
Tangent Vectors in Rn

Reminder

In Section 2 we saw two equivalent ways to describe a tangent
vector at a given point p ∈ Rn:

(i) As an arrow emanating from p and represented by a column
vector,
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by points of the manifold. A smooth map of manifolds induces, via its differential
at each point, a bundle map of the corresponding tangent bundles. In this way we
obtain a covariant functor from the category of smooth manifolds and smooth maps
to the category of vector bundles and bundle maps. Vector fields, which manifest
themselves in the physical world as velocity, force, electricity, magnetism, and so
on, may be viewed as sections of the tangent bundle over a manifold.

Smooth C∞ bump functions and partitions of unity are an indispensable technical
tool in the theory of smooth manifolds. Using C∞ bump functions, we give several
criteria for a vector field to be smooth. The chapter ends with integral curves, flows,
and the Lie bracket of smooth vector fields.

§8 The Tangent Space

In Section 2 we saw that for any point p in an open set U in Rn there are two equiv-
alent ways to define a tangent vector at p:

(i) as an arrow (Figure 8.1), represented by a column vector;

p




a1

...

an




Fig. 8.1. A tangent vector in Rn as an arrow and as a column vector.

(ii) as a point-derivation of C∞
p , the algebra of germs of C∞ functions at p.

Both definitions generalize to a manifold. In the arrow approach, one defines a
tangent vector at p in a manifold M by first choosing a chart (U,φ) at p and then
decreeing a tangent vector at p to be an arrow at φ(p) in φ(U). This approach, while
more visual, is complicated to work with, since a different chart (V,ψ) at p would
give rise to a different set of tangent vectors at p and one would have to decide how
to identify the arrows at φ(p) in U with the arrows at ψ(p) in ψ(V ).

The cleanest and most intrinsic definition of a tangent vector at p in M is as a
point-derivation, and this is the approach we adopt.

8.1 The Tangent Space at a Point

Just as for Rn, we define a germ of a C∞ function at p in M to be an equivalence
class of C∞ functions defined in a neighborhood of p in M, two such functions being
equivalent if they agree on some, possibly smaller, neighborhood of p. The set of

(ii) As a derivation at p of C∞p , the algebra of germs of C∞

functions at p.
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Tangent Vectors in Rn

Reminder

The correspondence between the two approaches is given by

Vector v =



v1

...
vn


←→ Derivation Dv =

∑
v i

∂

∂x i

∣∣∣∣
p

.

Remark

The derivation approach is easier to generalize to manifolds.

We are going to use this approach to define tangent vectors
and the tangent space for manifolds.
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The Tangent Space at a Point

Facts

Let Fp(M) consists of pairs (U, f ), where U is an open
neighborhood of p and f : U → R is a C∞ function.

On Fp(M) we define an equivalence relation by

(U, f ) ∼ (U, g)⇐⇒ f = g near p.

Thus, f ∼ g means there is an open W ⊂ U ∩ V such that
p ∈W and f = g on W .

Definition

The equivalence class of (U, f ) is called the germ of f at p.

The quotient Fp(M)/∼ is denoted C∞p (M); this is the set of
germs of C∞ functions at p.
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The Tangent Space at a Point

Facts

C∞p (M) is a vector space with respect to the scalar
multiplication and the addition given by

λ · (germ at p of f ) = germ at p of λf , λ ∈ R,
(germ at p of f ) + (germ at p of g) = germ at p of f + g .

C∞p (M) is also an algebra with respect to the multiplication
given by

(germ at p of f ) · (germ at p of g) = germ at p of fg .
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The Tangent Space at a Point

Remark

Let U be an open set in M containing p.

As Fp(U) ⊂ Fp(M) we get an inclusion,

C∞p (U) ⊂ C∞p (M).

As (V , f ) ∈ Fp(M) and (V ∩ U, f|V∩U) are equivalent, we
actually have an equality. That is,

C∞p (U) = C∞p (M).
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The Tangent Space at a Point

Definition

A derivation at p is any linear map D : C∞p (M)→ R such that

D(fg) = (Df )g(p) + f (p)Dg .

Remarks

1 By abuse of notation, we use the same letter f or g to denote
a function and its germ at p.

2 The set of all derivations at p is a subspace of the space of
linear maps C∞p → R.

Definition

The tangent space of M at p, denoted Tp(M) or TpM, is the
vector space of all derivations at p.

An element of Tp(M) is now called a tangent vector at p.
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The Tangent Space at a Point

Example

For M = Rn we recover the description of the tangent space
Tp(Rn) in terms of derivations.

