The Quotient Topology

Reminder

An equivalence relation on a set S is given by a subset $\mathscr{R} \subset S \times S$ with the following properties:

- Transitivity: $(x, x) \in \mathscr{R}$ for all $x \in S$.
- Symmetry: $(x, y) \in \mathscr{R} \Leftrightarrow(y, x) \in \mathscr{R}$.
- Transitivity: $(x, y) \in \mathscr{R}$ and $(y, z) \in \mathscr{R} \Rightarrow(x, z) \in \mathscr{R}$.

When $(x, y) \in \mathscr{R}$ we say that x and y are equivalent and write $x \sim y$.
The set \mathscr{R} is called the graph of the equivalence relation.

The Quotient Topology

Definition

Let \sim be an equivalence relation on S.

- The class of $x \in S$, denoted $[x]$, is the subset of S consisting of all $y \in S$ that are equivalent to x.
- The set of equivalence classes is denoted S / \sim and is called the quotient of S by \sim.
- The map $\pi: S \rightarrow S / \sim, x \rightarrow[x]$ is called the natural projection map (or canonical projection)

Remarks

(1) The equivalence classes form of partition of S.
(2) The canonical projection $\pi: S \rightarrow S / \sim$ is always onto.

The Quotient Topology

Fact

Suppose that S is a topological space. Let \mathcal{T} be the collection of subsets $U \subset S / \sim$ such that $\pi^{-1}(U)$ is an open in S.

- \mathcal{T} is closed under unions and finite intersections: if $U_{\alpha} \in \mathcal{T}$ and $V_{i} \in \mathcal{T}$, then

$$
\pi^{-1}\left(\bigcup U_{\alpha}\right)=\bigcup \pi^{-1}\left(U_{\alpha}\right) \text { and } \pi^{-1}\left(V_{1} \cap V_{2}\right)=\pi^{-1}\left(V_{1}\right) \cap \pi^{-1}\left(V_{2}\right)
$$

are again contained in \mathcal{T}.

- Therefore \mathcal{T} defines a topology on S / \sim.

Definition

- The topology \mathcal{T} is called the quotient topology.
- Equipped with this topology S / \sim is called the quotient space of S by \sim.

The Quotient Topology

Remarks

(1) A subset $U \subset S / \sim$ is open if and only if $\pi^{-1}(U)$ is an open in S.
(2) This implies that the projection map $\pi: S \rightarrow S / \sim$ is automatically continuous.
(3) The quotient topology is actually the strongest topology on S / \sim for which the map $\pi: S \rightarrow S / \sim$ is continuous.

Continuity of a Map on a Quotient

Fact

Let $f: S \rightarrow Y$ be a map that is constant on each equivalence class, i.e.,

$$
x \sim y \Rightarrow f(x)=f(y)
$$

Then f descends to a map $\bar{f}: S / \sim \rightarrow Y$ such that

$$
\bar{f}([x])=f(x), \quad x \in S
$$

Remarks

(1) The definition of \bar{f} means that if c is an equivalence class in S / \sim, then $\bar{f}(c)=f(x)$ for any $x \in c$.
(2) The equality $\bar{f}([x])=f(x)$ for all $x \in S$ means that $\bar{f} \circ \pi=f$. That is, we have a commutative diagram,

Continuity of a Map on a Quotient

Proposition (Proposition 7.1)

The induced map $\bar{f}: S / \sim \rightarrow Y$ is continuous if and only if the original map $f: S \rightarrow Y$ is continuous.

Corollary

A map $g: S / \sim \rightarrow Y$ is continuous if and only if the composition $g \circ \pi: S \rightarrow Y$ is continuous.

Indentification of a Subset to a Point

Fact

Let A be a subset of S. We can define an equivalence relation \sim on S by declaring:

$$
\begin{array}{cc}
x \sim x & \text { for all } x \in S \\
x \sim y & \text { for all } x, y \in A
\end{array}
$$

In other words, if we let $\Delta=\{(x, x) ; x \in S\}$ be the diagonal of $S \times S$, then the graph of the relation is just

$$
\mathscr{R}=\Delta \cup(A \times A)
$$

It can be checked this is an equivalence relation.

