$(\psi \circ f \circ \phi^{-1})(r^1,\ldots,r^m,r^{m+1},\ldots,r^n) = (r^1,\ldots,r^m).$$

The Immersion and Submersion Theorems

Remark

The immersion theorem implies that if f : N → M is an immersion then, for every p ∈ N, there are a chart (U, x¹,...,xⁿ) centered at p in N and a chart (V, y¹,...,y^m) centered at f(p) in M relative to which f is such that

*)
$$(x^1,\ldots,x^n) \longrightarrow (x^1,\ldots,x^n,0,\ldots,0).$$

• Conversely, If f satisfies (*), then, setting $f^i = y^i \circ f$, we have

$$\left[\frac{\partial f^{i}}{\partial x^{j}}\right] = \begin{bmatrix} \frac{\partial x^{i}}{\partial x^{j}} \\ 0_{m-n} \end{bmatrix} = \begin{bmatrix} I_{n} \\ 0_{m-n} \end{bmatrix}.$$

In particular, $\left[\partial f^i / \partial x^j\right]$ has maximal rank, which implies that f is an immersion near p.

The Immersion and Submersion Theorems

Remark

The submersion theorem implies that if f : N → M is a submersion then, for every p ∈ N, there are a chart (U, x¹,...,xⁿ) centered at p in N and a chart (V, y¹,...,y^m) centered at f(p) in M relative to which f is such that

$$(x^1,\ldots,x^m,x^{m+1},\ldots,x^n)\longrightarrow (x^1,\ldots,x^m).$$

- The projection (x¹,...,x^m,x^{m+1},...,xⁿ) → (x¹,...,x^m) is an open map (see Problem A.7). This implies that f maps any neighborhood of p onto a neighborhood of f(p).
- As this is true for every p ∈ N, we see that f is an open map. Therefore, we obtain:

Corollary (Corollary 11.6)

Every submersion $f : N \rightarrow M$ is an open map.

Images of Smooth Maps

Let us look at some examples of smooth maps $f : \mathbb{R} \to \mathbb{R}^2$.

Example (Example 11.7)

Let $f(t) = (t^2, t^3)$.

- This is a one-to-one map, since $t \to t^3$ is one-to-one.
- As f'(0) = (0,0) the differential f_{*,0} is zero, and so f is not an immersion at 0.
- The image of f is the cuspidal cubic $y^2 = x^3$.

Images of Smooth Maps

Example (Example 11.8)

Let $f(t) = (t^2 - 1, t^3 - t)$.

- As $f'(t) = (2t, 3t^2 1) \neq (0, 0)$ the differential f_* is one-to-one everywhere, and hence f is an immersion.
- However, f is not one-one since f(1) = f(-1) = (0,0).
- The image of f is the nodal cubic y² = x²(x + 1) (see Tu's book).

Image of Smooth Maps

Image of Smooth Maps

Summary

As the previous examples show:

- A one-to-one smooth map need not be an immersion.
- An immersion need not be one-to-one.
- A one-to-one immersion need not be a homeomorphism onto its image.

Definition

A smooth map $f : N \to M$ is called an *embedding* if f is an immersion and a homeomorphism onto its image f(N) with respect to the subspace topology.

Remark

A one-to-one immersion $f : N \rightarrow M$ is an embedding if and only if it is an open map.

The importance of embeddings stems from the following result.

Theorem (Theorem 11.13)

If $f : N \to M$ is an embedding, then its image f(N) is a regular submanifold in M.

Image of Smooth Maps

Proof of Theorem 11.13.

As f is an immersion, by the immersion theorem, for any p ∈ N, there are a chart (U, x¹,...,xⁿ) centered at p in N and a chart (V, y¹,...,y^m) centered at f(p) relative to which f is such that (x¹,...,xⁿ) → (x¹,...,xⁿ,0,...,0). Thus,

$$f(U) = \{q \in V; y^{n+1}(q) = \cdots = y^m(q) = 0\}$$

- As f : N → f(N) is a homeomorphism, f(U) is an open set in f(N) with respect to the subspace topology. That is, there is an open V' in M such that f(U) = V' ∩ f(N).
- Thus,

 $V \cap V' \cap f(N) = V \cap f(U) = f(U) = \{y^{n+1} = \cdots = y^m = 0\}.$ That is, $(V \cap V', y^1, \dots, y^m)$ is an adapted chart relative to f(N) near f(p) in M.

