
The Tangent Bundle as a Manifold

Objective

Let M be smooth manifold of dimension n. We would like to
bundle together all the tangent spaces TpM so as to get a smooth
manifold, called the tangent bundle.

Definition

As a set, the tangent bundle of M is the disjoint union,

TM :=
⊔

p∈M
TpM = {(p, v); p ∈ M, v ∈ TpM} .

Remarks

1 For p ∈ M we identify the subset {p}×TpM with the tangent
space TpM. This allows us to see TpM as a subset of TM.

2 In particular, we write an element of TM either as (p, v) with
p ∈ M and v ∈ TpM, or simply as v .
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Remark

Let U be an open set in M. If p ∈ U, then TpU = TpM. Thus,

TU =
⊔

p∈U
TpU =

⊔

p∈U
TpM.

Definition

The canonical map π : TM → M is defined by

π ((p, v)) = v , p ∈ M, v ∈ TpM.

Remarks

1 The map π : TM → M is onto.

2 If p ∈ M, then π−1(p) = TpM.
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The Tangent Bundle as a Manifold

Example

Let U be an open in Rn. If p ∈ U, then TpU = TpRn = Rn.
Recall that, if (r1, . . . , rn) are the standard coordinates on Rn,
then we identify

TpRn 3 v =
∑

v i
∂

∂r i

∣∣∣∣
p

←→ 〈v1, . . . , vn〉 ∈ Rn.

Thus, the pair (p, v) is naturally identified with (p, v1, . . . , vn).
Therefore, we have

TU =
⊔

p∈U
TpU =

⊔

p∈U
Rn = U × Rn.
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Aim

Equip TM with a smooth structure. That is, we need to:

1 Define a topology on TM.

2 Construct a C∞-atlas for TM.
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Facts

Let (U, φ) = (U, x1, . . . , xn) be a chart in M.

Here φ(U) is an open in Rn, and so T (φ(U)) = φ(U)× Rn.

For every p ∈ U, the differential φ∗,p is an isomorphism from
TpM = TpU onto Tφ(p)(φ(U)) = Rn.

Therefore, we define a map φ̃ : TU → φ(U)× Rn by

φ̃(p, v) =
(
φ(p), φ∗,pv

)
, p ∈ U, v ∈ TpU.

This is a bijection with inverse (x , v)→ (φ−1(x), φ−1∗,φ−1(x)
v).

This allows us to define a topology on TU by pulling back the
topology of φ(U)× Rn:

W ⊂ TU is open ⇐⇒ φ̃(W ) is open in φ(U)× Rn.

With respect to this topology φ̃ is a homeomorphism.
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Remark

If p ∈ U, then
{

∂
∂x1

∣∣
p
, . . . , ∂

∂x1

∣∣
p

}
is a basis of TpM.

The differential φ∗,p : TpU → Tφ(p)V = Rn maps ∂
∂x i

∣∣
p

to
∂
∂r i

∣∣
φ(p)

. Thus,

∑
v i

∂

∂x i

∣∣∣∣
p

φ∗−→
∑

v i
∂

∂r i

∣∣∣∣
φ(p)

←→ 〈v1, . . . , vn〉 ∈ Rn.

If φ(p) = (x1(p), . . . , xn(p)) and v =
∑

v i ∂
∂x i

∣∣
p
∈ TpM, then

φ̃(p, v) =
(
φ(p), φ∗,pv

)
=
(
x1(p), . . . , xn(p), v1, . . . , vn

)
.

In particular, this defines coordinates on TU.
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Facts

Let (V , ψ) = (V , y1, . . . , yn) be another chart of M such that
U ∩ V 6= ∅. Define ψ̃ : TV → ψ(V )× Rn by

ψ̃(p, v) =
(
ψ(p), ψ∗,pv

)
, p ∈ V , v ∈ TpM.

On T (U ∩ V ) = (TU) ∩ (TV ) we have two topologies
induced by the respective topologies of TU and TV .

On φ̃(TU ∩ TV ) = φ(U ∩ V )× Rn we have

ψ̃◦φ̃−1(r , v) =
(
ψ◦φ−1(r), ψ∗◦φ−1∗ v

)
=
(
ψ◦φ−1(r), (ψ◦φ−1)∗,rv

)
.

