
The Quotient Topology

Reminder

An equivalence relation on a set S is given by a subset R ⊂ S × S
with the following properties:

Transitivity: (x , x) ∈ R for all x ∈ S .

Symmetry: (x , y) ∈ R ⇔ (y , x) ∈ R.

Transitivity: (x , y) ∈ R and (y , z) ∈ R ⇒ (x , z) ∈ R.

When (x , y) ∈ R we say that x and y are equivalent and write
x ∼ y .

The set R is called the graph of the equivalence relation.
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The Quotient Topology

Definition

Let ∼ be an equivalence relation on S .

The class of x ∈ S , denoted [x ], is the subset of S consisting
of all y ∈ S that are equivalent to x .

The set of equivalence classes is denoted S/∼ and is called
the quotient of S by ∼.

The map π : S → S/∼ , x → [x ] is called the natural
projection map (or canonical projection)

Remarks

1 The equivalence classes form of partition of S .

2 The canonical projection π : S → S/∼ is always onto.
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The Quotient Topology

Fact

Suppose that S is a topological space. Let T be the collection of
subsets U ⊂ S/∼ such that π−1(U) is an open in S .

T is closed under unions and finite intersections: if Uα ∈ T
and Vi ∈ T , then

π−1(
⋃

Uα) =
⋃
π−1(Uα) and π−1(V1∩V2) = π−1(V1)∩π−1(V2)

are again contained in T .

Therefore T defines a topology on S/∼ .

Definition

The topology T is called the quotient topology.

Equipped with this topology S/∼ is called the quotient space
of S by ∼.
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The Quotient Topology

Remarks

1 A subset U ⊂ S/∼ is open if and only if π−1(U) is an open
in S .

2 This implies that the projection map π : S → S/∼ is
automatically continuous.

3 The quotient topology is actually the strongest topology on
S/∼ for which the map π : S → S/∼ is continuous.
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Continuity of a Map on a Quotient

Fact

Let f : S → Y be a map that is constant on each equivalence
class, i.e., x ∼ y ⇒ f (x) = f (y).

Then f descends to a map f : S/∼ → Y such that

f ([x ]) = f (x), x ∈ S .

Remarks

1 The definition of f means that if c is an equivalence class in
S/∼ , then f (c) = f (x) for any x ∈ c .

2 The equality f ([x ]) = f (x) for all x ∈ S means that f ◦ π = f .
That is, we have a commutative diagram,

S Y

S/∼

f

π
f
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Continuity of a Map on a Quotient

Proposition (Proposition 7.1)

The induced map f : S/∼ → Y is continuous if and only if the
original map f : S → Y is continuous.

Corollary

A map g : S/∼ → Y is continuous if and only if the composition
g ◦ π : S → Y is continuous.
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Indentification of a Subset to a Point

Fact

Let A be a subset of S . We can define an equivalence relation ∼
on S by declaring:

x ∼ x for all x ∈ S ,

x ∼ y for all x , y ∈ A.

In other words, if we let ∆ = {(x , x); x ∈ S} be the diagonal of
S × S , then the graph of the relation is just

R = ∆ ∪ (A× A) .

It can be checked this is an equivalence relation.

Definition

We say that the quotient space S/∼ is obtained by identifying A
to a point.
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Identification of a Subset to a Point

Example

Let I be the unit interval [0, 1] and I/∼ the quotient space by
identifying 0, 1 to a point, i.e., by identifying 0 and 1.

1 The equivalence classes consists of the singletons {t},
t ∈ (0, 1), and the pair {0, 1}.

2 Let S1 ⊂ C be the unit circle, and define f : I → S1 by
f (t) = e2iπt . As f (0) = f (1) it induces a map f : I/∼ → S1.

7.4 A Necessary Condition for a Hausdorff Quotient 73

7.3 Identification of a Subset to a Point

If A is a subspace of a topological space S, we can define a relation ∼ on S by
declaring

x∼ x for all x ∈ S

(so the relation is reflexive) and

x∼ y for all x,y ∈ A.