Definition

We say that the quotient space S / \sim is obtained by identifying A to a point.

Identification of a Subset to a Point

Example

Let I be the unit interval $[0,1]$ and I / \sim the quotient space by identifying 0,1 to a point, i.e., by identifying 0 and 1 .
(1) The equivalence classes consists of the singletons $\{t\}$, $t \in(0,1)$, and the pair $\{0,1\}$.
(2) Let $\mathbb{S}^{1} \subset \mathbb{C}$ be the unit circle, and define $f: I \rightarrow \mathbb{S}^{1}$ by $f(t)=e^{2 i \pi t}$. As $f(0)=f(1)$ it induces a $\operatorname{map} \bar{f}: I / \sim \rightarrow \mathbb{S}^{1}$.

(3) The induced map $\bar{f}: I / \sim \rightarrow \mathbb{S}^{1}$ is continuous, since f is continuous.

Proposition (Proposition 7.3)

The induced map $\bar{f}: I / \sim \rightarrow \mathbb{S}^{1}$ is a homeomorphism.

A Necessary Condition for a Hausdorff Quotient

Facts

- If X is a Hausdorff topological space, then every singleton $\{x\}, x \in X$, is a closed set in X.
- If the quotient space S / \sim is Hausdorff, then every singleton $\{[x]\}, x \in S$, is closed in S / \sim. This means that the preimage $\pi^{-1}(\{[x]\})=[x]$ is closed in S.

Proposition (Proposition 7.4)

If the quotient space S / \sim is Hausdorff, then all the equivalence classes $[x], x \in S$, are closed sets in S.

Consequence

If there is an equivalence class that is not a closed set, then the quotient space S / \sim is not Hausdorff.

A Necessary Condition for a Hausdorff Quotient

Example

Let \sim be the equivalence relation on \mathbb{R} obtained by identifying the open interval $(0, \infty)$ to a point. Then:

- The equivalence class [1] is the whole interval $(0, \infty)$.
- As $(0, \infty)$ is a not a closed set in \mathbb{R}, the quotient space \mathbb{R} / \sim is not Hausdorff.

Open Equivalence Relations

Reminder

A map $f: X \rightarrow Y$ is open when the image of any open set in X is an open set in Y.

Definition

We say that an equivalence relation \sim on a topological space S is open when the projection $\pi: S \rightarrow S / \sim$ is an open map.

Remark

- If $A \subset S$, then $\pi(A)$ is open in S / \sim if and only if $\pi^{-1}(\pi(U))=\cup_{x \in A}[x]$ is an open set in S.
- Thus, the equivalence relation \sim is open if and only if, for every open U in S, the set $\cup_{x \in U}[x]$ is open in S.

Open Equivalence Relations

Example

Let \sim be the equivalence relation on \mathbb{R} that identifies 1 and -1 .

- We have $[x]=\{x\}$ for $x \neq \pm 1$ and $[-1]=[1]=\{ \pm 1\}$.
- For the open interval $(-2,0)$ we get

$$
\bigcup_{x \in(-2,0)}[x]=\left(\bigcup_{\substack{x \in(-2,0) \\ x \neq-1}}[x]\right) \cup[-1]=(-2,0) \cup\{1\}
$$

- As $(-2,0) \cup\{1\}$ is not an open set, the equivalence relation \sim is not open.

Open Equivalence Relations

Reminder

If \sim is an equivalence relation, then its graph is

$$
\mathscr{R}=\{(x, y) \in S \times S ; x \sim y\} \subset S \times S
$$

Theorem (Theorem 7.7)

Suppose that \sim is an open equivalence relation on a topological space S. Then the quotient space S / \sim is Hausdorff if and only if the graph \mathscr{R} of \sim is closed in $S \times S$.