Here (ψ ◦ φ−1)∗,r is the multiplication by the Jacobian matrix
Jψ◦φ−1(r) =

[
∂(y j ◦ φ−1)/∂r i (r)

]
whose entries depends

smoothly on r .

Therefore, ψ̃ ◦ φ̃−1 : φ(U ∩ V )× Rn → ψ(U ∩ V )× Rn is
smooth map. Its inverse map φ̃ ◦ ψ̃−1 is smooth as well, and
so ψ̃ ◦ φ̃−1 is a diffeomorphism. 8 / 35
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Facts (Continued)

T (U ∩ V ) is open in TU and in TV .

As ψ̃ ◦ φ̃−1 : φ(U ∩ V )× Rn → ψ(U ∩ V )× Rn is a
diffeomorphism, this is a homeomorphism.

If W ⊂ T (U ∩ V ), then

W open in TU ⇐⇒ φ̃(W ) open in φ(U)× Rn

⇐⇒ ψ̃ ◦ φ̃−1
[
φ̃(W )

]
open in ψ(U)× Rn

⇐⇒ ψ̃(W ) open in φ(U)× Rn

⇐⇒W open in TV

Thus, TU and TV induce the same topology on T (U ∩ V ).

It follows that, if W is open in TU and X is open in TV , then
W ∩ X is open in T (U ∩ V ).
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Summary

(a) If (U, φ) is a chart for M, then φ̃ : TU → φ(U)×Rn allows us
to define a topology on TU by pulling back the topology of
φ(U)× Rn. This map then become a homeomorphism.

(b) If (V , ψ) is another chart for M, then the transition map
ψ̃ ◦ φ̃−1 : φ(U ∩ V )× Rn → ψ(U ∩ V )× Rn is a
diffeomorphism.

(c) TU and TV induce the same topology on U ∩ V . In
particular, if W is open in TU and X is open in TV , then
W ∩ X is open in T (U ∩ V ).

In particular, (b) would allow us to get a C∞ atlas for TM
provided we can define a topology on TM by patching together the
TU-topologies.
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Reminder (Topological Bases; see Appendix A)

Let X be a topological space. A basis for the topology of X is a
collection B of open sets such that, for every open U ⊂ X and
every p ∈ U, there is an open set V ∈ B such that p ∈ V ⊂ U.

Remark

If B is a basis for the topology of X , then every open set is the
union of open sets in B. We say that B generates the topology of
X .
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Proposition (Proposition A.8)

Let X be a set and B a collection of subsets such that:

(i) X = ∪V∈BV .

(ii) If V1,V2 ∈ B and p ∈ V1 ∩ V2, then there is W ∈ B such
that p ∈W ⊂ V1 ∩ V2.

Then:

1 B is a basis for a unique topology on X .

2 The open sets for this topology consists of unions of sets in B.

Remark

The condition (ii) holds automatically if B is closed under finite
intersection.
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Facts

Let A = {(Uα, φα)} be the maximal atlas of M (which defines its
smooth structure). Define

B =
⋃

α

{W ; W is an open in TUα} .

Note that TUα ∈ B.

As ∪Uα = M, we have
⋃

α

TUα =
⊔

p∈∪Uα

TpM =
⊔

p∈∪M
TpM = TM.

If Wα is an open in TUα and Wβ is an open in TUβ, then
W1 ∩W2 is open in T (Uα ∩Uβ), and hence is contained in B.

It follows that B satisfies the conditions (i) and (ii) of
Proposition A.8, and so it’s a basis for a unique topology on TM.
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Definition

The topology of TM is the topology generated by B. The open
sets are unions of sets in B.

Remark

Each TUα is open in TM, since it is contained in B.

Proposition (Proposition 12.4)

As a topological space TM is Hausdorff.

Remark

Each open TUα is Hausdorff since it is homeomorphic to the open
set φα(U)× Rn ⊂ Rn × Rn. This can be used to show that TM is
Hausdorff.
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Proposition (Proposition 12.3)

The topology of TM is second countable.

Remarks

It can be shown that the topology of M admits a countable
basis {Ui}i∈I consisting of domains of charts (cf. Lemma 12.2
of Tu’s book).

Each TUi is second countable since it is homeomorphic to an
open in Rn × Rn.

If for each i ∈ I , we let {Wi ,j}j∈N be a countable basis for the
topology of TUi , then {Wi ,j ; i ∈ I , j ∈ N} is a countable basis
for the topology of TM (see Tu’s book).
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Facts

Each TUα is an open in TM.