• It follows that f(N) is a regular submanifold.

We have the following converse of the previous theorem.

Theorem (Theorem 11.14)

If N is a regular submanifold in M, then the inclusion $i : N \rightarrow M$ is an embedding.

Image of Smooth Maps

Proof of Theorem 11.14.

Let N be a regular submanifold in M.

- As N has the subspace topology, the inclusion i : N → M is a homeomorphism onto its image.
- As N is a regular submanifold, near every p ∈ N, there is an adapted chart (U, x¹,...,x^m) near p in M such that (U ∩ N, x¹,...,xⁿ) is a chart in N near p and U ∩ N = {xⁿ⁺¹ = ··· = x^m = 0}.
- Therefore, relative to the charts $(U \cap N, x^1, ..., x^n)$ and $(U, x^1, ..., x^m)$ the inclusion $i : N \to M$ is such that

$$(x^1,\ldots,x^n)\longrightarrow (x^1,\ldots,x^n,0,\ldots,0).$$

• By a previous remark, it follows that the map $i : N \rightarrow M$ is an immersion near p.

Image of Smooth Maps

Smooth Maps into a Submanifold

Question

Suppose that $f : N \to M$ is smooth map such that f(N) is contained in a given subset $S \subset M$. If S is manifold, then is the induced map $f : N \to S$ smooth as well?

Theorem (Theorem 11.15)

Suppose that $f : \mathbb{N} \to \mathbb{M}$ is a smooth map whose image is contained in a regular submanifold S in M. Then the induced map $f : \mathbb{N} \to S$ is smooth.

Remarks

- The above result does not hold if S is only an immersed submanifold (see Tu's book).
- ② The converse holds. As S is a regular submanifold, the inclusion i: S → M is smooth. Thus, if f : N → S is a smooth map, then i ∘ f : N → M is a C[∞] map that induces f.

Smooth Maps into a Submanifold

Proof of Theorem 11.15.

Set $m = \dim M$ and $s = \dim S$, and let $p \in N$.

- As S is a regular submanifold and f(p) ∈ S, there is an adapted chart (V, ψ) = (V, y¹,..., y^m) near f(p) in M. Then (V ∩ S, ψ_S) = (V ∩ S, y¹,..., y^s) is a chart near f(p) in S.
- As f is a C[∞]-map, the functions yⁱ ∘ f are C[∞] on
 U := f⁻¹(V) (which is an open neighbourhood of p in N since f is continuous).
- On $f^{-1}(V)$ we have $\psi_S \circ f = (y^1 \circ f, \dots, y^s \circ f)$, and so $\psi_S \circ f : f^{-1}(V) \to \mathbb{R}^s$ is a smooth map.
- As (V ∩ S, ψ_S) is chart for S, it follows from Proposition 6.15 that the induced map f : f⁻¹(V) → S is smooth, and hence is smooth near p.

24 / 30

Smooth Maps into a Submanifold

Example (Multiplication map of SL (n, \mathbb{R}) ; Example 11.16)

 $SL(n, \mathbb{R})$ is the subgroup of $GL(n, \mathbb{R})$ of matrices of determinant 1.

- This is a regular submanifold in GL(n, ℝ) (Example 9.11), and so the inclusion ι : SL(n, ℝ) → GL(n, ℝ) is a smooth map.
- By Example 6.21 we have a smooth multiplication map,

$$\mu : \mathsf{GL}(n,\mathbb{R}) \times \mathsf{GL}(n,\mathbb{R}) \longrightarrow \mathsf{GL}(n,\mathbb{R}).$$

• We thus get a smooth map,

 $\mu \circ (\iota \times \iota) : \mathsf{SL}(n, \mathbb{R}) \times \mathsf{SL}(n, \mathbb{R}) \longrightarrow \mathsf{GL}(n, \mathbb{R}).$

 As it takes values in SL(n, ℝ), and SL(n, ℝ) is a regular submanifold in GL(n, ℝ), we get a smooth multiplication map,