Open Equivalence Relations

Example

Let \sim be the trivial equivalence relation $x \sim y \Leftrightarrow x=y$. Then:

- $[x]=\{x\}$ for all $x \in S$.
- The graph of \sim is just the diagonal,

$$
\Delta=\{(x, x) ; x \in S\} \subset S \times S
$$

- If S is a topological space, then the projection map $\pi: S \rightarrow S / \sim$ is a homeomorphism.

Corollary (Corollary 7.8)

> A topological space S is Hausdorff if and only if the diagonal Δ is closed in $S \times S$.

Open Equivalence Relations

Proposition (Proposition 7.9)

Suppose that \sim is an open equivalence relation on S. If $\left\{U_{\alpha}\right\}$ is a basis for the topology of S, then $\left\{\pi\left(U_{\alpha}\right)\right\}$ is a basis for the quotient topology on S / \sim.

Corollary (Corollary 7.10)

If \sim is an open equivalence relation on S, and S is second countable, then the quotient space S / \sim is second countable.

Real Projective Space

Remarks

(1) Intuitively speaking the real projective space $\mathbb{R} P^{n}$ is the set of lines in \mathbb{R}^{n+1} through the origin.
(2) Two non-zero vectors $x, y \in \mathbb{R}^{n+1} \backslash 0$ are the same line through the origin if and only if there is $t \neq 0$ such that $y=t x$.

Fact

(1) We define an equivalence relation \sim on $\mathbb{R}^{n+1} \backslash 0$ by

$$
x \sim y \Longleftrightarrow y=t x \text { for some } t \neq 0
$$

(2) The conjugacy classes consist precisely of the lines through the origin (with the origin deleted).

Real Projective Space

Definition

The real projective space $\mathbb{R} P^{n}$ is the quotient space $\left(\mathbb{R}^{n+1} \backslash 0\right) / \sim$.

Remarks

(1) We denote by $\left[a^{0}, \ldots, a^{n}\right]$ the class of $\left(a^{0}, \ldots, a^{n}\right) \in \mathbb{R}^{n+1} / \sim$.
(2) We call $\left[a^{0}, \ldots, a^{n}\right]$ homogeneous coordinates on $\mathbb{R} P^{n}$.
(3) We also let $\pi: \mathbb{R}^{n+1} \backslash 0 \rightarrow \mathbb{R} P^{n}$ be the canonical projection.

Real Projective Space

Remark

(1) Every line in \mathbb{R}^{n+1} through the origin meets the unit sphere \mathbb{S}^{n+1} at a pair of antipodal points.
(2) Conversely, there is a unique line through the origin and two antipodal points of \mathbb{S}^{n+1}

Real Projective Space

Facts

- On \mathbb{S}^{n+1} we define an equivalence relation by

$$
x \sim y \Longleftrightarrow x= \pm y
$$

- The restriction of the canonical projection $\pi_{\mid \mathbb{S}^{n}}: \mathbb{S}^{n} \rightarrow \mathbb{R} P^{n}$ induces a continuous map $\bar{\pi}: \mathbb{S}^{n} / \sim \rightarrow \mathbb{R} P^{n}$.
- The continuous map $f: \mathbb{R}^{n+1} \backslash 0 \rightarrow \mathbb{S}^{n+1}, x \rightarrow \frac{x}{\|x\|}$ induces a continuous map $\bar{f}: \mathbb{R} P^{n} \rightarrow \mathbb{S}^{n} / \sim$.
- The maps $\bar{\pi}: \mathbb{S}^{n} / \sim \rightarrow \mathbb{R} P^{n}$ and $\bar{f}: \mathbb{R} P^{n} \rightarrow \mathbb{S}^{n} / \sim$ are inverses of each other.

Proposition (Exercise 7.11)

The real projective space $\mathbb{R} P^{n}$ is homeomorphic to the quotient space \mathbb{S}^{n} / \sim.