Example (see Remark 8.2)

Let U be an open in M containing p. As C∞p (U) = C∞p (U),
we see that

Tp(U) = Tp(M).

In particular, if M = Rn, then

Tp(U) = Tp(Rn) ' Rn.
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The Tangent Space at a Point

Example

Let (U, φ) = (U, x1, . . . , xn) be a chart about p in M. Denote by
(r1, . . . , rn) the standard coordinates in Rn (so that x i = r i ◦ φ).

By definition, if f is C∞ at p, then

∂

∂x i

∣∣∣∣
p

f =
∂

∂r i

∣∣∣∣
φ(p)

(
f ◦ φ−1

)
∈ R.

We have ∂
∂x i

∣∣
p
(fg) = ( ∂

∂x i

∣∣
p
f )g(p) + f (p) ∂

∂x i

∣∣
p
g .

If f = g near p, then ∂
∂x i

∣∣
p
f = ∂

∂x i

∣∣
p
g .

Thus, ∂
∂x i

∣∣
p

induces a map,

∂

∂x i

∣∣∣∣
p

: C∞p −→ R.

We obtain a derivation at p, i.e., a tangent vector at p.
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The Tangent Space at a Point

Remarks

We sometimes write ∂
∂x i

instead ∂
∂x i

∣∣
p

when it is understood
that derivatives are evaluated at the point p.

When M has dimension 1 and t is a local coordinate, we write
d
dt instead of ∂

∂t .

We will see later that
{

∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

}
is a basis of Tp(M).
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The Differential of a Map

Facts

Let F : M → N be a C∞ map, where M and N are manifolds.

Given X ∈ Tp(M) define F∗(X ) : C∞F (p)(N)→ R by

F∗(X )f = X (F ◦ f ), f ∈ C∞F (p)(N).

F∗(X ) is a linear map.

As X is a derivation at p, we have

F∗(X )(fg) = X [(f ◦ F )(g ◦ F )]

= X [(f ◦ F )] (g ◦ F )(p) + (f ◦ F )(p)X [(g ◦ F )]

= [F∗(X )f ] g (F (p)) + f (F (p)) [F∗(X )g ] .

That is, F∗(X ) is a derivation at F (p), i.e., F∗(X ) ∈ TF (p)(N).

We thus get a map F∗ : Tp(M)→ TF (p)(N), X → F∗(X ).
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The Differential of a Map

Fact

The map F∗ : Tp(M)→ TF (p)(N) is linear, since we have

F∗(λX )f = λX (f ◦ F ) = λF∗(X )f ,

F∗(X + Y )f = X (f ◦ F ) + Y (f ◦ F ) = F∗(X )f + F∗(Y )f .

Definition

The linear map F∗ : Tp(M)→ TF (p)(N) is called the differential of
F at p.

Remarks

1 To emphasize the dependence on the point p we sometimes
F∗,p for F∗.

2 There are various notations for the differential. For instance,
it also denoted dpF , dF (p), DpF or even F ′(p).
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The Differential of a Map

Example

Let F : Rn → Rm be a C∞ map. Denote by (x1, . . . , xn) the
coordinates on Rn and by (y1, . . . , ym) the coordinates on Rm. Set
F = (F 1, . . . ,Fm).

Let p ∈ Rn. Then
{

∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

}
is a basis of Tp(Rn).

Likewise,
{

∂
∂y1

∣∣
F (p)

, . . . , ∂
∂ym

∣∣
F (p)

}
is a basis of TF (p)(Rm).

Given any f ∈ C∞F (p)(R
m), we have

F∗

(
∂

∂x j

∣∣∣∣
p

)
f =

∂

∂x j

∣∣∣∣
p

(f ◦ F ) =
m∑

i=1

∂F i

∂x j
(p)

∂

∂y i

∣∣∣∣
F (p)

f .

This means that F∗
(
∂
∂x j

∣∣
p

)
=
∑m

i=1
∂F i

∂x j
(p) ∂

∂y i

∣∣
F (p)

.

In other words, the matrix of F∗ relative to the bases { ∂
∂x j

∣∣
p
}

and { ∂
∂y i

∣∣
F (p)
} is precisely the Jacobian matrix

[
∂F i

∂x j
(p)
]
.
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The Chain Rule

Fact

Let F : N → M and G : M → P be C∞ maps. Given any p ∈ N
the differentials F∗,p and G∗,F (p) are linear maps,

Tp(M)
F∗,p−→ TF (p)(N)

G∗,F (p)−→ TG(F (p))(P).