This is an equivalence relation on S. We say that the quotient space S/∼ is obtained
from S by identifying A to a point.

Example 7.2. Let I be the unit interval [0,1] and I/∼ the quotient space obtained from
I by identifying the two points {0,1} to a point. Denote by S1 the unit circle in the
complex plane. The function f : I→ S1, f (x) = exp(2π ix), assumes the same value
at 0 and 1 (Figure 7.2), and so induces a function f̄ : I/∼→ S1.

0 1

f

Fig. 7.2. The unit circle as a quotient space of the unit interval.

Proposition 7.3. The function f̄ : I/∼→ S1 is a homeomorphism.

Proof. Since f is continuous, f̄ is also continuous by Proposition 7.1. Clearly, f̄ is a
bijection. As the continuous image of the compact set I, the quotient I/∼ is compact.
Thus, f̄ is a continuous bijection from the compact space I/∼ to the Hausdorff space
S1. By Corollary A.36, f̄ is a homeomorphism. $%

7.4 A Necessary Condition for a Hausdorff Quotient

The quotient construction does not in general preserve the Hausdorff property or
second countability. Indeed, since every singleton set in a Hausdorff space is closed,
if π : S→ S/∼ is the projection and the quotient S/∼ is Hausdorff, then for any
p ∈ S, its image {π(p)} is closed in S/∼. By the continuity of π , the inverse image
π−1({π(p)}) = [p] is closed in S. This gives a necessary condition for a quotient
space to be Hausdorff.

Proposition 7.4. If the quotient space S/∼ is Hausdorff, then the equivalence class
[p] of any point p in S is closed in S.

3 The induced map f : I/∼ → S1 is continuous, since f is
continuous.

Proposition (Proposition 7.3)

The induced map f : I/∼ → S1 is a homeomorphism.
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A Necessary Condition for a Hausdorff Quotient

Facts

If X is a Hausdorff topological space, then every singleton
{x}, x ∈ X , is a closed set in X .

If the quotient space S/∼ is Hausdorff, then every singleton
{[x ]}, x ∈ S , is closed in S/∼ . This means that the preimage
π−1({[x ]}) = [x ] is closed in S .

Proposition (Proposition 7.4)

If the quotient space S/∼ is Hausdorff, then all the equivalence
classes [x ], x ∈ S, are closed sets in S.

Consequence

If there is an equivalence class that is not a closed set, then the
quotient space S/∼ is not Hausdorff.
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A Necessary Condition for a Hausdorff Quotient

Example

Let ∼ be the equivalence relation on R obtained by identifying the
open interval (0,∞) to a point. Then:

The equivalence class [1] is the whole interval (0,∞).

As (0,∞) is a not a closed set in R, the quotient space R/∼
is not Hausdorff.
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Open Equivalence Relations

Reminder

A map f : X → Y is open when the image of any open set in X is
an open set in Y .

Definition

We say that an equivalence relation ∼ on a topological space S is
open when the projection π : S → S/∼ is an open map.

Remark

If A ⊂ S , then π(A) is open in S/∼ if and only if
π−1(π(U)) = ∪x∈A[x ] is an open set in S .

Thus, the equivalence relation ∼ is open if and only if, for
every open U in S , the set ∪x∈U [x ] is open in S .
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Open Equivalence Relations

Example

Let ∼ be the equivalence relation on R that identifies 1 and −1.

We have [x ] = {x} for x 6= ±1 and [−1] = [1] = {±1}.
For the open interval (−2, 0) we get⋃

x∈(−2,0)

[x ] =
( ⋃
x∈(−2,0)
x 6=−1

[x ]
)
∪ [−1] = (−2, 0) ∪ {1}.

As (−2, 0) ∪ {1} is not an open set, the equivalence relation
∼ is not open.
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Open Equivalence Relations

Reminder

If ∼ is an equivalence relation, then its graph is

R = {(x , y) ∈ S × S ; x ∼ y} ⊂ S × S .

