Objective

Let M be smooth manifold of dimension n. We would like to bundle together all the tangent spaces T_pM so as to get a smooth manifold, called the *tangent bundle*.

Definition

As a set, the *tangent bundle* of M is the disjoint union,

$$TM := \bigsqcup_{p \in M} T_p M = \{(p, v); p \in M, v \in T_p M\}.$$

Remarks

- For $p \in M$ we identify the subset $\{p\} \times T_p M$ with the tangent space $T_p M$. This allows us to see $T_p M$ as a subset of TM.
- ② In particular, we write an element of *TM* either as (*p*, *v*) with *p* ∈ *M* and *v* ∈ T_pM , or simply as *v*.

The Tangent Bundle as a Manifold

Remark

Let U be an open set in M. If $p \in U$, then $T_p U = T_p M$. Thus,

$$TU = \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} T_p M.$$

Definition

The canonical map $\pi: TM \to M$ is defined by

$$\pi((p, v)) = v, \qquad p \in M, \quad v \in T_pM.$$

Remarks

1 The map $\pi : TM \to M$ is onto. 2 If $p \in M$, then $\pi^{-1}(p) = T_pM$. 2 / 35

Example

Let U be an open in \mathbb{R}^n . If $p \in U$, then $T_p U = T_p \mathbb{R}^n = \mathbb{R}^n$. Recall that, if (r^1, \ldots, r^n) are the standard coordinates on \mathbb{R}^n , then we identify

$$T_{p}\mathbb{R}^{n} \ni \mathbf{v} = \sum \mathbf{v}^{i} \frac{\partial}{\partial r^{i}}\Big|_{p} \iff \langle \mathbf{v}^{1}, \ldots, \mathbf{v}^{n} \rangle \in \mathbb{R}^{n}.$$

Thus, the pair (p, v) is naturally identified with (p, v^1, \ldots, v^n) . Therefore, we have

$$TU = \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} \mathbb{R}^n = U \times \mathbb{R}^n.$$

The Tangent Bundle as a Manifold

Equip TM with a smooth structure. That is, we need to:

- Define a topology on *TM*.
- **2** Construct a C^{∞} -atlas for *TM*.

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart in M.

- Here $\phi(U)$ is an open in \mathbb{R}^n , and so $T(\phi(U)) = \phi(U) \times \mathbb{R}^n$.
- For every $p \in U$, the differential $\phi_{*,p}$ is an isomorphism from $T_p M = T_p U$ onto $T_{\phi(p)}(\phi(U)) = \mathbb{R}^n$.
- Therefore, we define a map $ilde{\phi}:\, TU o \phi(U) imes \mathbb{R}^n$ by

$$\tilde{\phi}(p, v) = (\phi(p), \phi_{*,p}v), \qquad p \in U, \ v \in T_p U.$$

- This is a bijection with inverse $(x, v) \rightarrow (\phi^{-1}(x), \phi^{-1}_{*,\phi^{-1}(x)}v)$.
- This allows us to define a topology on *TU* by pulling back the topology of φ(U) × ℝⁿ:

$$W \subset TU$$
 is open $\iff \widetilde{\phi}(W)$ is open in $\phi(U) \times \mathbb{R}^n$.

• With respect to this topology $ilde{\phi}$ is a homeomorphism.

The Tangent Bundle as a Manifold

Remark

• If
$$p \in U$$
, then $\left\{ \frac{\partial}{\partial x^1} \Big|_p, \dots, \frac{\partial}{\partial x^1} \Big|_p \right\}$ is a basis of $T_p M$.

• The differential $\phi_{*,p} : T_p U \to T_{\phi(p)} V = \mathbb{R}^n$ maps $\frac{\partial}{\partial x^i}\Big|_p$ to $\frac{\partial}{\partial r^i}\Big|_{\phi(p)}$. Thus,

$$\sum v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \xrightarrow{\phi_{*}} \sum v^{i} \frac{\partial}{\partial r^{i}} \bigg|_{\phi(p)} \longleftrightarrow \langle v^{1}, \ldots, v^{n} \rangle \in \mathbb{R}^{n}.$$

• If $\phi(p) = (x^1(p), \dots, x^n(p))$ and $v = \sum v^i \frac{\partial}{\partial x^i} \Big|_p \in T_p M$, then $\tilde{\phi}(p, v) = (\phi(p), \phi_{*,p}v) = (x^1(p), \dots, x^n(p), v^1, \dots, v^n).$

In particular, this defines coordinates on TU.