Theorem (Theorem 8.5; Chain Rule)

If F : N → M and G : M → P are C∞ maps, then, for every
p ∈ N, we have

(G ◦ F )∗,p = G∗,F (p) ◦ F∗,p.
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The Chain Rule

Remark

Let 1M : M → M be the identity, and let p ∈ m. Given
X ∈ Tp(M) and f ∈ C∞p , we have

(1M)∗(X )f = X (f ◦ 1M) = Xf .

Thus, (1M)∗(X ) = X , and so the differential (1M)∗ is the identity
map 1Tp(M) : Tp(M) −→ Tp(M).

Corollary (Corollary 8.6)

If F : N → M is a diffeomorphism, then, for every p ∈ N, the
differential F∗,p : TpN → TF (p)M is an isomorphism of vector
spaces.

Corollary (Corollary 8.7; Invariance of Dimension)

If an open U ⊂ Rn is diffeomorphic to an open V ⊂ Rm, then we
must have n = m.
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Bases for the Tangent Space at a Point

Facts

Let (U, φ) = (U, x1, . . . , xn) be a chart about p in M. Denote by
(r1, . . . , rn) the coordinates in Rn. Then:

The map φ : U → φ(U) ⊂ Rn is a diffeomorphism.

The differential F∗,p is an isomorphism from Tp(U) = Tp(M)
to Tφ(p)(U) = Tφ(p)Rn.

{ ∂
∂r1

∣∣
φ(p)

, . . . , ∂
∂rn

∣∣
φ(p)
} is a basis of Tφ(p)(Rn).

By definition of φ∗ and ∂
∂x i

∣∣
p
, if f ∈ C∞φ(p)(R

n), then

φ∗

(
∂

∂x i

∣∣∣∣
p

)
f =

∂

∂x i

∣∣∣∣
p

(f ◦ φ) =
∂

∂r i

∣∣∣∣
φ(p)

[
(f ◦ φ) ◦ φ−1

]
=

∂

∂r i

∣∣∣∣
φ(p)

f .

Thus,
φ∗

(
∂

∂x i

∣∣∣∣
p

)
=

∂

∂r i

∣∣∣∣
φ(p)

.
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Bases for the Tangent Space at a Point

Facts

To sum up:

The differential φ∗,p : TpM → Tφ(p)Rn is an isomorphism.

It maps the family
{

∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

}
in TpM to the basis{

∂
∂r1

∣∣
φ(p)

, . . . , ∂
∂rn

∣∣
φ(p)

}
of Tφ(p)Rn.

We deduce from this the following result:

Proposition (Proposition 8.9)

If (U, x1, . . . , xn) is a chart about p in M, then
{

∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

}

is a basis of TpM. In particular, TpM has dimension n.

Corollary (Invariance of Dimension)

If M and N are diffeomorphic manifolds, then dimM = dimN.

17 / 36



Bases for the Tangent Space at a Point

Remarks

1 There are alternative definitions of the tangent space TpM.
2 What is important to keep in mind is the following:

The tangent space TpM is a vector space that has basis{
∂

∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

}
, where (x1, . . . , xn) are local coordinates.

We keep the same vector space upon changing local
coordinates.
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Local Expression for the Differential

Facts

Let F : N → M be a C∞ map and p ∈ N. Let (U, x1, . . . , xn) be a
chart around p in N and (V , y1, . . . , ym) a chart around F (p) in M.

As
{

∂
∂x j

∣∣
p

}
and

{
∂
∂y i

∣∣
F (p)

}
are bases of TpN and TF (p)M,

there are constants akj such that

F∗

(
∂

∂x j

∣∣∣∣
p

)
=

m∑

k=1

akj
∂

∂yk

∣∣∣∣
F (p)

, j = 1, . . . , n.

Set F i = y i ◦ F . We have

F∗

(
∂

∂x j

∣∣∣∣
p

)
y i =

∂

∂x j

∣∣∣∣
p

(
y i ◦ F

)
=
∂F i

∂x j
(p).
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Local Expression for the Differential

Facts

As ∂y i

∂yk = δik (see Proposition 6.22), we get

( m∑

k=1

akj
∂

∂yk

∣∣∣∣
F (p)

)
y i =

m∑

k=1

akj
∂y i

∂yk

∣∣∣∣
F (p)

=
m∑

k=1

akj δ
i
k = aij .

