The Quotient Topology

Reminder

An equivalence relation on a set S is given by a subset #Z C S x S
with the following properties:

e Transitivity: (x,x) € Z for all x € S.
e Symmetry: (x,y) € Z < (y,x) € Z.
e Transitivity: (x,y) € Z and (y,z) e Z = (x,z) € Z.

When (x,y) € # we say that x and y are equivalent and write
X ~y.

The set Z is called the graph of the equivalence relation.
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The Quotient Topology

Let ~ be an equivalence relation on S.

@ The class of x € S, denoted [x], is the subset of S consisting
of all y € S that are equivalent to x.

@ The set of equivalence classes is denoted S/~ and is called
the quotient of S by ~.

@ Themapn:S — S/~ , x — [x] is called the natural
projection map (or canonical projection)

© The equivalence classes form of partition of S.

® The canonical projection 7 : S — S/~ is always onto.
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The Quotient Topology

Suppose that S is a topological space. Let 7 be the collection of
subsets U C S/~ such that 77 1(U) is an open in S.

@ 7 is closed under unions and finite intersections: if U, € T
and V; € T, then

mH (JUs) =7 (V) and 71 (VinVe) = 77 (Vi)na (V)

are again contained in 7.

@ Therefore T defines a topology on S/~ .

Definition

@ The topology 7T is called the quotient topology.

@ Equipped with this topology S/~ is called the quotient space
of S by ~.
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The Quotient Topology

@ A subset U C S/~ is open if and only if 7=1(U) is an open
in S.

@ This implies that the projection map 7: S — S/~ is
automatically continuous.

© The quotient topology is actually the strongest topology on
S/~ for which the map 7 : S — S/~ is continuous.
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Continuity of a Map on a Quotient

Let f : S — Y be a map that is constant on each equivalence
class, i.e., X~y = f(x) = f(y).
Then f descends to a map f : S/~ — Y such that

f([x]) = f(x), x € S.

_4
Remarks

O The definitign of f means that if ¢ is an equivalence class in
S/~ , then f(c) = f(x) for any x € c.
@ The equality f([x]) = f(x) for all x € S means that for = f.
That is, we have a commutative diagram,
s— sy

| A
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Continuity of a Map on a Quotient

Proposition (Proposition 7.1)

The induced map f : S/~ — Y is continuous if and only if the
original map f : S — Y is continuous.

A map g : S/~ — Y is continuous if and only if the composition
gom:S — Y is continuous.
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Indentification of a Subset to a Point

Fact

Let A be a subset of S. We can define an equivalence relation ~
on S by declaring:

X ~ X forall x € S,

X~y for all x,y € A.

In other words, if we let A = {(x,x); x € S} be the diagonal of
S x S, then the graph of the relation is just

Z=AU(AxA).

It can be checked this is an equivalence relation.

Definition

We say that the quotient space S/~ is obtained by identifying A
to a point.

Let / be the unit interval [0,1] and //~ the quotient space by
identifying 0,1 to a point, i.e., by identifying 0 and 1.

@ The equivalence classes consists of the singletons {t},
t € (0,1), and the pair {0,1}.

@ Let S! C C be the unit circle, and define f : / — St by
f(t) = e*™t. As f(0) = f(1) it induces a map f : [/~ — S

f

(=N )
®

© The induced map f : [/~ — S! is continuous, since f is
continuous.

Proposition (Proposition 7.3)

The induced map f : | /[~ — S is a homeomorphism.

|dentification of a Subset to a Point

Example
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A Necessary Condition for a Hausdorff Quotient

e If X is a Hausdorff topological space, then every singleton
{x}, x € X, is a closed set in X.

@ If the quotient space S/~ is Hausdorff, then every singleton
{[x]}, x € S, is closed in S/~ . This means that the preimage
7 1({[x]}) = [x] is closed in S.

v

Proposition (Proposition 7.4)

If the quotient space S/~ is Hausdorff, then all the equivalence
classes [x], x € S, are closed sets in S.