Theorem (Theorem 7.7)

Suppose that ∼ is an open equivalence relation on a topological
space S. Then the quotient space S/∼ is Hausdorff if and only if
the graph R of ∼ is closed in S × S.
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Open Equivalence Relations

Example

Let ∼ be the trivial equivalence relation x ∼ y ⇔ x = y . Then:

[x ] = {x} for all x ∈ S .

The graph of ∼ is just the diagonal,

∆ = {(x , x); x ∈ S} ⊂ S × S .

If S is a topological space, then the projection map
π : S → S/∼ is a homeomorphism.

Corollary (Corollary 7.8)

A topological space S is Hausdorff if and only if the diagonal ∆ is
closed in S × S.
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Open Equivalence Relations

Proposition (Proposition 7.9)

Suppose that ∼ is an open equivalence relation on S. If {Uα} is a
basis for the topology of S, then {π(Uα)} is a basis for the
quotient topology on S/∼ .

Corollary (Corollary 7.10)

If ∼ is an open equivalence relation on S, and S is second
countable, then the quotient space S/∼ is second countable.
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Real Projective Space

Remarks

1 Intuitively speaking the real projective space RPn is the set of
lines in Rn+1 through the origin.

2 Two non-zero vectors x , y ∈ Rn+1 \ 0 are the same line
through the origin if and only if there is t 6= 0 such that
y = tx .

Fact

1 We define an equivalence relation ∼ on Rn+1 \ 0 by

x ∼ y ⇐⇒ y = tx for some t 6= 0.

2 The conjugacy classes consist precisely of the lines through
the origin (with the origin deleted).
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Real Projective Space

Definition

The real projective space RPn is the quotient space (Rn+1 \ 0)/∼ .

Remarks

1 We denote by [a0, . . . , an] the class of (a0, . . . , an) ∈ Rn+1/∼ .

2 We call [a0, . . . , an] homogeneous coordinates on RPn.

3 We also let π : Rn+1 \ 0→ RPn be the canonical projection.
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Real Projective Space

Remark

1 Every line in Rn+1 through the origin meets the unit sphere
Sn+1 at a pair of antipodal points.

2 Conversely, there is a unique line through the origin and two
antipodal points of Sn+1

76 §7 Quotients

Theorem 7.9. Let ∼ be an open equivalence relation on a topological space S with

projection π : S→ S/∼. If B = {Bα} is a basis for S, then its image {π(Bα)} under

π is a basis for S/∼.

Proof. Since π is an open map, {π(Bα)} is a collection of open sets in S/∼. Let W
be an open set in S/∼ and [x] ∈W , x ∈ S. Then x ∈ π−1(W ). Since π−1(W ) is open,
there is a basic open set B ∈B such that

x ∈ B⊂ π−1(W ).

Then
[x] = π(x) ∈ π(B)⊂W,

which proves that {π(Bα)} is a basis for S/∼. &'

Corollary 7.10. If ∼ is an open equivalence relation on a second-countable space

S, then the quotient space S/∼ is second countable.

7.6 Real Projective Space

Define an equivalence relation on Rn+1−{0} by

x∼ y ⇐⇒ y = tx for some nonzero real number t,

where x, y ∈ Rn+1−{0}. The real projective space RPn is the quotient space of
Rn+1−{0} by this equivalence relation. We denote the equivalence class of a point
(a0, . . . ,an) ∈ Rn+1−{0} by [a0, . . . ,an] and let π : Rn+1−{0}→ RPn be the pro-
jection. We call [a0, . . . ,an] homogeneous coordinates on RPn.

Geometrically, two nonzero points in Rn+1 are equivalent if and only if they lie
on the same line through the origin, so RPn can be interpreted as the set of all lines
through the origin in Rn+1. Each line through the origin in Rn+1 meets the unit

Fig. 7.5. A line through 0 in R3 corresponds to a pair of antipodal points on S2.

sphere Sn in a pair of antipodal points, and conversely, a pair of antipodal points on
Sn determines a unique line through the origin (Figure 7.5). This suggests that we
define an equivalence relation∼ on Sn by identifying antipodal points:
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Real Projective Space

Facts

On Sn+1 we define an equivalence relation by

x ∼ y ⇐⇒ x = ±y .

