Tangent Vectors in R”

Reminder

In Section 2 we saw two equivalent ways to describe a tangent
vector at a given point p € R":

(i) As an arrow emanating from p and represented by a column
vector,

(i) As a derivation at p of C;°, the algebra of germs of C*°
functions at p.

A\
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Tangent Vectors in R”

Reminder

The correspondence between the two approaches is given by

Vl

. 0
. — _ i
Vector v = | : | <— Derivation D, = E e

p

@ The derivation approach is easier to generalize to manifolds.

@ We are going to use this approach to define tangent vectors
and the tangent space for manifolds.
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The Tangent Space at a Point

o Let .%#,(M) consists of pairs (U, f), where U is an open
neighborhood of pand f : U — R is a C°° function.

@ On .#,(M) we define an equivalence relation by
(U,f) ~(U,g) <= f = g near p.

Thus, f ~ g means there is an open W C U N V such that
pe W and f =gon W.

Definition

@ The equivalence class of (U, f) is called the germ of f at p.

o The quotient 7,(M)/~ is denoted C2°(M); this is the set of
germs of C° functions at p.
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The Tangent Space at a Point

o C.°(M) is a vector space with respect to the scalar
multiplication and the addition given by

A-(germ at p of f) = germ at p of \f, A €R,
(germ at p of f) + (germ at p of g) = germ at p of f + g.

@ C,°(M) is also an algebra with respect to the multiplication
given by

(germ at p of f) - (germ at p of g) = germ at p of fg.
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Remark

The Tangent Space at a Point
Remark

Let U be an open set in M containing p.
o As Z,(U) C .Z,(M) we get an inclusion,

Co(U) C ¢ (M).

° As (V,f) € Fp(M) and (VN U, fiyny) are equivalent, we
actually have an equality. That is,

Co(U) = C°(M).

The Tangent Space at a Point

Definition

A derivation at p is any linear map D : C;°(M) — R such that
D(fg) = (Df)g(p) + f(p)Ds.

© By abuse of notation, we use the same letter f or g to denote
a function and its germ at p.

© The set of all derivations at p is a subspace of the space of
linear maps C;° — R.

Definition

@ The tangent space of M at p, denoted T,(M) or T,M, is the
vector space of all derivations at p.

@ An element of T,(M) is now called a tangent vector at p.




The Tangent Space at a Point

For M = R" we recover the description of the tangent space
Tp(R") in terms of derivations.

Example (see Remark 8.2)

@ Let U be an open in M containing p. As C;°(U) = C3°(V),
we see that
Tp(U) — Tp(M)-

@ In particular, if M = R", then

T,(U) = T,(R") ~ R".
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The Tangent Space at a Point

Let (U, ) = (U,x!,...,x") be a chart about p in M. Denote by
(rl,...,r") the standard coordinates in R” (so that x' = r' o ¢).

@ By definition, if f is C* at p, then
0 0

d (=77 (fogp™h) eR.

#(p)

— O
o or

@ We have % p(fg) — (%|pf)g(P) + f(p)%
_ 0 _ 0

o If f = g near p, then 5= pf = W‘pg.

@ Thus, %‘p induces a map,

0
Ox!

pg'

:C,g>O — R.
p

We obtain a derivation at p, i.e., a tangent vector at p.




The Tangent Space at a Point

@ We sometimes write % instead %‘p when it is understood

that derivatives are evaluated at the point p.

@ When M has dimension 1 and t is a local coordinate, we write

d : 19,
5 instead of 5t
@ We will see later that {—8 0 } is a basis of T,(M)
OxLip?> " 2 Ox"Ip P '

v
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The Differential of a Map

Let F: M — N be a C*° map, where M and N are manifolds.
e Given X € T,(M) define F.(X) : Cf;‘()p)(N) — R by

F(X)f =X(Fof),  fe Ca,(N).

e F.(X) is a linear map.

@ As X is a derivation at p, we have
F(X)(fg) = X[(f o F)(g o F)]
= X[(foF)](goF)(p)+(foF)p)X|[(goF)
= [F(X)f] g (F(p)) + f (F(p)) [F(X)g].