Real Projective Space

Example (Real projective line $\mathbb{R} P^{1}$; see also Example 7.12)

- If we regard as the unit circle \mathbb{S}^{1} as a subset of \mathbb{C}, then the map $\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, z \rightarrow z^{2}$ induces a continuous map $\mathbb{S}^{1} / \sim \rightarrow \mathbb{S}^{1}$.
- This is a continuous bijection between compact spaces, and hence this is a homeomorphism (by Corollary A.36).
- Here \mathbb{S}^{1} / \sim is compact, since this is the image of \mathbb{S}^{1} by the canonical projection map $\mathbb{S}^{1} \rightarrow \mathbb{S}^{1} / \sim$, which is continuous.
- We thus have a sequence of homeomorphisms,

$$
\mathbb{R} P^{1} \simeq \mathbb{S}^{1} / \sim \simeq \mathbb{S}^{1}
$$

Real Projective Space

Proposition (Proposition 7.14)

The equivalence relation \sim on $\mathbb{R}^{n+1} \backslash 0$ is an open equivalence relation.

Corollary (Corollary 7.15)

The real projective space $\mathbb{R} P^{n}$ is second countable.

Corollary (Corollary 7.16)
The real projective space $\mathbb{R} P^{n}$ is Hausdorff.

The Standard Differentiable Structure of $\mathbb{R} P^{n}$

Facts

- For $i=0, \ldots, n$, define

$$
U_{i}=\left\{\left[a^{0}, \ldots, a^{n}\right] \in \mathbb{R} P^{n} ; a^{i} \neq 0\right\} .
$$

- As the property $a^{i} \neq 0$ remains unchanged when we replace $\left(a^{0}, \ldots, a^{n}\right)$ by $\left(t a^{0}, \ldots, t a^{n}\right)$ with $t \neq 0$, we see that U_{i} is well defined.
- We have $\pi^{-1}\left(U_{i}\right)=\pi^{-1}\left(\tilde{U}_{i}\right)$, where

$$
\tilde{U}_{i}=\left\{\left(a^{0}, \ldots, a^{n}\right) \in \mathbb{R}^{n+1} \backslash 0 ; a^{i} \neq 0\right\} .
$$

- As \tilde{U}_{i} is an open set in $\mathbb{R}^{n+1} \backslash 0$, this shows that U_{i} is an open set in $\mathbb{R} P^{n}$.

The Standard Differentiable Structure of $\mathbb{R} P^{n}$

Facts

- Define $\tilde{\phi}_{i}: \tilde{U}_{i} \rightarrow \mathbb{R}^{n}$ by

$$
\tilde{\phi}_{i}\left(a^{0}, \ldots, a^{n}\right)=\left(\frac{a^{0}}{a^{i}}, \ldots, \frac{a^{i-1}}{a^{i}}, \frac{a^{i+1}}{a^{i}}, \ldots, \frac{a^{n}}{a^{i}}\right) .
$$

- As $\tilde{\phi}_{i}\left(t a^{0}, \ldots, t a^{n}\right)=\tilde{\phi}_{i}\left(a^{0}, \ldots, a^{n}\right)$ for all $t \neq 0$, the map $\tilde{\phi}_{i}$ induces a map $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{aligned}
\phi\left(\left[a^{0}, \ldots, a^{n}\right]\right) & =\tilde{\phi}_{i}\left(a^{0}, \ldots, a^{n}\right), \\
& =\left(\frac{a^{0}}{a^{i}}, \ldots, \frac{a^{i-1}}{a^{i}}, \frac{a^{i+1}}{a^{i}}, \ldots, \frac{a^{n}}{a^{i}}\right) .
\end{aligned}
$$

- As $\tilde{\phi}_{i}: \tilde{U}_{i} \rightarrow \mathbb{R}^{n}$ is a continuous map, the induced map $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is continuous as well.