The restriction of the canonical projection π|Sn : Sn → RPn

induces a continuous map π : Sn/∼ → RPn.

The continuous map f : Rn+1 \ 0→ Sn+1, x → x
‖x‖ induces a

continuous map f : RPn → Sn/∼ .

The maps π : Sn/∼ → RPn and f : RPn → Sn/∼ are
inverses of each other.

Proposition (Exercise 7.11)

The real projective space RPn is homeomorphic to the quotient
space Sn/∼ .
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Real Projective Space

Example (Real projective line RP1; see also Example 7.12)

If we regard as the unit circle S1 as a subset of C, then the
map S1 → S1, z → z2 induces a continuous map S1/∼ → S1.

This is a continuous bijection between compact spaces, and
hence this is a homeomorphism (by Corollary A.36).

Here S1/∼ is compact, since this is the image of S1 by the
canonical projection map S1 → S1/∼ , which is continuous.

We thus have a sequence of homeomorphisms,

RP1 ' S1/∼ ' S1.
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Real Projective Space

Proposition (Proposition 7.14)

The equivalence relation ∼ on Rn+1 \ 0 is an open equivalence
relation.

Corollary (Corollary 7.15)

The real projective space RPn is second countable.

Corollary (Corollary 7.16)

The real projective space RPn is Hausdorff.
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The Standard Differentiable Structure of RPn

Facts

For i = 0, . . . , n, define

Ui =
{

[a0, . . . , an] ∈ RPn; ai 6= 0
}
.

As the property ai 6= 0 remains unchanged when we replace
(a0, . . . , an) by (ta0, . . . , tan) with t 6= 0, we see that Ui is
well defined.

We have π−1(Ui ) = π−1(Ũi ), where

Ũi =
{

(a0, . . . , an) ∈ Rn+1 \ 0; ai 6= 0
}
.

As Ũi is an open set in Rn+1 \ 0, this shows that Ui is an
open set in RPn.
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The Standard Differentiable Structure of RPn

Facts

Define φ̃i : Ũi → Rn by

φ̃i (a
0, . . . , an) =

(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an

ai

)
.

As φ̃i (ta
0, . . . , tan) = φ̃i (a

0, . . . , an) for all t 6= 0, the map φ̃i
induces a map φi : Ui → Rn such that

φ
(
[a0, . . . , an]

)
= φ̃i (a

0, . . . , an),

=

(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an

ai

)
.

As φ̃i : Ũi → Rn is a continuous map, the induced map
φi : Ui → Rn is continuous as well.
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The Standard Differentiable Structure of RPn

Facts

The map φi : Ui → Rn is a bijection with inverse
ψi : Rn → Uj , where

ψi (x
1, . . . , xn) = [x1, . . . , x i , 1, x i+1, . . . , xn].

The inverse map ψi = φ−1i is continuous, since ψi = π ◦ ψ̃i ,

where ψ̃i : Rn → Ũi is the continuous map given by

ψ̃i (x
1, . . . , xn) = (x0, . . . , x i , 1, x i+1, . . . , xn).

Thus, the map φi : Ui → Rn is a homeomorphism.
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The Standard Differentiable Structure of RPn

Facts

We have

φ0(U0 ∩ U1) =

{(
a1

a0
, . . . ,

an

a0

)
; aj ∈ R, a0 6= 0, a1 6= 0

}
=
{

(x1, . . . , xn) ∈ Rn; x1 6= 0
}
.

The transition map φ1 ◦ φ−10 : φ0(U0 ∩ U1)→ Rn is given by

φ0 ◦ φ−11 (x1, . . . , xn) = φ0
(
[1, x1, . . . , xn]

)
,

=

(
1

x1
,
x2

x1
, . . . ,

xn

x1

)
.