That is, F.(X) is a derivation at F(p), i.e., Fx(X) € Trp)(N).
o We thus get a map F. : T,(M) — Tr(,)(N), X — F.(X).
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The Differential of a Map

The map F, : T,(M) — Tg(p)(N) is linear, since we have

F.(AX)f = AX(f o F) = AF.(X)F,
Fo(X + Y)f = X(f o F) 4 Y(f o F) = Fu(X)f + F.(Y)F.

Definition

The linear map Fi : T,(M) — Tr(p)(N) is called the differential of
F at p.

© To emphasize the dependence on the point p we sometimes
Fip for Fy.

© There are various notations for the differential. For instance,
it also denoted d,F, dF(p), DpF or even F'(p).
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The Differential of a Map

Example
Let F:R" — R™ be a C* map. Denote by (x!,...,x") the
coordinates on R” and by (y!,...,y™) the coordinates on R™. Set

F=(F,...,F™),
@ Let p € R". Then {%lp’ e } is a basis of T,(R").

|F(p ey ayi’”}F(p)} is a basis of T, (R™).

o Given any f € Czy, )( ™), we have
0 0
= <8XJ >f OxJ ’

@ This means that F*(i- p) =5 8—,:{(p)8iy,.

o Likewise, {57r

T OF! s,

foF)= (p)
( o ) — OxJ (p)ay,

f.
F(p)

i=1 ox)

)’

@ In other words, the matrix of F, relative to the bases { | }

oxJ

and {%‘F(p)} is precisely the Jacobian matrix [E(p)]
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The Chain Rule

Let F: N - M and G: M — P be C° maps. Given any p € N
the differentials F, , and G*,F(p) are linear maps,

Fs.p G?yFlﬂ
Tp(M) — Trp)(N) Te(F(p))(P)-

Theorem (Theorem 8.5; Chain Rule)

IfF:N— Mand G: M — P are C* maps, then, for every
p € N, we have

(G0 F)p = Gur(p) © Frp
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The Chain Rule

Let 1p : M — M be the identity, and let p € m. Given
X € Tp(M) and f € C;°, we have

(Lm)s(X)f = X(F 0 1) = XF.

Thus, (1y)«(X) = X, and so the differential (1)« is the identity
map 17 vy @ Tp(M) — Tp(M).

Corollary (Corollary 8.6)

If F: N — M is a diffftomorphism, then, for every p € N, the
differential F p : ToN — Tg(pyM is an isomorphism of vector
spaces.

Corollary (Corollary 8.7; Invariance of Dimension)

If an open U C R" is diffeomorphic to an open V C R™, then we
must have n = m.




Bases for the Tangent Space at a Point

(Facts

Let (U, ) = (U,x},...,x") be a chart about p in M. Denote by
(rl,...,r™) the coordinates in R”. Then:

@ The map ¢ : U — ¢(U) C R" is a diffeomorphism.

e The differential F, , is an isomorphism from T,(U) = T,(M)
to Ty(p)(U) = be(p)Rn
{6r1 ‘¢(p)’ ey 8r,7 #(0) } is a basis of Ty, (R").

@ By definition of ¢, and W‘p' if e C(;? )(R”), then

0 0

9 9
6-(3m1| )f= 50| (Fod)= g0 [(Fo®)oo ] =5| r.
ox'|, ox'|, ' | 4(p) ' [ 4(p)
ThUS, ¢ ( 8 )_i
ox! p g ¢(p)
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Bases for the Tangent Space at a Point

Facts .

To sum up:

o The differential ¢, p: ToM — Ty, R" is an isomorphism.
@ It maps the family {%}p, e % p} in ToM to the basis

d i
{amlogey -2 3m lopy} OF To(e)R"
We deduce from this the following result:

Proposition (Proposition 8.9)

If (U,x,...,x") is a chart about p in M, then {%Ly
is a basis of T,M. In particular, T,M has dimension n.

o)

Corollary (Invariance of Dimension)
If M and N are diffeomorphic manifolds, then dim M = dim N.