6/35

Facts

• Let $(V, \psi) = (V, y^1, \dots, y^n)$ be another chart of M such that $U \cap V \neq \emptyset$. Define $\tilde{\psi} : TV \rightarrow \psi(V) \times \mathbb{R}^n$ by

$$\tilde{\psi}(\boldsymbol{p}, \boldsymbol{v}) = (\psi(\boldsymbol{p}), \psi_{*, \boldsymbol{p}} \boldsymbol{v}), \qquad \boldsymbol{p} \in \boldsymbol{V}, \ \boldsymbol{v} \in T_{\boldsymbol{p}} \boldsymbol{M}.$$

On T(U ∩ V) = (TU) ∩ (TV) we have two topologies induced by the respective topologies of TU and TV.

• On
$$\tilde{\phi}(TU \cap TV) = \phi(U \cap V) \times \mathbb{R}^n$$
 we have

$$\tilde{\psi}\circ\tilde{\phi}^{-1}(r,\nu)=\left(\psi\circ\phi^{-1}(r),\psi_*\circ\phi_*^{-1}\nu\right)=\left(\psi\circ\phi^{-1}(r),(\psi\circ\phi^{-1})_{*,r}\nu\right).$$

- Here $(\psi \circ \phi^{-1})_{*,r}$ is the multiplication by the Jacobian matrix $J_{\psi \circ \phi^{-1}}(r) = \left[\partial (y^j \circ \phi^{-1}) / \partial r^i(r) \right]$ whose entries depends smoothly on r.
- Therefore, \$\tilde{\psi}\$ \circ \vec{\phi}\$^{-1} : \$\phi(U ∩ V) × \mathbb{R}^n\$ → \$\psi(U ∩ V) × \mathbb{R}^n\$ is smooth map. Its inverse map \$\tilde{\phi}\$ \circ \vec{\psi}\$^{-1}\$ is smooth as well, and so \$\tilde{\psi}\$ \circ \vec{\psi}\$^{-1}\$ is a diffeomorphism.

The Tangent Bundle as a Manifold

Facts (Continued)

- $T(U \cap V)$ is open in TU and in TV.
- As $\tilde{\psi} \circ \tilde{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is a diffeomorphism, this is a homeomorphism.
- If $W \subset T(U \cap V)$, then

W open in $TU \iff \tilde{\phi}(W)$ open in $\phi(U) \times \mathbb{R}^n$ $\iff \tilde{\psi} \circ \tilde{\phi}^{-1} [\tilde{\phi}(W)]$ open in $\psi(U) \times \mathbb{R}^n$ $\iff \tilde{\psi}(W)$ open in $\phi(U) \times \mathbb{R}^n$ $\iff W$ open in TV

Thus, TU and TV induce the same topology on $T(U \cap V)$.

• It follows that, if W is open in TU and X is open in TV, then $W \cap X$ is open in $T(U \cap V)$.

Summary

- (a) If (U, φ) is a chart for M, then φ̃ : TU → φ(U) × ℝⁿ allows us to define a topology on TU by pulling back the topology of φ(U) × ℝⁿ. This map then become a homeomorphism.
- (b) If (V, ψ) is another chart for M, then the transition map $\tilde{\psi} \circ \tilde{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is a diffeomorphism.
- (c) TU and TV induce the same topology on $U \cap V$. In particular, if W is open in TU and X is open in TV, then $W \cap X$ is open in $T(U \cap V)$.

In particular, (b) would allow us to get a C^{∞} atlas for *TM* provided we can define a topology on *TM* by patching together the *TU*-topologies.

The Tangent Bundle as a Manifold

Reminder (Topological Bases; see Appendix A)

Let X be a topological space. A basis for the topology of X is a collection \mathscr{B} of open sets such that, for every open $U \subset X$ and every $p \in U$, there is an open set $V \in \mathscr{B}$ such that $p \in V \subset U$.

Remark

If \mathscr{B} is a basis for the topology of X, then every open set is the union of open sets in \mathscr{B} . We say that \mathscr{B} generates the topology of X.