The Standard Differentiable Structure of $\mathbb{R} P^{n}$

Facts

- The map $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is a bijection with inverse $\psi_{i}: \mathbb{R}^{n} \rightarrow U_{j}$, where

$$
\psi_{i}\left(x^{1}, \ldots, x^{n}\right)=\left[x^{1}, \ldots, x^{i}, 1, x^{i+1}, \ldots, x^{n}\right]
$$

- The inverse map $\psi_{i}=\phi_{i}^{-1}$ is continuous, since $\psi_{i}=\pi \circ \tilde{\psi}_{i}$, where $\tilde{\psi}_{i}: \mathbb{R}^{n} \rightarrow \tilde{U}_{i}$ is the continuous map given by

$$
\tilde{\psi}_{i}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{0}, \ldots, x^{i}, 1, x^{i+1}, \ldots, x^{n}\right)
$$

- Thus, the map $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is a homeomorphism.

The Standard Differentiable Structure of $\mathbb{R} P^{n}$

Facts

- We have

$$
\begin{aligned}
\phi_{0}\left(U_{0} \cap U_{1}\right) & =\left\{\left(\frac{a^{1}}{a^{0}}, \ldots, \frac{a^{n}}{a^{0}}\right) ; a^{j} \in \mathbb{R}, a^{0} \neq 0, a^{1} \neq 0\right\} \\
& =\left\{\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n} ; x^{1} \neq 0\right\}
\end{aligned}
$$

- The transition map $\phi_{1} \circ \phi_{0}^{-1}: \phi_{0}\left(U_{0} \cap U_{1}\right) \rightarrow \mathbb{R}^{n}$ is given by

$$
\begin{aligned}
\phi_{0} \circ \phi_{1}^{-1}\left(x^{1}, \ldots, x^{n}\right) & =\phi_{0}\left(\left[1, x^{1}, \ldots, x^{n}\right]\right), \\
& =\left(\frac{1}{x^{1}}, \frac{x^{2}}{x^{1}}, \ldots, \frac{x^{n}}{x^{1}}\right) .
\end{aligned}
$$

In particular, this is a C^{∞} map.

- It can be similarly shown that all the other transition maps $\phi_{i} \circ \phi_{j}^{-1}: \phi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \mathbb{R}^{n}$ are C^{∞} maps.

The Standard Differentiable Structure of $\mathbb{R} P^{n}$

Conclusion

The collection $\left\{\left(U_{i}, \phi_{i}\right)\right\}_{i=0}^{n}$ is a C^{∞} atlas for $\mathbb{R} P^{n}$, and so $\mathbb{R} P^{n}$ is a smooth manifold.

Definition

The differentiable structure defined by the atlas $\left\{\left(U_{i}, \phi_{i}\right)\right\}_{i=0}^{n}$ is called the standard differentiable structure of $\mathbb{R} P^{n}$.

Complex Projective Space

Facts

We also define complex projective spaces.

- On \mathbb{C}^{n+1} consider the equivalence relation

$$
x \sim y \Longleftrightarrow \exists \lambda \in \mathbb{C} \backslash 0 \text { such that } x=\lambda y
$$

In other words $x \sim y$ if and only if x and y lie on the same complex line through the origin.

- The equivalence classes are the complex lines through the origin (minus the origin).
- The complex projective space $\mathbb{C} P^{n}$ is the quotient space $\left(\mathbb{C}^{n+1} \backslash 0\right) / \sim$.
- The class of $a=\left(a^{0}, \ldots, a^{n}\right)$ is denoted $\left[a^{0}, \ldots, a^{n}\right]$. We call $\left[a^{0}, \ldots, a^{n}\right]$ homogeneous coordinates.
- The space $\mathbb{C} P^{n}$ is Hausdorff and 2nd countable.

Differentiable Structure on $\mathbb{C} P^{n}$

Facts

- For $i=1, \ldots, n$, define

$$
U_{i}=\left\{\left[a^{0}, \ldots, a^{n}\right] ; \quad\left(a^{0}, \ldots, a^{n}\right) \in \mathbb{C}^{n+1} \backslash 0, a^{i} \neq 0\right\}
$$

This is an open set in $\mathbb{C} P^{n}$.