We knows that TM = ∪αTUα.

The local trivializations φ̃α : TUα → φα(Uα)× Rn are
homeomorphisms onto open sets in Rn × Rn.

All the transition maps φ̃β ◦ φ̃−1α are smooth.

Proposition

The collection {(TUα, φ̃α)} is a C∞ atlas for TM, and hence TM
is a smooth manifold of dimension 2n.

Remark

If {(Vβ, ψβ)} is any C∞-atlas for M, then we also get a C∞ atlas
{(TVβ, ψ̃β)} for TM. It is compatible with the atlas {(TUα, φ̃α)},
and so it defines the same smooth structure.
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Facts

The canonical map π : TM → M is such that π(v) = p if
v ∈ TpM. It is onto.

Let (U, φ) = (U, x1, . . . , xn) be a chart for M. Then

φ ◦ π ◦ φ̃−1(r1, . . . , rn, v1, . . . , vn)

= φ ◦ π
[
φ−1(r1, . . . , rn),

∑
v i∂/∂x i

]

= φ ◦ φ−1
(
r1, . . . , rn

)
=
(
r1, . . . , rn

)
.

As (U, φ) and (TU, φ̃) are charts this shows that π is C∞.

By the converse of the submersion theorem (exercise!) this
also shows that π is a submersion.

Proposition

The canonical projection π : TM → M is a surjective submersion.
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Vector Bundles

Definition

A vector bundle of rank r over a manifold M is a smooth manifold
E together with a surjective smooth map π : E → M such that:

(i) For every p ∈ M, the fiber Ep = π−1(p) is a vector space of
dimension r .

(ii) For each p ∈ M there is an open neighborhood U of p in M
and a diffeomorphism φ : π−1(U)→ U × Rr (called
trivialization of E over U) such that

π ◦ φ(q, ξ1, . . . , ξr ) = q for all q ∈ U and (ξ1, . . . , ξr ) ∈ Rr .

For each q ∈ U, the restriction of φ to Eq is a vector space
isomorphism from Eq onto {q} × Rr .
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Vector Bundles

Remarks

We sometimes write a vector bundle E
π→ M.

We may also think of a vector bundle as a triple (E ,M, π). In
this picture E is called the total space, M is called the base
space, and π is called the projection.

Remark

Let E
π→ M be a smooth vector bundle and S a regular

submanifold in M. Then π−1(S)
π|S−→ S is a smooth vector bundle

over S denoted E|S and called the restriction of E to S .
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Vector Bundles

Example

A trivial vector bundle is of the form E = M × Rr .

In this case the projection π : M × Rr → M is just the
projection on the first factor.

Example

The tangent bundle TM is a vector bundle of rank n.

If (U, x1, . . . , xn) is a chart, then a trivialization of TM over
U is the map ψ : TU → U × Rn given by

ψ

(∑
v i

∂

∂x i

∣∣∣∣
p

)
= (p, v1, . . . , vn), p ∈ U, v i ∈ R.

In particular, (φ× 1Rn) ◦ ψ = φ̃.
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Remark

Let E
π→ M be a smooth vector bundle. Suppose that

(U, ψ) = (U, x1, . . . , xn) is a chart for M and we have local
trivialization,

φ : E|U −→ U × Rr , φ(ξ) =
(
π(ξ), c1(ξ), . . . , c r (ξ)

)
.

Then (ψ × 1Rr ) ◦ φ : E|U → ψ(U)× Rr is a diffeomorphism, year

(ψ × 1Rr ) ◦ φ = (ψ × 1Rr )
(
π, c1, . . . , c r

)

= (x1, . . . , x1, c1, . . . , c r ).

In particular, (π−1(U), (ψ × 1Rr ) ◦ φ) is a chart for E . We call
x1, . . . , xn the base coordinates and c1, . . . , cn the fiber coordinates
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Vector Bundles

Definition (Bundle Maps)

Let πE : E → M and πF : F → N be smooth vector bundles. A
bundle map from E to F is given by a pair of smooth maps (f , f̃ ),
f : M → N, f̃ : E → F such that:

(i) πF ◦ f̃ = f ◦ πE , i.e., we have a commutative diagram,

E F

M N ′.

f̃

πE πF

f

(ii) For every p ∈ M, the map f̃ restricts to a linear map
f̃ : Ep → Ff (p).
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Example

Any smooth map f : M → N gives rise to a bundle map (f , f̃ )
from TM to TN with f̃ = f∗. Namely,

f̃ (v) = f∗,p(v) p ∈ M, v ∈ TpM.