In particular, this is a C∞ map.

It can be similarly shown that all the other transition maps
φi ◦ φ−1j : φj(Ui ∩ Uj)→ Rn are C∞ maps.
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The Standard Differentiable Structure of RPn

Conclusion

The collection {(Ui , φi )}ni=0 is a C∞ atlas for RPn, and so RPn is
a smooth manifold.

Definition

The differentiable structure defined by the atlas {(Ui , φi )}ni=0 is
called the standard differentiable structure of RPn.
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Complex Projective Space

Facts

We also define complex projective spaces.

On Cn+1 consider the equivalence relation

x ∼ y ⇐⇒ ∃λ ∈ C \ 0 such that x = λy .

In other words x ∼ y if and only if x and y lie on the same
complex line through the origin.

The equivalence classes are the complex lines through the
origin (minus the origin).

The complex projective space CPn is the quotient space
(Cn+1 \ 0)/∼ .

The class of a = (a0, . . . , an) is denoted [a0, . . . , an]. We call
[a0, . . . , an] homogeneous coordinates.

The space CPn is Hausdorff and 2nd countable.
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Differentiable Structure on CPn

Facts

For i = 1, . . . , n, define

Ui =
{

[a0, . . . , an]; (a0, . . . , an) ∈ Cn+1 \ 0, ai 6= 0
}
.

This is an open set in CPn.

Define φi : Ui → Cn by

φi
(
[a0, . . . , an]

)
=

(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an

ai

)
.

This is a homeomorphism from Ui on Cn. It has inverse

ψi (z
1, . . . , zn) =

(
z1, . . . , z i , 1, z i+1, . . . , zn

)
.

The transition maps φi ◦ φ−1j are C∞ maps (they even are
holomorphic maps).

Thus, {(Ui , φi )}ni=1 is a C∞ atlas for CPn, and so the
complex projective space CPn is a manifold.
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Submanifolds

Definition (Regular Submanifold)

Given a manifold N of dimension, a subset S ⊂ N is called a
regular submanifold of dimension k if, for every p ∈ S , there is a
chart (U, x1, . . . , xn) about p in N such that

U ∩ S =
{
q ∈ U; xk+1(q) = · · · = xn(q) = 0

}
.

Remarks

1 A chart (U, x1, . . . , xn) as above is called an adapted chart
relative to S .

2 We call n − k the codimension of S .

3 We always assume that S is equipped with the induced
topology.

4 There are other types of submanifold. By a submanifold we
shall always mean a regular submanifold.
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Submanifolds

Remark

Let S ⊂ N be a regular submanifold of dimension k, and
(U, φ) = (U, x1, . . . , xn) be an adapted chart relative to S .

We have φ = (x1, . . . , xk , 0, . . . , 0) on U ∩ S .

Define φS : U ∩ S → Rk by

φ(q) =
(
x1(q), . . . , xk(q)

)
, q ∈ U ∩ S .

Then φS is a homeomorphism from U ∩ S onto its image

Let (r1, . . . , rn) be the coordinates in Rn. We have

φS(U∩S)×{0}n−k = φ(U∩S) = φ(U)∩{rk+1 = · · · = rn = 0}.

Thus, φS(U ∩ S)× {0}n−k is open in Rk)× {0}n−k , and
hence φS(U ∩ S) is an open in Rk .

It then follows that (U, φS) is a (topological) chart for S .
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Submanifolds

Example

Any open set U ⊂ N is a regular submanifold of codimension 0.

Example

The open interval S = (−1, 1) on the x-axis is a regular
submanifold of dimension 1 of the xy -plane.

An adapted chart is (U, x , y), with U = (−1, 1)× (−1, 1),
since

U ∩ {y = 0} = (−1, 1)× {0} = S .

9.1 Submanifolds 101

by the vanishing of none of the coordinate functions and so U ∩ S = U . Therefore,
an open subset of a manifold is a regular submanifold of the same dimension.