Consequence

If there is an equivalence class that is not a closed set, then the
quotient space S/~ is not Hausdorff.
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A Necessary Condition for a Hausdorff Quotient

Let ~ be the equivalence relation on R obtained by identifying the
open interval (0, 00) to a point. Then:

@ The equivalence class [1] is the whole interval (0, c0).

@ As (0,00) is a not a closed set in R, the quotient space R/~
is not Hausdorff.
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Open Equivalence Relations

Reminder
A map f : X — Y is open when the image of any open set in X is
an open set in Y.

Definition

We say that an equivalence relation ~ on a topological space S is
open when the projection 7 : S — S/~ is an open map.

Remark
e If AC S, then w(A) is open in S/~ if and only if
7w (U)) = Uyealx] is an open set in S.
@ Thus, the equivalence relation ~ is open if and only if, for
every open U in S, the set Uycy[x] is open in S.
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Open Equivalence Relations

Let ~ be the equivalence relation on R that identifies 1 and —1.
@ We have [x] = {x} for x # +1 and [-1] = [1] = {£1}.

@ For the open interval (—2,0) we get
U W=( U Kul-i=(=20u{}.

x€(—2,0) x€(—2,0)
x#—1

@ As (—2,0) U {1} is not an open set, the equivalence relation
~ Is not open.
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Open Equivalence Relations

Reminder

If ~ is an equivalence relation, then its graph is

X ={(x,y) €S5xS;, x~ytCSxS.

Theorem (Theorem 7.7)

Suppose that ~ is an open equivalence relation on a topological

space S. Then the quotient space S/~ is Hausdorff if and only if
the graph % of ~ is closed in S x S.
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Open Equivalence Relations

Let ~ be the trivial equivalence relation x ~ y < x = y. Then:
o [x] ={x} forall x e S.
@ The graph of ~ is just the diagonal,

A={(x,x); xeS} CcSxS.

@ If S is a topological space, then the projection map
m:S — S/~ is a homeomorphism.

Corollary (Corollary 7.8)

A topological space S is Hausdorff if and only if the diagonal A is
closed in S x S.

15/ 29



Open Equivalence Relations

Proposition (Proposition 7.9)

Suppose that ~ is an open equivalence relation on S. If {U,} is a
basis for the topology of S, then {m(U,)} is a basis for the
quotient topology on S/~ .

Corollary (Corollary 7.10)

If ~ is an open equivalence relation on S, and S is second
countable, then the quotient space S/~ is second countable.
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Real Projective Space

© |Intuitively speaking the real projective space RP" is the set of
lines in R™! through the origin.

@ Two non-zero vectors x,y € R"™1\ 0 are the same line
through the origin if and only if there is t # 0 such that
y = tx.

@ We define an equivalence relation ~ on R™1\ 0 by
X ~ y <=y = tx for some t # 0.

© The conjugacy classes consist precisely of the lines through
the origin (with the origin deleted).
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Real Projective Space

Definition

The real projective space RP" is the quotient space (R™1\ 0)/~ .

@ We denote by [a%,...,a"] the class of (a°,...,a") € R™!/~ .
@ We call [a°,. .., a"] homogeneous coordinates on RP".
© We also let 7 : R"1\ 0 — RP" be the canonical projection.

v
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Real Projective Space

Remark

@ Every line in R"™! through the origin meets the unit sphere
St at a pair of antipodal points.

© Conversely, there is a unique line through the origin and two
antipodal points of S™*1

X
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Real Projective Space

@ On S™! we define an equivalence relation by

X~y <& X=d=dy.

@ The restriction of the canonical projection mgn : 8" — RP"
induces a continuous map 7 : S" /~ — RP".

@ The continuous map f : R™1\ 0 — S"*1 x — Ta7 induces a
continuous map f : RP" — S"/~ |

@ The maps 7 : S"/~ — RP" and f : RP" — S" /~ are
inverses of each other.