17/36



Bases for the Tangent Space at a Point

© There are alternative definitions of the tangent space T,M.
© What is important to keep in mind is the following:
e The tangent space T,M is a vector space that has basis
{%|p, e p}, where (x1,...,x") are local coordinates.

e We keep the same vector space upon changing local
coordinates.
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Local Expression for the Differential

Let F: N — Mbea C®mapand pc N. Let (U,x%,...,x") be a
chart around pin N and (V,y!,...,y™) a chart around F(p) in M

® As {%‘p} and {8%, , } are bases of T,N and T, M,

there are constants a¥ such that

J
( 8XJ

, J=1,...,n.
F(p)

Z
I Qyk
@ Set F' =y’ o F. We have

) 0
F(af )y o |,

(y'oF) = gz (p)-

19/36



Local Expression for the Differential

@ As % = 5’ (see Proposition 6.22), we get

k k k ci i
Sl Y=y _as-g
(k_l T 9y F(p) k=1 K 8y F(p) k=1 ’ ’
@ This shows that aJ': = g—Z(p). Thus,
0 T OF! 0
F*<— )Z (p) i 9 ./:17 y N
8XJ p 1 aXJ ay F(p)

Local Expression for the Differential

Therefore, we have obtained the following result:

Proposition (Proposition 8.11)

Let F: N — M bea C*® mapandpEN. Let (U,x',...,x") be a
chart around p in N and (V,y*,...,y™) a chart around F(p) in

0
M. Then, relative to the bases {8 J| } and {a |I__( )} of T,N

and Tpp)M, the differential F.p: Tp N — TF(p)M has matrix

where F' = yi oF.

OF
lé?xJ (P)] 1<i<m

1<j<n

20 /36

21/36



Local Expression for the Differential

Remark (Remark 8.12)

@ The inverse function theorem for manifolds (Theorem 6.26)
asserts that F is locally invertible at p if and only if

det [2E(p)] # 0.

@ Therefore, we obtain the following coordinate-free description
of this result:

Theorem (Inverse Function Theorem)
Let F: N — M bea C>® map and p € N. TFAE:
© F is locally invertible at p.

@ The differential F, : T,N — TF(p)M IS an isomorphism.
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Curves in a Manifold

@ In classical differential geometry (i.e., differential geometry of
surfaces) the tangent plane at a point p of surface S C R3 is
defined in terms of tangent vectors of curves in S through p.

@ We shall now see an analogous description of the tangent
space for general manifolds.
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Curves in a Manifold

@ A smooth curve in manifold M is any smooth map c: | — M,
where [ is some open interval in R.

@ We say that a smooth curve ¢ : | —+ M starts at a given point
p € M when 0 € | and ¢(0) = p.

Definition (Velocity Vector)

Let c: | — M be a smooth curve and tg € M. lts velocity vector
(or velocity) at t = ty is

d
/t : k I
) = (dt

) € Tc(to) M.

to

© We also say that ¢/(tg) is the velocity vector at c(tp).
@ The velocity vector c’(tp) is also denoted %(tg) and % '

Curves in a Manifold

Suppose that M = R” with coordinates (x*,...,x"). Let

c : | — R" be a smooth curve, and set c(t) = (c!(t),...,c"(t)).
@ Giventge l,iffefe Cgfto)(R”), then
d d dc’ | Of
"(to)f =c| | |f=—=| f(c(t))= to) =— (c(to)) -
“)f = (G )= G| Few =3 G g (e(w)
@ Thus n ,
' dc' 0
/() —
-3 )
=1 C(tO)

@ That is, c/(tp) is the derivation at c(ty) defined by the vector,
dcl dc” dc
—(to), ..., to) | = —(tp) € R".
( - (to) ™ ( o)) dt( 0)
Therefore, we recover the usual notion of velocity vector from
calculus and classical differential geometry. -




Curves in a Manifold

Proposition (Proposition 8.16; see Tu's book)

For any point p € M and any tangent vector X € T,M, there is a
curve ¢ : (—e,€) — M starting at p with initial velocity ¢’(0) = X.

For every p € M, we have

ToM = {c'(0); c: 1 — M smooth curve starting at p} .