Proposition (Proposition A.8)

Let X be a set and \mathscr{B} a collection of subsets such that:

- (i) $X = \bigcup_{V \in \mathscr{B}} V$.
- (ii) If $V_1, V_2 \in \mathscr{B}$ and $p \in V_1 \cap V_2$, then there is $W \in \mathscr{B}$ such that $p \in W \subset V_1 \cap V_2$.

Then:

1 \mathscr{B} is a basis for a unique topology on X.

2 The open sets for this topology consists of unions of sets in \mathscr{B} .

Remark

The condition (ii) holds automatically if \mathscr{B} is closed under finite intersection.

The Tangent Bundle as a Manifold

Facts

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ be the maximal atlas of M (which defines its smooth structure). Define

$$\mathscr{B} = \bigcup_{\alpha} \{W; W \text{ is an open in } TU_{\alpha}\}.$$

Note that $TU_{\alpha} \in \mathscr{B}$.

• As $\cup U_{\alpha} = M$, we have

$$\bigcup_{\alpha} TU_{\alpha} = \bigsqcup_{p \in \cup U_{\alpha}} T_{p}M = \bigsqcup_{p \in \cup M} T_{p}M = TM.$$

• If W_{α} is an open in TU_{α} and W_{β} is an open in TU_{β} , then $W_1 \cap W_2$ is open in $T(U_{\alpha} \cap U_{\beta})$, and hence is contained in \mathscr{B} .

It follows that \mathscr{B} satisfies the conditions (i) and (ii) of Proposition A.8, and so it's a basis for a unique topology on TM.

Definition

The topology of TM is the topology generated by \mathscr{B} . The open sets are unions of sets in \mathscr{B} .

Remark

Each TU_{α} is open in TM, since it is contained in \mathscr{B} .

Proposition (Proposition 12.4)

As a topological space TM is Hausdorff.

Remark

Each open TU_{α} is Hausdorff since it is homeomorphic to the open set $\phi_{\alpha}(U) \times \mathbb{R}^n \subset \mathbb{R}^n \times \mathbb{R}^n$. This can be used to show that TM is Hausdorff.

The Tangent Bundle as a Manifold

Proposition (Proposition 12.3)

The topology of TM is second countable.

- It can be shown that the topology of *M* admits a countable basis {U_i}_{i∈I} consisting of domains of charts (*cf.* Lemma 12.2 of Tu's book).
- Each *TU_i* is second countable since it is homeomorphic to an open in ℝⁿ × ℝⁿ.
- If for each i ∈ I, we let {W_{i,j}}_{j∈N} be a countable basis for the topology of TU_i, then {W_{i,j}; i ∈ I, j ∈ N} is a countable basis for the topology of TM (see Tu's book).

Facts

- Each TU_{α} is an open in TM.
- We knows that $TM = \bigcup_{\alpha} TU_{\alpha}$.
- The local trivializations φ̃_α : TU_α → φ_α(U_α) × ℝⁿ are homeomorphisms onto open sets in ℝⁿ × ℝⁿ.
- All the transition maps $\tilde{\phi}_{\beta} \circ \tilde{\phi}_{\alpha}^{-1}$ are smooth.

Proposition

The collection $\{(TU_{\alpha}, \tilde{\phi}_{\alpha})\}$ is a C^{∞} atlas for TM, and hence TM is a smooth manifold of dimension 2n.

Remark

If $\{(V_{\beta}, \psi_{\beta})\}$ is any C^{∞} -atlas for M, then we also get a C^{∞} atlas $\{(TV_{\beta}, \tilde{\psi}_{\beta})\}$ for TM. It is compatible with the atlas $\{(TU_{\alpha}, \tilde{\phi}_{\alpha})\}$, and so it defines the same smooth structure.

16 / 35

The Tangent Bundle as a Manifold

Facts

- The canonical map π : TM → M is such that π(v) = p if v ∈ T_pM. It is onto.
- Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M. Then

$$\begin{split} \phi \circ \pi \circ \tilde{\phi}^{-1}(r^1, \dots, r^n, v^1, \dots, v^n) \\ &= \phi \circ \pi \left[\phi^{-1}(r^1, \dots, r^n), \sum v^i \partial / \partial x^i \right] \\ &= \phi \circ \phi^{-1}(r^1, \dots, r^n) = (r^1, \dots, r^n). \end{split}$$

- As (U, ϕ) and $(TU, \tilde{\phi})$ are charts this shows that π is C^{∞} .
- By the converse of the submersion theorem (exercise!) this also shows that π is a submersion.