Remarks

The smooth vector bundles define a category where the
objects are smooth vector bundles and the morphisms are
bundle maps.

From this point of view, the tangent bundle construction
defines a functor from the category of smooth manifolds to
the category of smooth vector bundles.
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Vector Bundles

Remark

We may also consider the category of vector bundles over a
fixed manifold M.

In this case the morphisms are bundle maps (f , f̃ ) with
f = 1M .
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Smooth Sections

Definition (Section of a Vector Bundle)

Let E
π→ M be a smooth vector bundle.

A section of E is any map s : M → E such that π ◦ s = 1M ,
i.e., s(p) ∈ Ep for all p ∈ M,

A smooth section is a section which is smooth as a map from
M to E .

Remarks

The set of smooth sections of E is denoted Γ(E ) or Γ(M,E ).

If U is an open subset of M, we denote by Γ(U,E ) the set of
smooth sections of E|U .

Sections of E|U are called local sections, whereas sections
defined on the entire manifold M are called global sections.
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Smooth Sections

Definition (Vector Field)

A vector field is a section of the tangent bundle TM.

A smooth vector field is a smooth section of TM.

Remark

In other words, a vector field X : M → TM assigns to each p ∈ M
a tangent vector Xp ∈ TpM.
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Smooth Sections

Example

On R2

X(x ,y) = −y ∂

∂x
+ x

∂

∂y
= 〈−y , x〉

is a smooth vector field on R2.

136 §12 The Tangent Bundle

12.4 Smooth Sections

A section of a vector bundle π : E→M is a map s : M→ E such that π ◦ s = 1M , the
identity map on M. This condition means precisely that for each p in M, s maps p
into the fiber Ep above p. Pictorially we visualize a section as a cross-section of the
bundle (Figure 12.3). We say that a section is smooth if it is smooth as a map from
M to E .

π

s(M)

p
M

s(p)

Fig. 12.3. A section of a vector bundle.

Definition 12.7. A vector field X on a manifold M is a function that assigns a tangent
vector Xp ∈ TpM to each point p ∈M. In terms of the tangent bundle, a vector field
on M is simply a section of the tangent bundle π : T M→ M and the vector field is
smooth if it is smooth as a map from M to T M.

Example 12.8. The formula

X(x,y) =−y
∂

∂x
+ x

∂

∂y
=

[
−y

x

]

defines a smooth vector field on R2 (Figure 12.4, cf. Example 2.3).

Fig. 12.4. The vector field (−y,x) in R2.
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Smooth Sections

Proposition (Proposition 12.9)

Let E be a vector bundle over M. Then its set of smooth sections
Γ(E ) is a module over the ring C∞(M) with respect to the
addition and scalar multiplication given by

(s1 + s2)(p) = s1(p) + s2(p), si ∈ Γ(E ), p ∈ M,

(fs)(p) = f (p)s(p), f ∈ C∞(M), s ∈ Γ(E ), p ∈ M.

Remarks

Here s1(p) + s2(p) and f (p)s(p) make sense as elements of
the fiber Ep, because Ep is a vector space.

If U is an open set, then Γ(U,E ) is a module over C∞(U).
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Smooth Frames

Definition (Frames of Vector Bundles)

Let E be a smooth vector bundle of rank r over M.

A frame of E over an open U ⊂ M is given by sections
s1, . . . , sr such that {s1(p), . . . , sr (p)} is a basis of the fiber
Ep for every p ∈ U.

We say that the frame {s1, . . . , sr} is smooth when the
sections s1, . . . , sr are smooth.

Remarks

A frame of the tangent bundle is called a tangent frame, or
simply a frame.

For instance, { ∂∂x , ∂∂y } is a smooth tangent frame over R2.
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Smooth Frames

Example

Let e1, . . . , er be the canonical basis of Rr . For i = 1, . . . , r , define
ẽi : M → M × Rr by

ẽi (p) = (p, ei ), p ∈ M.

Each map ẽi is a smooth section of the trivial bundle M ×Rr .