This shows that aij = ∂F i

∂x j
(p). Thus,

F∗

(
∂

∂x j

∣∣∣∣
p

)
=

m∑

i=1

∂F i

∂x j
(p)

∂

∂y i

∣∣∣∣
F (p)

, j = 1, . . . , n.
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Local Expression for the Differential

Therefore, we have obtained the following result:

Proposition (Proposition 8.11)

Let F : N → M be a C∞ map and p ∈ N. Let (U, x1, . . . , xn) be a
chart around p in N and (V , y1, . . . , ym) a chart around F (p) in
M. Then, relative to the bases

{
∂
∂x j

∣∣
p

}
and

{
∂
∂y i

∣∣
F (p)

}
of TpN

and TF (p)M, the differential F∗,p : TpN → TF (p)M has matrix

[
∂F i

∂x j
(p)

]

1≤i≤m
1≤j≤n

where F i = y i ◦ F .
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Local Expression for the Differential

Remark (Remark 8.12)

The inverse function theorem for manifolds (Theorem 6.26)
asserts that F is locally invertible at p if and only if
det
[
∂F i

∂x j
(p)
]
6= 0.

Therefore, we obtain the following coordinate-free description
of this result:

Theorem (Inverse Function Theorem)

Let F : N → M be a C∞ map and p ∈ N. TFAE:

1 F is locally invertible at p.

2 The differential F∗ : TpN → TF (p)M is an isomorphism.
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Curves in a Manifold

Remark

In classical differential geometry (i.e., differential geometry of
surfaces) the tangent plane at a point p of surface S ⊂ R3 is
defined in terms of tangent vectors of curves in S through p.

We shall now see an analogous description of the tangent
space for general manifolds.
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Curves in a Manifold

Definition

A smooth curve in manifold M is any smooth map c : I → M,
where I is some open interval in R.

We say that a smooth curve c : I → M starts at a given point
p ∈ M when 0 ∈ I and c(0) = p.

Definition (Velocity Vector)

Let c : I → M be a smooth curve and t0 ∈ M. Its velocity vector
(or velocity) at t = t0 is

c ′(t0) := c∗

(
d

dt

∣∣∣∣
t0

)
∈ Tc(t0)M.

Remarks

1 We also say that c ′(t0) is the velocity vector at c(t0).

2 The velocity vector c ′(t0) is also denoted dc
dt (t0) and d

dt

∣∣
t0
c .
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Curves in a Manifold

Example

Suppose that M = Rn with coordinates (x1, . . . , xn). Let
c : I → Rn be a smooth curve, and set c(t) = (c1(t), . . . , cn(t)).

Given t0 ∈ I , if f ∈ f ∈ C∞c(t0)(R
n), then

c ′(t0)f = c∗

(
d

dt

∣∣∣∣
t0

)
f =

d

dt

∣∣∣∣
t0

f (c(t)) =
n∑

i=1

dc i

dt
(t0)

∂f

∂x i
(c(t0)) .

Thus,

c ′(t0) =
n∑

i=1

dc i

dt
(t0)

∂

∂x i

∣∣∣∣
c(t0)

.

That is, c ′(t0) is the derivation at c(t0) defined by the vector,
(
dc1

dt
(t0), . . . ,

dcn

dt
(t0)

)
=

dc

dt
(t0) ∈ Rn.

Therefore, we recover the usual notion of velocity vector from
calculus and classical differential geometry. 25 / 36



Curves in a Manifold

Proposition (Proposition 8.16; see Tu’s book)

For any point p ∈ M and any tangent vector X ∈ TpM, there is a
curve c : (−ε, ε)→ M starting at p with initial velocity c ′(0) = X.

Corollary

For every p ∈ M, we have

TpM =
{
c ′(0); c : I → M smooth curve starting at p

}
.

Remark

This interpretation of the tangent space is the analogue for smooth
manifolds of the description of the tangent plane of surfaces in
classical differential geometry in terms of tangent vectors of curves.
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Curves in a Manifold

Remark (see Proposition 8.17)

Given p ∈ M and X ∈ TpM, let c : I → M is a smooth curve
starting at p such that c ′(0) = X . Then, for every f ∈ C∞p (M), we
have

Xf = c ′(0)f = c∗

(
d

dt

∣∣∣∣
0

)
f =

d

dt

∣∣∣∣
t=0

(f ◦ c)(t).

This provides us a more geometric description of tangent vectors
as directional derivatives.
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Computing the Differential Using Curves

Facts

Let F : N → M be a smooth map. Given p ∈ N and X ∈ TpN let
c : I → N be a smooth curve such that c(0) = p and c ′(0) = X .