Proposition

The canonical projection $\pi : TM \rightarrow M$ is a surjective submersion.

Definition

A vector bundle of rank r over a manifold M is a smooth manifold

E together with a surjective smooth map $\pi: E \to M$ such that:

- (i) For every $p \in M$, the fiber $E_p = \pi^{-1}(p)$ is a vector space of dimension r.
- (ii) For each $p \in M$ there is an open neighborhood U of p in M and a diffeomorphism $\phi : \pi^{-1}(U) \to U \times \mathbb{R}^r$ (called *trivialization of E over U*) such that
 - $\pi \circ \phi(q, \xi^1, \dots, \xi^r) = q$ for all $q \in U$ and $(\xi^1, \dots, \xi^r) \in \mathbb{R}^r$.
 - For each $q \in U$, the restriction of ϕ to E_q is a vector space isomorphism from E_q onto $\{q\} \times \mathbb{R}^r$.

Vector Bundles

Remarks

- We sometimes write a vector bundle $E \xrightarrow{\pi} M$.
- We may also think of a vector bundle as a triple (E, M, π). In this picture E is called the *total space*, M is called the *base* space, and π is called the *projection*.

Remark

Let $E \xrightarrow{\pi} M$ be a smooth vector bundle and S a regular submanifold in M. Then $\pi^{-1}(S) \xrightarrow{\pi_{|S|}} S$ is a smooth vector bundle over S denoted $E_{|S|}$ and called the *restriction of* E *to* S.

Example

- A trivial vector bundle is of the form $E = M \times \mathbb{R}^r$.
- In this case the projection $\pi: M \times \mathbb{R}^r \to M$ is just the projection on the first factor.

Example

- The tangent bundle *TM* is a vector bundle of rank *n*.
- If $(U, x^1, ..., x^n)$ is a chart, then a trivialization of *TM* over U is the map $\psi : TU \to U \times \mathbb{R}^n$ given by

$$\psi\left(\left.\sum v^{i}\frac{\partial}{\partial x^{i}}\right|_{p}\right) = (p, v^{1}, \dots, v^{n}), \qquad p \in U, \ v^{i} \in \mathbb{R}.$$

In particular, $(\phi \times 1_{\mathbb{R}^n}) \circ \psi = \tilde{\phi}$.

Remark

Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. Suppose that $(U, \psi) = (U, x^1, \dots, x^n)$ is a chart for M and we have local trivialization,

$$\phi: E_{|U} \longrightarrow U \times \mathbb{R}^r, \qquad \phi(\xi) = (\pi(\xi), c^1(\xi), \dots, c^r(\xi)).$$

Then $(\psi \times \mathbb{1}_{\mathbb{R}^r}) \circ \phi : E_{|U} \to \psi(U) \times \mathbb{R}^r$ is a diffeomorphism, year

$$(\psi imes \mathbbm{1}_{\mathbb{R}^r}) \circ \phi = (\psi imes \mathbbm{1}_{\mathbb{R}^r}) (\pi, c^1, \dots, c^r) = (x^1, \dots, x^1, c^1, \dots, c^r).$$

In particular, $(\pi^{-1}(U), (\psi \times \mathbb{1}_{\mathbb{R}^r}) \circ \phi)$ is a chart for E. We call x^1, \ldots, x^n the base coordinates and c^1, \ldots, c^n the fiber coordinates

Definition (Bundle Maps)

Let $\pi_E : E \to M$ and $\pi_F : F \to N$ be smooth vector bundles. A bundle map from E to F is given by a pair of smooth maps (f, \tilde{f}) , $f : M \to N$, $\tilde{f} : E \to F$ such that:

(i) $\pi_F \circ \tilde{f} = f \circ \pi_E$, i.e., we have a commutative diagram,

(ii) For every $p \in M$, the map \tilde{f} restricts to a linear map $\tilde{f} : E_p \to F_{f(p)}$.

Vector Bundles

Example

Any smooth map $f: M \to N$ gives rise to a bundle map (f, \tilde{f}) from *TM* to *TN* with $\tilde{f} = f_*$. Namely,

$$\widetilde{f}(v) = f_{*,p}(v) \qquad p \in M, \ v \in T_pM.$$

- The smooth vector bundles define a category where the objects are smooth vector bundles and the morphisms are bundle maps.
- From this point of view, the tangent bundle construction defines a functor from the category of smooth manifolds to the category of smooth vector bundles.