- Define $\phi_{i}: U_{i} \rightarrow \mathbb{C}^{n}$ by

$$
\phi_{i}\left(\left[a^{0}, \ldots, a^{n}\right]\right)=\left(\frac{a^{0}}{a^{i}}, \ldots, \frac{a^{i-1}}{a^{i}}, \frac{a^{i+1}}{a^{i}}, \ldots, \frac{a^{n}}{a^{i}}\right) .
$$

This is a homeomorphism from U_{i} on \mathbb{C}^{n}. It has inverse

$$
\psi_{i}\left(z^{1}, \ldots, z^{n}\right)=\left(z^{1}, \ldots, z^{i}, 1, z^{i+1}, \ldots, z^{n}\right)
$$

- The transition maps $\phi_{i} \circ \phi_{j}^{-1}$ are C^{∞} maps (they even are holomorphic maps).
- Thus, $\left\{\left(U_{i}, \phi_{i}\right)\right\}_{i=1}^{n}$ is a C^{∞} atlas for $\mathbb{C} P^{n}$, and so the complex projective space $\mathbb{C} P^{n}$ is a manifold.

Submanifolds

Definition (Regular Submanifold)

Given a manifold N of dimension, a subset $S \subset N$ is called a regular submanifold of dimension k if, for every $p \in S$, there is a chart $\left(U, x^{1}, \ldots, x^{n}\right)$ about p in N such that

$$
U \cap S=\left\{q \in U ; x^{k+1}(q)=\cdots=x^{n}(q)=0\right\} .
$$

Remarks

(1) A chart $\left(U, x^{1}, \ldots, x^{n}\right)$ as above is called an adapted chart relative to S.
(2) We call $n-k$ the codimension of S.
(3) We always assume that S is equipped with the induced topology.
(1) There are other types of submanifold. By a submanifold we shall always mean a regular submanifold.

Submanifolds

Remark

Let $S \subset N$ be a regular submanifold of dimension k, and $(U, \phi)=\left(U, x^{1}, \ldots, x^{n}\right)$ be an adapted chart relative to S.

- We have $\phi=\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right)$ on $U \cap S$.
- Define $\phi_{S}: U \cap S \rightarrow \mathbb{R}^{k}$ by

$$
\phi(q)=\left(x^{1}(q), \ldots, x^{k}(q)\right), \quad q \in U \cap S
$$

Then ϕ_{S} is a homeomorphism from $U \cap S$ onto its image

- Let $\left(r^{1}, \ldots, r^{n}\right)$ be the coordinates in \mathbb{R}^{n}. We have
$\phi_{S}(U \cap S) \times\{0\}^{n-k}=\phi(U \cap S)=\phi(U) \cap\left\{r^{k+1}=\cdots=r^{n}=0\right\}$.
Thus, $\phi_{S}(U \cap S) \times\{0\}^{n-k}$ is open in $\left.\mathbb{R}^{k}\right) \times\{0\}^{n-k}$, and hence $\phi_{S}(U \cap S)$ is an open in \mathbb{R}^{k}.
- It then follows that $\left(U, \phi_{S}\right)$ is a (topological) chart for S.

Submanifolds

Example

Any open set $U \subset N$ is a regular submanifold of codimension 0 .

Example

- The open interval $S=(-1,1)$ on the x-axis is a regular submanifold of dimension 1 of the $x y$-plane.
- An adapted chart is (U, x, y), with $U=(-1,1) \times(-1,1)$, since

$$
U \cap\{y=0\}=(-1,1) \times\{0\}=S
$$

Submanifolds

Facts

Let $(U, \phi)=\left(U, x^{1}, \ldots, x^{n}\right)$ and $(V, \psi)=\left(V, y^{1}, \ldots, y^{n}\right)$ be adapted charts relative to S about a point $p \in S$. Denote by $\left(r^{1}, \ldots, r^{n}\right)$ the coordinates in $\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$.