Proposition (Exercise 7.11)

The real projective space RP" is homeomorphic to the quotient
space S" /~ .
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Real Projective Space

Example (Real projective line RP!; see also Example 7.12)

e If we regard as the unit circle S! as a subset of C, then the
map St — S!, z — 22 induces a continuous map St/~ — St

@ This is a continuous bijection between compact spaces, and
hence this is a homeomorphism (by Corollary A.36).

@ Here Sl/w is compact, since this is the image of SE by the
canonical projection map St — Sl/w , which is continuous.

@ We thus have a sequence of homeomorphisms,

RP! ~ St /~ ~ St
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Real Projective Space

Proposition (Proposition 7.14)

The equivalence relation ~ on R™1\ 0 is an open equivalence
relation.

Corollary (Corollary 7.15)

The real projective space RP" is second countable.

Corollary (Corollary 7.16)

The real projective space RP" is Hausdorff.
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The Standard Differentiable Structure of RP”

@ For i =0,...,n, define

U= {[a°%...,a" e RP"; a' #£0}.

@ As the property a’ # 0 remains unchanged when we replace
(&% ...,a") by (ta®, ..., ta") with t # 0, we see that U; is
well defined.

o We have 7 1(U;) = 7= 1(U;), where

U, ={(%...,a") e R"™™\ 0; a’ #£0}.

o As U; is an open set in R™+1 \ 0, this shows that U; is an
open set in RP".
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The Standard Differentiable Structure of RP”

o Define ¢; : U; — R" by

ooy 9 o o oy

0 i—1 i+l n
~ 0 _(a a a a
¢,’(a,...,a")—<?,. al. ,T ai .
@ As &;(tao, ..., ta") = (/;,-(ao, ...,a") for all t # 0, the map b;

induces a map ¢; : U; — R" such that

) ([ao, .. .,a”]) = gg;(ao, co.at),
a0 ai—1 ai—}—l P
:(?,..., ai,T,...,?>.

@ As %,- . U; — R" is a continuous map, the induced map
¢; : Ui — R" is continuous as well.
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The Standard Differentiable Structure of RP”

@ The map ¢;: Ui — R" is a bijection with inverse
;i : R" = U;, where

vilxt, o x™) = [xY, X1 X XM,

@ The inverse map ¢; = qbi_l Is continuous, since ¥; = T o zZ,-,
where v; : R" — U; is the continuous map given by

1Z,-(X1,...,X”) =(x%,...,x",1,xT .. x").

@ Thus, the map ¢; : U — R" is a homeomorphism.
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The Standard Differentiable Structure of RP”

@ We have

al a"

_ o 0 1
¢0(U0ﬁU1)—{<¥,...,E>,a’ER, a#0, a ;Ao}
— {(Xl,...,Xn) e R™ x! +£ O}.
@ The transition map ¢ o gbal : ¢po(Up N Ur) — R" is given by

¢ © ¢1_1(X1, X)) = g0 ([l,xl, e ,x”]) :
(1 x? x"
— ;,F,...,F .

In particular, this is a C*° map.

@ It can be similarly shown that all the other transition maps
oj o ¢j_1 (Ui N Uj) = R" are C* maps.

v
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The Standard Differentiable Structure of RP”

The collection {(U;, ¢i)}"_, is a C* atlas for RP", and so RP" is
a smooth manifold.

Definition

The differentiable structure defined by the atlas {(U;, ¢;)}7_, is
called the standard differentiable structure of RP".
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Complex Projective Space

We also define complex projective spaces.

@ On C"*! consider the equivalence relation
x~y <= JX € C\ 0 such that x = \y.

In other words x ~ y if and only if x and y lie on the same
complex line through the origin.

@ The equivalence classes are the complex lines through the
origin (minus the origin).
@ The complex projective space CP" is the quotient space

(CT\0)/~.

@ The class of a = (a°,...,a") is denoted [a°,...,a"]. We call
[a°, ..., a"] homogeneous coordinates.

@ The space CP" is Hausdorff and 2nd countable.

A\
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Differentiable Structure on CP”"

@ Fori=1,..., n, define

U= {[a°%...,a"; (&°%...,a") e C"™1\ 0, &' #0}.