Remark. There are other types of submanifolds, but unless otherwise specified, by a
“submanifold” we will always mean a “regular submanifold.”

Example. The interval S := ]− 1,1[ on the x-axis is a regular submanifold of the
xy-plane (Figure 9.1). As an adapted chart, we can take the open square U = ]−1,1[
× ]−1,1[ with coordinates x,y. Then U ∩S is precisely the zero set of y on U .

V is not an adapted chart.U is an adapted chart.

U V

−1 1 −1 1

Fig. 9.1.

Note that if V = ]−2,0[ × ]−1,1[, then (V,x,y) is not an adapted chart relative
to S, since V ∩S is the open interval ]−1,0[ on the x-axis, while the zero set of y on
V is the open interval ]−2,0[ on the x-axis.

0.2 0.4 0.6

1

−1

x

y

Fig. 9.2. The topologist’s sine curve.

Example 9.3. Let Γ be the graph of the function f (x) = sin(1/x) on the interval ]0,1[,
and let S be the union of Γ and the open interval

I = {(0,y) ∈ R2 | −1 < y < 1}.

The subset S of R2 is not a regular submanifold for the following reason: if p is
in the interval I, then there is no adapted chart containing p, since any sufficiently
small neighborhood U of p in R2 intersects S in infinitely many components. (The
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Submanifolds

Facts

Let (U, φ) = (U, x1, . . . , xn) and (V , ψ) = (V , y1, . . . , yn) be
adapted charts relative to S about a point p ∈ S . Denote by
(r1, . . . , rn) the coordinates in Rn = Rk × Rn−k .

On U ∩ V ∩ S we have

φ =
(
x1, . . . , xk , 0, . . . , 0

)
=
(
φS , 0, . . . , 0),

ψ =
(
y1, . . . , yk , 0, . . . , 0

)
=
(
ψS , 0, . . . , 0).

Thus, on φ(U ∩ V ∩ S) = φS(U ∩ V ∩ S)× {0}n−k we have

ψ◦φ−1
(
r1, . . . , rk , 0, . . . , 0

)
=
(
ψS ◦φ−1S (r1, . . . , rk), 0, . . . , 0

)
.

As ψ ◦ φ−1 = (y1 ◦ φ−1, . . . , yn ◦ φ−1), we get

ψS◦φ−1S = (z1, . . . , zk), where z i = y i◦φ−1(r1, . . . , rk , 0, . . . , 0).

In particular, the transition map ψS ◦ φ−1S is smooth.
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Submanifolds

Proposition (Proposition 9.4)

Let S be a regular submanifold of dimension k in a manifold N of
dimension n. Let {(U, φ)} be a collection of adapted charts
relative to S that covers S. Then:

1 The collection {(U ∩ S , φS)} is a C∞ atlas for S.

2 S is a manifold of dimension k.

Remark

It can be shown that the differentiable structure on S defined
above is unique, i.e., it does not depend on the choice of the
collection {(U, φ)}.
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Level Sets of a Function

Definition

Given F : N → M and c ∈ M, the preimage F−1(c) is called
a level set of level c .

When N = Rn we call F−1(0) the zero set of F and denote it
by Z (F ).

Reminder

If F : N → M is a smooth map, then we say that c is a regular
value when, either c 6∈ F (M), or for every point p ∈ F−1(c) the
differential F∗,p : TpM → TcN is onto.
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Level Sets of a Function

Definition

Let F : N → M be a smooth map, and let c ∈ M.

If c is a regular value, then F−1(c) is called a regular level set.

If N = Rn and 0 is a regular value, then we say that Z (F ) is a
regular zero set.

Remark

Let f : N → R be a smooth function.

If p ∈ N, then f∗,p : TpM → Tf (p)R ' R is onto if and only if
it is non-zero.