Remark

- We may also consider the category of vector bundles over a fixed manifold *M*.
- In this case the morphisms are bundle maps (f, \tilde{f}) with $f = \mathbb{1}_M$.

Smooth Sections

Definition (Section of a Vector Bundle)

Let $E \xrightarrow{\pi} M$ be a smooth vector bundle.

- A section of E is any map s : M → E such that π ∘ s = 1_M, i.e., s(p) ∈ E_p for all p ∈ M,
- A *smooth section* is a section which is smooth as a map from *M* to *E*.

- The set of smooth sections of E is denoted $\Gamma(E)$ or $\Gamma(M, E)$.
- If U is an open subset of M, we denote by Γ(U, E) the set of smooth sections of E_{|U}.
- Sections of $E_{|U}$ are called *local sections*, whereas sections defined on the entire manifold M are called *global sections*.

Definition (Vector Field)

- A vector field is a section of the tangent bundle TM.
- A smooth vector field is a smooth section of TM.

Remark

In other words, a vector field $X : M \to TM$ assigns to each $p \in M$ a tangent vector $X_p \in T_pM$.

Smooth Sections

On \mathbb{R}^2

$$X_{(x,y)} = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} = \langle -y, x \rangle$$

is a smooth vector field on \mathbb{R}^2 .

Proposition (Proposition 12.9)

Let E be a vector bundle over M. Then its set of smooth sections $\Gamma(E)$ is a module over the ring $C^{\infty}(M)$ with respect to the addition and scalar multiplication given by

 $(s_1 + s_2)(p) = s_1(p) + s_2(p), \quad s_i \in \Gamma(E), \quad p \in M,$ $(fs)(p) = f(p)s(p), \quad f \in C^{\infty}(M), \ s \in \Gamma(E), \ p \in M.$

Remarks

- Here s₁(p) + s₂(p) and f(p)s(p) make sense as elements of the fiber E_p, because E_p is a vector space.
- If U is an open set, then $\Gamma(U, E)$ is a module over $C^{\infty}(U)$.

Smooth Frames

Definition (Frames of Vector Bundles)

Let E be a smooth vector bundle of rank r over M.

- A frame of E over an open U ⊂ M is given by sections
 s₁,..., s_r such that {s₁(p),..., s_r(p)} is a basis of the fiber E_p for every p ∈ U.
- We say that the frame $\{s_1, \ldots, s_r\}$ is *smooth* when the sections s_1, \ldots, s_r are smooth.

- A frame of the tangent bundle is called a *tangent frame*, or simply a *frame*.
- For instance, $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}$ is a smooth tangent frame over \mathbb{R}^2 .

Example

Let e_1, \ldots, e_r be the canonical basis of \mathbb{R}^r . For $i = 1, \ldots, r$, define $\tilde{e}_i : M \to M \times \mathbb{R}^r$ by

$$\widetilde{e}_i(p)=(p,e_i), \qquad p\in M.$$

- Each map \tilde{e}_i is a smooth section of the trivial bundle $M \times \mathbb{R}^r$.
- If $p \in M$, then $\{\tilde{e}_1(p), \ldots, \tilde{e}_r(p)\}$ is a basis of $\{p\} \times \mathbb{R}^r$.

Therefore, $\{\tilde{e}_1, \ldots, \tilde{e}_r\}$ is a smooth frame of $M \times \mathbb{R}^r$ over M.

Smooth Frames

Example (Frame of a trivialization)

Suppose *E* is a smooth vector bundle of rank *r* over *M*. Let $\phi : E_{|U} \to U \times \mathbb{R}^r$ be a trivialization over an open $U \subset M$.

- From the previous example {*ẽ*₁,..., *ẽ_r*} is a smooth frame of U × ℝ^r over U.
- As ϕ is smooth, $t_i = \phi^{-1} \circ \tilde{e}_i$ is a smooth map from U to $E_{|U}$.
- If $p \in U$, then $t_i(p) = \phi(\tilde{e}_i(p)) = \phi(p, e_i) \in E_p$, so t_i is a smooth section of E.
- The trivialization ϕ induces a linear isomorphism from E_p to $\{p\} \times \mathbb{R}^r$. It pullbacks the basis $\{\tilde{e}_i(p), \ldots, \tilde{e}_r(p)\}$ of $\{p\} \times \mathbb{R}^r$ to $\{t_1(p), \ldots, t_r(p)\}$, so the latter is a basis of E_p .
- Therefore, $\{t_1, \ldots, t_r\}$ is a smooth frame of E over U. It is called the *frame of the trivialization* (U, ϕ) .