 $SL(n,\mathbb{R}) \times SL(n,\mathbb{R}) \longrightarrow SL(n,\mathbb{R}).$

Theorem 11.5 and its converse are especially useful when $M = \mathbb{R}^m$. In this case we have:

Corollary

Let S be a regular submanifold in \mathbb{R}^m and $f : N \to \mathbb{R}^m$ a map such that $f(N) \subset S$. Set $f = (f^1, \ldots, f^m)$. Then TFAE:

- (i) f is smooth as a map from N to S.
- (ii) f is smooth as a map from N to \mathbb{R}^m .
- (iii) The components f^1, \ldots, f^m are smooth functions on N.

The Tangent Space to a Submanifold in \mathbb{R}^m

Facts

Let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ be a smooth function with no critical points on its zero set $N = f^{-1}(0)$.

- By the regular level set theorem N is a regular submanifold in \mathbb{R}^{n+1} of dimension n.
- Then the inclusion $i : N \to \mathbb{R}^{n+1}$ is an embedding, and so, for every $p \in N$, the differential $i_* : T_p N \to T_p \mathbb{R}^{n+1}$ is injective.
- We thus can identify the tangent space T_pN with a subspace of T_pℝⁿ⁺¹ ≃ ℝⁿ⁺¹. More precisely, we regard it as a subspace of ℝⁿ⁺¹ through p.
- Thus, any $v \in T_pN$, is identified with a vector $\langle v^1, \ldots v^n \rangle$, which is then identified with the point $x = p + (v^1, \ldots, v^n)$.

The Tangent Space to a Submanifold in \mathbb{R}^m

Facts
• Set
$$p = (p^1, ..., p^{n+1})$$
 and $x = (x^1, ..., x^{n+1})$. Let
 $c : (-\epsilon, \epsilon) \to \mathbb{R}^{n+1}$ be a smooth curve such that $c(0) = p$,
 $c'(0) = v$, and $c(t) \in N$, i.e., $f(c(t)) = 0$. Then
 $0 = \frac{d}{dt} \Big|_0 f(c(t)) = \sum (c^i)'(0) \frac{\partial f}{\partial x^i}(c(0)) = \sum v^i \frac{\partial f}{\partial x^i}(p)$.
• As $v^i = x^i - p^i$, we see that $(x^1, ..., x^n)$ satisfies,
 $(*) \qquad \sum \frac{\partial f}{\partial x^i}(p)(x^i - p^i) = 0$.
• As p is a regular point, $\frac{\partial f}{\partial x^i}(p) \neq 0$ for some i , and so the solution set of (*) has dimension n .

28 / 30

Therefore, we obtain the following result:

Proposition

Let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ be a smooth function with no critical points on its zero set $N = f^{-1}(0)$. If $p = (p^1, \dots, p^{n+1})$ is a point in N, then the tangent space T_pN is defined by the equation,

so it is identified with the full solution set of (*).

(*)
$$\sum \frac{\partial f}{\partial x^i}(p)(x^i-p^i)=0.$$

Remark

Equivalently, $T_p N$ is identified with the hyperplane through p that is normal to the gradient vector $\langle \partial f / \partial x^1(p), \ldots, \partial f / \partial x^{n+1}(p) \rangle$.

The Tangent Space to a Submanifold in \mathbb{R}^m

Example (Tangent plane to a sphere)

The sphere $\mathbb{S}^2 \subset \mathbb{R}^3$ is the zero set of

$$f(x, y, z) = x^2 + y^2 + z^2 - 1.$$

• We have

$$\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = 2y, \quad \frac{\partial f}{\partial z} = 2z.$$

• Thus, at $p = (a, b, c) \in \mathbb{S}^2$ the tangent plane has equation,

$$\frac{\partial f}{\partial x}(p)(x-a) + \frac{\partial f}{\partial y}(p)(y-b) + \frac{\partial f}{\partial z}(p)(z-c) = 0,$$

$$\iff a(x-a) + b(y-b) + c(z-c) = 0,$$

$$\iff ax + by + cz = a^2 + b^2 + c^2,$$

$$\iff ax + by + cz = 1.$$

30 / 30