This interpretation of the tangent space is the analogue for smooth
manifolds of the description of the tangent plane of surfaces in
classical differential geometry in terms of tangent vectors of curves.
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Curves in a Manifold

Remark (see Proposition 8.17)

Given p€ M and X € T,M, let c: | — M is a smooth curve
starting at p such that ¢’(0) = X. Then, for every f € C;°(M), we
Xf = (0)f =c <—

have J
= =
dt o) dt

This provides us a more geometric description of tangent vectors
as directional derivatives.

d (f o c)(t).

t=0
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Computing the Differential Using Curves

Let F: N — M be a smooth map. Given p € N and X € T,N let
c : I — N be a smooth curve such that ¢(0) = p and ¢’(0) = X.

@ Foc:|l — Mis asmooth curve in M starting at
F(c(0)) = F(p).
@ By the Chain Rule (F o c).«0= F, c(0)© c,0 = Fip o Csp.

@ Therefore, the velocity vector of Foc att =0 is

>] = F.p ['(0)] .

d

d
:F* * -
to) ’p[C ’O(dt

(Foo) (0)=(Foc, (%

0

@ As c'(0) = X, we get

(F oc) (0) = Fu(X).
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Computing the Differential Using Curves

Proposition (Proposition 8.18)

Let F: N — M be a smooth map. Given p € N and X € T,N.
Given p € N and X € T,N, for any smooth curve c : | — N
starting at p and with velocity vector X at p, we have

Fu(X) = (Foc) (0).

That is, F.(X) is the velocity vector at F(p) of the curve
Foc:Il— M.

This description of the differential of a smooth map is the
analogue of the definition of the differential in terms of curves in
Classical Differential Geometry.
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Submersions and Immersions

Definition (Immersion)

Let F : M — N be a smooth map.

© We say that F is an immersion at a point p € N when the
differential F. @ ToN — Tg(,)M is injective.

© We say thar F is an immersion when it is an immersion at
every point p € N.

If F is an immersion at p, then dim N < dim M.

Example

If n < m, then the inclusion of R" into R™

(x, ..., x") — (x},...,x",0,...,0)

IS an immersion.

J n
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Submersions and Immersions

Definition (Submersion)

Let F : M — N be a smooth map.

O We say that F is a submersion at a point p € N when the
differential F. @ T,N — Tg(,)M is surjective.

© We say that F is a submersion when it is a submersion at
every point p € N.

If F is a submersion at p, then dim N > dim M.

Example

If n > m, then the projection of R"” into R™

is a submersion.

J n
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Submersions and Immersions

@ If U is an open in R”, the inclusion of U into R" is both an
immersion and submersion.

@ This example shows that a submersion need not be onto.

A deeper in-depth analysis of immersions and submersions will be
carried out in Section 11.
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Rank, Critical and Regular Points

Definition (Rank of a Smooth Map)

If F: N — M is a smooth map and p € N, the rank of the
differential F, : T,N — TF(p)M is called the rank of F at p and is
denoted by rk F(p).

Remark
We have

F is an immersion at p <= rk F(p) = dim NV,
F is a submersion at p <= rk F(p) = dim M.
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Rank, Critical and Regular Points

Definition (Critical and Regular Points)

Let F : N — M be a smooth map, and p € N.

@ We say that p is a critical point of F when the differential
Fi: TpN — Tgp)M is not surjective.

@ Otherwise we say that F is a regular point of F.

v

Remark
We have

p is a regular point <= F is a submersion at p
<= rk F(p) = dim M.

v
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Rank, Critical and Regular Points

Definition (Critical and Regular Points)

Let F : N — M be a smooth map, and c € M.

@ We say that c is a critical value of F when it is the image of a
critical point, i.e., the preimage F~!(c) contains a critical
point.

@ Otherwise we say that c is a regular value of F.

v

Remarks

© If gc is a critical value, then its preimage may contain regular
points, but it contains at least one critical points.
@ Any point of M\ F(N) is a regular value.

© If c € F(M), then c is a regular value if and only if every
point of F~1(c) is a regular point.

A\
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Rank, Critical and Regular Points

Let f : M — R be a smooth function, and p € M.

o The differential f. ,, is a linear map from T,M to T¢ R ~R.

@ Therefore, it is either onto or zero.

Proposition (Proposition 8.23)

Let f : M — R be a smooth function. Given any p € M, TFAE:
© p is a critical point of f.
@ The differential f, , is zero.
@ Thereis a chart (U,x,...,x") about p in M such that

of
Ox'

(p) =0, i=1,...,n.
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