This is an open set in CP".
@ Define ¢; : U; — C" by

o1 (1%, a") :(

This is a homeomorphism from U; on C". It has inverse

vi(zt, ..., z2") = (zl,...,zi,l,zi+1,...,z”).

Py

. ey 9 . ey

aO ai—l ai+1 an)

FIREEF R

@ The transition maps ¢; o qu_l

holomorphic maps).

e Thus, {(U;, ¢i)}"_, isa C* atlas for CP", and so the
complex projective space CP" is a manifold.

are C* maps (they even are

J n
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Submanifolds

Definition (Regular Submanifold)

Given a manifold N of dimension, a subset S C N is called a
regular submanifold of dimension k if, for every p € S, there is a
chart (U,x!,...,x") about p in N such that

UﬂSz{qe U;xk+1(q):.--:x"(q):o}.

@ A chart (U,x},...,x") as above is called an adapted chart
relative to S.

© We call n — k the codimension of S.

© We always assume that S is equipped with the induced
topology.

© There are other types of submanifold. By a submanifold we
shall always mean a regular submanifold.

Submanifolds

Let S C N be a regular submanifold of dimension k, and
(U,¢) = (U,x%,...,x") be an adapted chart relative to S.

@ We have ¢ = (x},...,x%,0,...,0)on UNS.
@ Define ¢s: UNS — R¥ by

é(q) = (x*(q),-...x*(q)), qeUNS.

Then ¢g is a homeomorphism from U N S onto its image

@ Let (r',...,r") be the coordinates in R". We have
QSS(UHS)X{O}n_k = ¢(Uﬂ5) — ¢(U)ﬂ{rk+1 — == O}

Thus, ¢s(UN S) x {0}~k is open in R¥) x {0}"~*, and
hence ¢ps(UN S) is an open in RX.
@ It then follows that (U, ¢s) is a (topological) chart for S.




Submanifolds

Any open set U C N is a regular submanifold of codimension 0.

Example

@ The open interval S = (—1,1) on the x-axis is a regular
submanifold of dimension 1 of the xy-plane.

@ An adapted chart is (U, x, y), with U = (—1,1) x (—1,1),
since

Un{y=0}=(-1,1)x {0} = S.

Submanifolds

Let (U,¢) = (U,x,...,x") and (V,v¥) = (V,y!,...,y") be
adapted charts relative to S about a point p € S. Denote by
(rl,...,r") the coordinates in R" = R x Rk,

@ On UNV NS we have
¢=(x'...,x5,0,...,0) = (¢5,0,...,0),
v=(y'...,¥y50,...,0) = (¢s,0,...,0).
@ Thus, on ¢(UNVNS)=¢s(UNVNS)x {0} % we have
wod 1(rh, ..., r0,...,0) = (Ysods (rt,...,r),0,...,0).
o Aswogb_l :(ylo¢_1,...,yno¢_1), we get

wsogbgl =(z%,...,2%), wherez' = y'op (s}, ..., r¥,0,...,0).

In particular, the transition map s o gbgl is smooth.




Submanifolds

Proposition (Proposition 9.4)
Let S be a regular submanifold of dimension k in a manifold N of
dimension n. Let {(U, ¢)} be a collection of adapted charts
relative to S that covers S. Then:

@ The collection {(UN S, ¢s)} is a C* atlas for S.

@ S is a manifold of dimension k. J

It can be shown that the differentiable structure on S defined
above is unique, i.e., it does not depend on the choice of the

collection {(U, ¢)}.
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Level Sets of a Function

e Given F: N — M and ¢ € M, the preimage F~1(c) is called
a level set of level c.

@ When N = R” we call F~1(0) the zero set of F and denote it
by Z(F).

Reminder

If F: N — M is a smooth map, then we say that c is a regular
value when, either ¢ & F(M), or for every point p € F~1(c) the
differential F. , : T,M — T.N is onto.
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Level Sets of a Function

Let F : N — M be a smooth map, and let c € M.
o If cis a regular value, then F~1(c) is called a regular level set.

o If N=R" and 0 is a regular value, then we say that Z(F) is a
regular zero set.

v

Let f : N — R be a smooth function.

o If pe N, then £, p: ToM — T¢(,)R ~ R is onto if and only if
It is non-zero.

o If c € f(M), then f~1(c) is a regular level set if and only if
fp 7 0 for all p € f71(c).