Smooth Frames

Facts

Let s be a section of E over U. If $p \in U$, then $s(p) \in E_p$ and $\{t_1(p), \ldots, t_r(p)\}$ is a basis of E_p . Thus, we may write

$$s(p) = \sum b^i(p)t_i(p), \qquad b^i(p) \in \mathbb{R}.$$

- If the coefficients b_i(p) depends smoothly on p, then s is smooth.
- Conversely, if s is a smooth section, then $\phi \circ s : U \to U \times \mathbb{R}^r$ is a smooth map.

• If
$$p \in U$$
, then $\phi \circ s(p) = \phi \left[\sum b^i(p) t_i(p) \right] = \sum b^i(p) \phi[t_i(p)]$.

• As
$$\phi[t_i(p)] = \phi[\phi^{-1}(\tilde{e}_i(p)] = \tilde{e}_i(p) = (p, e_i)$$
, we get

$$\phi \circ s(p) = \sum b^i(p)(p,e_i) = (p,b^1(p),\ldots,b^r(p)).$$

As φ ∘ s is a smooth map, the components b¹(p),..., b^r(p) must be smooth functions.

32 / 35

Smooth Frames

From the previous slide we obtain:

Lemma (Lemma 12.11)

Let $\phi : E_{|U} \to U \times \mathbb{R}^r$ be a trivialization of E over an open $U \subset M$ with frame $\{t_1, \ldots, t_n\}$. A section $s = \sum b^i t_i$ of E over U is smooth if and only if b^1, \ldots, b^r are smooth functions.

More generally, we have:

Proposition (Proposition 12.12; see Tu's book)

Let $\{s_1, \ldots, s_r\}$ be a smooth frame of E over an open $U \subset M$. A section $s = \sum c^i s_i$ of E over U is smooth if and only if c^1, \ldots, c^r are smooth functions.

Corollary

If $\{s_1, \ldots, s_r\}$ is a smooth frame of E over an open $U \subset M$, then this is a $C^{\infty}(U)$ -basis of the $C^{\infty}(U)$ -module $\Gamma(U, E)$.

Smooth Frames

Remark

Let $\{s_1, \ldots, s_r\}$ be a smooth frame of E over an open $U \subset M$. Define $\sigma : U \times \mathbb{R}^n \to E_{|U}$ by

$$\sigma(p,\xi^1,\ldots,\xi^r) = \sum \xi^i s_i(p), \qquad p \in U, \ \xi^i \in \mathbb{R}.$$

- The map σ is a smooth bijection that induces a linear isomorphism from {p} × ℝ^r onto E_p.
- It can be shown that the inverse map $\phi = \sigma^{-1} : E_{|U} \to U \times \mathbb{R}^r$ is smooth, and so this is a trivialization of E over U.
- The frame of (ϕ, U) is $\{s_1, \ldots, s_r\}$, since $\phi^{-1}(\tilde{e}_i(p)) = \sigma(e_i(p)) = s_i(p).$

It follows that we have a one-to-one correspondance between trivializations and smooth frames.

Smooth Frames

Example

Let (U, x^1, \ldots, x^n) be a local chart for M.

We know that (U, x¹,...,xⁿ) gives rise to the trivialization
 ψ : TU → U × ℝⁿ given by

$$\psi(\mathbf{v}) = (\mathbf{p}, \mathbf{v}^1, \dots, \mathbf{v}^n) \text{ if } \mathbf{v} = \sum \mathbf{v}^i \frac{\partial}{\partial x^i} \Big|_{\mathbf{p}} \in T_{\mathbf{p}} M, \ \mathbf{p} \in U.$$

• In particular, as $\psi(rac{\partial}{\partial x^i}\big|_p) = (p, e_i) = \widetilde{e}_i(p)$, we have

$$t_i(p) = \psi^{-1}\big(\tilde{e}_i(p)\big) = \frac{\partial}{\partial x^i}\Big|_p$$

Thus, $\left\{\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}\right\}$ is the frame of the trivialization (U, ψ) . In particular, this is a smooth tangent frame over U.