If p ∈ M, then {ẽ1(p), . . . , ẽr (p)} is a basis of {p} × Rr .

Therefore, {ẽ1, . . . , ẽr} is a smooth frame of M × Rr over M.

30 / 35

Smooth Frames

Example (Frame of a trivialization)

Suppose E is a smooth vector bundle of rank r over M. Let
φ : E|U → U × Rr be a trivialization over an open U ⊂ M.

From the previous example {ẽ1, . . . , ẽr} is a smooth frame of
U × Rr over U.

As φ is smooth, ti = φ−1 ◦ ẽi is a smooth map from U to E|U .

If p ∈ U, then ti (p) = φ(ẽi (p)) = φ(p, ei ) ∈ Ep, so ti is a
smooth section of E .

The trivialization φ induces a linear isomorphism from Ep to
{p} × Rr . It pullbacks the basis {ẽi (p), . . . , ẽr (p)} of
{p} × Rr to {t1(p), . . . , tr (p)}, so the latter is a basis of Ep.

Therefore, {t1, . . . , tr} is a smooth frame of E over U. It is
called the frame of the trivialization (U, φ).
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Smooth Frames

Facts

Let s be a section of E over U. If p ∈ U, then s(p) ∈ Ep and
{t1(p), . . . , tr (p)} is a basis of Ep. Thus, we may write

s(p) =
∑

bi (p)ti (p), bi (p) ∈ R.

If the coefficients bi (p) depends smoothly on p, then s is
smooth.

Conversely, if s is a smooth section, then φ ◦ s : U → U × Rr

is a smooth map.

If p ∈ U, then φ ◦ s(p) = φ
[∑

bi (p)ti (p)
]

=
∑

bi (p)φ[ti (p)].

As φ[ti (p)] = φ[φ−1(ẽi (p)] = ẽi (p) = (p, ei ), we get

φ ◦ s(p) =
∑

bi (p)(p, ei ) = (p, b1(p), . . . , br (p)).

As φ ◦ s is a smooth map, the components b1(p), . . . , br (p)
must be smooth functions.
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Smooth Frames

From the previous slide we obtain:

Lemma (Lemma 12.11)

Let φ : E|U → U ×Rr be a trivialization of E over an open U ⊂ M

with frame {t1, . . . , tn}. A section s =
∑

bi ti of E over U is
smooth if and only if b1, . . . , br are smooth functions.

More generally, we have:

Proposition (Proposition 12.12; see Tu’s book)

Let {s1, . . . , sr} be a smooth frame of E over an open U ⊂ M. A
section s =

∑
c i si of E over U is smooth if and only if c1, . . . , c r

are smooth functions.

Corollary

If {s1, . . . , sr} is a smooth frame of E over an open U ⊂ M, then
this is a C∞(U)-basis of the C∞(U)-module Γ(U,E ).
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Smooth Frames

Remark

Let {s1, . . . , sr} be a smooth frame of E over an open U ⊂ M.
Define σ : U × Rn → E|U by

σ
(
p, ξ1, . . . , ξr

)
=
∑

ξi si (p), p ∈ U, ξi ∈ R.

The map σ is a smooth bijection that induces a linear
isomorphism from {p} × Rr onto Ep.

It can be shown that the inverse map φ = σ−1 : E|U → U×Rr

is smooth, and so this is a trivialization of E over U.

The frame of (φ,U) is {s1, . . . , sr}, since

φ−1(ẽi (p)) = σ(ei (p)) = si (p).

It follows that we have a one-to-one correspondance between
trivializations and smooth frames.
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Smooth Frames

Example

Let (U, x1, . . . , xn) be a local chart for M.

We know that (U, x1, . . . , xn) gives rise to the trivialization
ψ : TU → U × Rn given by

ψ(v) =
(
p, v1, . . . , vn) if v =

∑
v i

∂

∂x i

∣∣∣∣
p

∈ TpM, p ∈ U.

In particular, as ψ( ∂
∂x i

∣∣
p
) = (p, ei ) = ẽi (p), we have

ti (p) = ψ−1
(
ẽi (p)

)
=

∂

∂x i

∣∣∣∣
p

.

Thus, { ∂
∂x1

, . . . , ∂
∂xn

}
is the frame of the trivialization (U, ψ).

In particular, this is a smooth tangent frame over U.
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