- On $U \cap V \cap S$ we have

$$
\begin{aligned}
& \phi=\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right)=\left(\phi_{s}, 0, \ldots, 0\right) \\
& \psi=\left(y^{1}, \ldots, y^{k}, 0, \ldots, 0\right)=\left(\psi_{s}, 0, \ldots, 0\right)
\end{aligned}
$$

- Thus, on $\phi(U \cap V \cap S)=\phi_{S}(U \cap V \cap S) \times\{0\}^{n-k}$ we have $\psi \circ \phi^{-1}\left(r^{1}, \ldots, r^{k}, 0, \ldots, 0\right)=\left(\psi_{S} \circ \phi_{S}^{-1}\left(r^{1}, \ldots, r^{k}\right), 0, \ldots, 0\right)$.
- As $\psi \circ \phi^{-1}=\left(y^{1} \circ \phi^{-1}, \ldots, y^{n} \circ \phi^{-1}\right)$, we get $\psi_{S} \circ \phi_{S}^{-1}=\left(z^{1}, \ldots, z^{k}\right), \quad$ where $z^{i}=y^{i} \circ \phi^{-1}\left(r^{1}, \ldots, r^{k}, 0, \ldots, 0\right)$. In particular, the transition map $\psi_{S} \circ \phi_{S}^{-1}$ is smooth.

Submanifolds

Proposition (Proposition 9.4)

Let S be a regular submanifold of dimension k in a manifold N of dimension n. Let $\{(U, \phi)\}$ be a collection of adapted charts relative to S that covers S. Then:
(1) The collection $\left\{\left(U \cap S, \phi_{S}\right)\right\}$ is a C^{∞} atlas for S.
(2) S is a manifold of dimension k.

Remark

It can be shown that the differentiable structure on S defined above is unique, i.e., it does not depend on the choice of the collection $\{(U, \phi)\}$.

Level Sets of a Function

Definition

- Given $F: N \rightarrow M$ and $c \in M$, the preimage $F^{-1}(c)$ is called a level set of level c.
- When $N=\mathbb{R}^{n}$ we call $F^{-1}(0)$ the zero set of F and denote it by $Z(F)$.

Reminder

If $F: N \rightarrow M$ is a smooth map, then we say that c is a regular value when, either $c \notin F(M)$, or for every point $p \in F^{-1}(c)$ the differential $F_{*, p}: T_{p} M \rightarrow T_{c} N$ is onto.

Level Sets of a Function

Definition

Let $F: N \rightarrow M$ be a smooth map, and let $c \in M$.

- If c is a regular value, then $F^{-1}(c)$ is called a regular level set.
- If $N=\mathbb{R}^{n}$ and 0 is a regular value, then we say that $Z(F)$ is a regular zero set.

Remark

Let $f: N \rightarrow \mathbb{R}$ be a smooth function.

- If $p \in N$, then $f_{*, p}: T_{p} M \rightarrow T_{f(p)} R \simeq \mathbb{R}$ is onto if and only if it is non-zero.
- If $c \in f(M)$, then $f^{-1}(c)$ is a regular level set if and only if $f_{*, p} \neq 0$ for all $p \in f^{-1}(c)$.

Level Sets of a Function

Example (Example 9.6; the 2-sphere in \mathbb{R}^{3})

- The unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ is the zero set of the function,

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}-1
$$

- For every $p=(x, y, z) \in \mathbb{S}^{2}$ we have

$$
\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p)\right)=(2 x, 2 y, 2 z) \neq 0
$$

Therefore, \mathbb{S}^{2} is a regular zero set.

Level Sets of a Function

Example (The 2 -sphere in \mathbb{R}^{3}; continued)

- Suppose that $p=(x(p), y(p), z(p))$ is such that $x_{0} \neq 0$. It can be checked that the map $F=(f, y, z)$ has a non-zero Jacobian determinant at p.
- By Corollary 6.27 (consequence of the inverse function theorem) there is an open U about p such that

- Set $u^{1}=y_{\mid U}, u^{2}=z_{\mid U}$, and $u^{3}=f_{\mid U}$. Then $\left(U, u^{1}, u^{2}, u^{3}\right)$ is a chart about p in \mathbb{R}^{3}, and we have

$$
\left\{u^{3}=0\right\}=\left\{f_{\mid U}=0\right\}=U \cap\{f=0\}=U \cap \mathbb{S}^{2}
$$

Thus, $\left(U, u^{1}, u^{2}, u^{3}\right)$ is an adapted chart relative to \mathbb{S}^{2}.