F ◦ c : I → M is a smooth curve in M starting at
F (c(0)) = F (p).

By the Chain Rule (F ◦ c)∗,0 = F∗,c(0) ◦ c∗,0 = F∗,p ◦ c∗,0.

Therefore, the velocity vector of F ◦ c at t = 0 is

(F ◦ c)′ (0) = (F ◦ c)∗

(
d

dt

∣∣∣∣
0

)
= F∗,p

[
c∗,0

(
d

dt

∣∣∣∣
0

)]
= F∗,p

[
c ′(0)

]
.

As c ′(0) = X , we get

(F ◦ c)′ (0) = F∗(X ).
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Computing the Differential Using Curves

Proposition (Proposition 8.18)

Let F : N → M be a smooth map. Given p ∈ N and X ∈ TpN.
Given p ∈ N and X ∈ TpN, for any smooth curve c : I → N
starting at p and with velocity vector X at p, we have

F∗(X ) = (F ◦ c)′ (0).

That is, F∗(X ) is the velocity vector at F (p) of the curve
F ◦ c : I → M.

Remark

This description of the differential of a smooth map is the
analogue of the definition of the differential in terms of curves in
Classical Differential Geometry.
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Submersions and Immersions

Definition (Immersion)

Let F : M → N be a smooth map.

1 We say that F is an immersion at a point p ∈ N when the
differential F∗ : TpN → TF (p)M is injective.

2 We say thar F is an immersion when it is an immersion at
every point p ∈ N.

Remark

If F is an immersion at p, then dimN ≤ dimM.

Example

If n ≤ m, then the inclusion of Rn into Rm

(x1, . . . , xn) −→ (x1, . . . , xn, 0, . . . , 0)

is an immersion.
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Submersions and Immersions

Definition (Submersion)

Let F : M → N be a smooth map.

1 We say that F is a submersion at a point p ∈ N when the
differential F∗ : TpN → TF (p)M is surjective.

2 We say that F is a submersion when it is a submersion at
every point p ∈ N.

Remark

If F is a submersion at p, then dimN ≥ dimM.

Example

If n ≥ m, then the projection of Rn into Rm

(x1, . . . , xm, xm+1, . . . , xn) −→ (x1, . . . , xm)

is a submersion.
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Submersions and Immersions

Example

If U is an open in Rn, the inclusion of U into Rn is both an
immersion and submersion.

This example shows that a submersion need not be onto.

Remark

A deeper in-depth analysis of immersions and submersions will be
carried out in Section 11.
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Rank, Critical and Regular Points

Definition (Rank of a Smooth Map)

If F : N → M is a smooth map and p ∈ N, the rank of the
differential F∗ : TpN → TF (p)M is called the rank of F at p and is
denoted by rkF (p).

Remark

We have

F is an immersion at p ⇐⇒ rkF (p) = dimN,

F is a submersion at p ⇐⇒ rkF (p) = dimM.
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Rank, Critical and Regular Points

Definition (Critical and Regular Points)

Let F : N → M be a smooth map, and p ∈ N.

We say that p is a critical point of F when the differential
F∗ : TpN → TF (p)M is not surjective.

Otherwise we say that F is a regular point of F .

Remark

We have

p is a regular point⇐⇒ F is a submersion at p

⇐⇒ rkF (p) = dimM.
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Rank, Critical and Regular Points

Definition (Critical and Regular Points)

Let F : N → M be a smooth map, and c ∈ M.

We say that c is a critical value of F when it is the image of a
critical point, i.e., the preimage F−1(c) contains a critical
point.

Otherwise we say that c is a regular value of F .

Remarks

1 If qc is a critical value, then its preimage may contain regular
points, but it contains at least one critical points.

2 Any point of M \ F (N) is a regular value.

3 If c ∈ F (M), then c is a regular value if and only if every
point of F−1(c) is a regular point.
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Rank, Critical and Regular Points

Fact

Let f : M → R be a smooth function, and p ∈ M.

The differential f∗,p is a linear map from TpM to Tf (p)R ' R.

Therefore, it is either onto or zero.

Proposition (Proposition 8.23)

Let f : M → R be a smooth function. Given any p ∈ M, TFAE:

1 p is a critical point of f .

2 The differential f∗,p is zero.

3 There is a chart (U, x1, . . . , xn) about p in M such that

∂f

∂x i
(p) = 0, i = 1, . . . , n.

36 / 36