If c ∈ f (M), then f −1(c) is a regular level set if and only if
f∗,p 6= 0 for all p ∈ f −1(c).
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Level Sets of a Function

Example (Example 9.6; the 2-sphere in R3)

The unit sphere S2 ⊂ R3 is the zero set of the function,

f (x , y , z) = x2 + y2 + z2 − 1.

For every p = (x , y , z) ∈ S2 we have(
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

)
= (2x , 2y , 2z) 6= 0.

Therefore, S2 is a regular zero set.
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Level Sets of a Function

Example (The 2-sphere in R3; continued)

Suppose that p = (x(p), y(p), z(p)) is such that x0 6= 0. It
can be checked that the map F = (f , y , z) has a non-zero
Jacobian determinant at p.

By Corollary 6.27 (consequence of the inverse function
theorem) there is an open U about p such that
(U,F|U) = (U, f|U , y|U , z|U) is a chart about p in R3.

Set u1 = y|U , u2 = z|U , and u3 = f|U . Then (U, u1, u2, u3) is
a chart about p in R3, and we have

{u3 = 0} = {f|U = 0} = U ∩ {f = 0} = U ∩ S2.

Thus, (U, u1, u2, u3) is an adapted chart relative to S2.

Similarly, if y(p) 6= 0 or z(p) 6= 0, then there is an adapted
chart about p.

Thus, S2 ⊂ R3 is a regular submanifold of codimension 1.
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Level Sets of a Function

More generally, we have the following result:

Theorem (Theorem 9.8)

Let g : N → R be a smooth function. Any non-empty regular level
set g−1(c) is a regular submanifold of codimension 1.

Remark

A codimension 1 submanifold is called a hypersurface.
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Level Sets of a Function

Example (Example 9.11)

Let S be the solution set of x3 + y3 + z3 = 1 in R3.

S is the zero set of f (x , y , z) = x3 + y3 + z3 − 1.

If p = (x , y , z) ∈ S , then(
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

)
=
(
3x2, 3y2, 3z2

)
6= 0.

Thus, every p ∈ S is a regular point.

Therefore, S is a regular zero set, and hence is a regular
hypersurface.
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Level Sets of a Function

Example (Example 9.13; Special Linear Group)

Let Rn×n be the vector space of n × n matrices with real
entries. The general linear group is

GL(n,R) =
{
A ∈ Rn×n; detA 6= 0

}
.

This an open set in Rn×n, and hence is a manifold of
dimension n2.

The special linear group is

SL(n,R) = {A ∈ GL(n,R); detA = 1} .

This is the level set f −1(1) of the function f (A) = detA.
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Level Sets of a Function

Example (Special Linear Group, continued)

If A = [aij ] ∈ GL(n,R) and mij = detSij is the (i , j)-minor,
then

∂f

aij
= (−1)i+jmij .

If A ∈ GL(n,R), then at least one minor is non-zero, and so A
is a regular point of f .

In particular, every A ∈ SL(n,R) is a regular point.

Therefore, SL(n,R) is a regular level set, and hence is a
regular hypersurface in GL(n,R).
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The Regular Level Set Theorem

Even more generally we have:

Theorem (Regular Level Set Theorem; Theorem 9.9)

Let F : N → M be a C∞ map. Any non-empty regular level set
F−1(c) is a regular submanifold of codimension equal to dimM.
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The Regular Level Set Theorem

Example (Example 9.12)

Let S be the solution set in R3 of the polynomial equations,

x3 + y3 + z3 = 1, x + y + z = 0.

By definition S is the level set F−1(1, 0), where F : R3 → R2

is the smooth function given by

F (x , y , z) =
(
x3 + y3 + z3, x + y + z).

The Jacobian matrix of F is

J(F ) =

[
3x2 3y2 3z2

1 1 1

]
.

It has rank 2 unless x2 = y2 = z2, i.e., x = ±y = ±z .

For such a point F (x , y , z) = λ(x3, x) 6= (1, 0), so all the
points of S are regular points.

Thus, S is a regular level set of F , and hence is a regular
submanifold of codimension 2. 16 / 16