- Similarly, if $y(p) \neq 0$ or $z(p) \neq 0$, then there is an adapted chart about p.
- Thus, $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ is a regular submanifold of codimension 1 .

Level Sets of a Function

More generally, we have the following result:

Theorem (Theorem 9.8)

Let $g: N \rightarrow \mathbb{R}$ be a smooth function. Any non-empty regular level set $g^{-1}(c)$ is a regular submanifold of codimension 1.

Remark

A codimension 1 submanifold is called a hypersurface.

Level Sets of a Function

Example (Example 9.11)

Let S be the solution set of $x^{3}+y^{3}+z^{3}=1$ in \mathbb{R}^{3}.

- S is the zero set of $f(x, y, z)=x^{3}+y^{3}+z^{3}-1$.
- If $p=(x, y, z) \in S$, then

$$
\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p)\right)=\left(3 x^{2}, 3 y^{2}, 3 z^{2}\right) \neq 0
$$

Thus, every $p \in S$ is a regular point.

- Therefore, S is a regular zero set, and hence is a regular hypersurface.

Level Sets of a Function

Example (Example 9.13; Special Linear Group)

- Let $\mathbb{R}^{n \times n}$ be the vector space of $n \times n$ matrices with real entries. The general linear group is

$$
\mathrm{GL}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} ; \operatorname{det} A \neq 0\right\}
$$

This an open set in $\mathbb{R}^{n \times n}$, and hence is a manifold of dimension n^{2}.

- The special linear group is

$$
\mathrm{SL}(n, \mathbb{R})=\{A \in \mathrm{GL}(n, \mathbb{R}) ; \operatorname{det} A=1\}
$$

This is the level set $f^{-1}(1)$ of the function $f(A)=\operatorname{det} A$.

Level Sets of a Function

Example (Special Linear Group, continued)

- If $A=\left[a_{i j}\right] \in G L(n, \mathbb{R})$ and $m_{i j}=\operatorname{det} S_{i j}$ is the (i, j)-minor, then

$$
\frac{\partial f}{a_{i j}}=(-1)^{i+j} m_{i j}
$$

- If $A \in \mathrm{GL}(n, \mathbb{R})$, then at least one minor is non-zero, and so A is a regular point of f.
- In particular, every $A \in S L(n, \mathbb{R})$ is a regular point.
- Therefore, $\operatorname{SL}(n, \mathbb{R})$ is a regular level set, and hence is a regular hypersurface in $\mathrm{GL}(n, \mathbb{R})$.

The Regular Level Set Theorem

Even more generally we have:

Theorem (Regular Level Set Theorem; Theorem 9.9)

Let $F: N \rightarrow M$ be a C^{∞} map. Any non-empty regular level set $F^{-1}(c)$ is a regular submanifold of codimension equal to $\operatorname{dim} M$.

The Regular Level Set Theorem

Example (Example 9.12)

Let S be the solution set in \mathbb{R}^{3} of the polynomial equations,

$$
x^{3}+y^{3}+z^{3}=1, \quad x+y+z=0
$$

- By definition S is the level set $F^{-1}(1,0)$, where $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the smooth function given by

$$
F(x, y, z)=\left(x^{3}+y^{3}+z^{3}, x+y+z\right)
$$

- The Jacobian matrix of F is

$$
J(F)=\left[\begin{array}{ccc}
3 x^{2} & 3 y^{2} & 3 z^{2} \\
1 & 1 & 1
\end{array}\right]
$$

It has rank 2 unless $x^{2}=y^{2}=z^{2}$, i.e., $x= \pm y= \pm z$.

- For such a point $F(x, y, z)=\lambda\left(x^{3}, x\right) \neq(1,0)$, so all the points of S are regular points.
- Thus, S is a regular level set of F, and hence is a regular submanifold of codimension 2.