Level Sets of a Function

Example (Example 9.6; the 2-sphere in R3)

@ The unit sphere S? C R3 is the zero set of the function,
f(x,y,2) =x*+y>+2°— 1.

@ For every p = (x,y,z) € S? we have

(56 5710). 92460 = (2x,20,20) 20

Therefore, S? is a regular zero set.




Level Sets of a Function

Example (The 2-sphere in R3; continued)

@ Suppose that p = (x(p), y(p), z(p)) is such that xo # 0. It
can be checked that the map F = (f, y, z) has a non-zero
Jacobian determinant at p.

@ By Corollary 6.27 (consequence of the inverse function
theorem) there is an open U about p such that
(U, Flu) = (U, fiu, Yju, Zu) is a chart about p in R3.

e Set ul = YU u? = z|y, and w = fiy- Then (U, ul, u?, u3) is
a chart about p in R3, and we have

{P=0}={fiy=0t=Un{f=0}=UNS

Thus, (U, ut, u?, u3) is an adapted chart relative to S2.

e Similarly, if y(p) # 0 or z(p) # 0, then there is an adapted
chart about p.

@ Thus, S c R3is a regular submanifold of codimension 1. b 1

Level Sets of a Function

More generally, we have the following result:

Theorem (Theorem 9.8)

Let g : N — R be a smooth function. Any non-empty regular level
set g~ 1(c) is a regular submanifold of codimension 1.

A codimension 1 submanifold is called a hypersurface.
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Level Sets of a Function

Example (Example 9.11)

Let S be the solution set of x3 + y3 + z3 =1 in R3.
@ S is the zero set of f(x,y,z) = x>+ y>+ 23 — 1.
o If p=(x,y,z) €S, then

(%(P% g—;(p), %(p)) = (3x%,3y%,32%) #0.

Thus, every p € S is a regular point.

@ Therefore, S is a regular zero set, and hence is a regular
hypersurface.
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Level Sets of a Function

Example (Example 9.13; Special Linear Group)

@ Let R be the vector space of n X n matrices with real
entries. The general linear group is

GL(n,R) = {A € R™"; detA#0}.

This an open set in R and hence is a manifold of

dimension n?.

@ The special linear group is

SL(n,R) ={A € GL(n,R); detA=1}.

This is the level set f~1(1) of the function f(A) = det A.
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Level Sets of a Function

Example (Special Linear Group, continued)

o If A= [a;] € GL(n,R) and mj; = det S;; is the (i, )-minor,
then
of

= (=1 m.
aij()mu

e If A€ GL(n,R), then at least one minor is non-zero, and so A
is a regular point of f.
@ In particular, every A € SL(n,R) is a regular point.

@ Therefore, SL(n,R) is a regular level set, and hence is a
regular hypersurface in GL(n, R).
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The Regular Level Set Theorem

Even more generally we have:

Theorem (Regular Level Set Theorem; Theorem 9.9)

Let F : N - M be a C* map. Any non-empty regular level set
F~1(c) is a regular submanifold of codimension equal to dim M.
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The Regular Level Set Theorem

Example (Example 9.12)

Let S be the solution set in R3 of the polynomial equations,
B+yi+B8=1 x+y+z=0.

@ By definition S is the level set F~1(1,0), where F : R — R?
is the smooth function given by

F(x,y,2) = (> +y’ + 2%, x+y + 2).

@ The Jacobian matrix of F is

3x2 3y?2 3z2
J(F):[1 1 1].

2 je., x= Ty =tz

It has rank 2 unless x? = y? = z
@ For such a point F(x,y,z) = A(x3,x) # (1,0), so all the
points of S are regular points.
@ Thus, S is a regular level set of F, and hence is a regular

submanifold of codimension 2. 6/ 16




