Reminder

An equivalence relation on a set S is given by a subset $\mathscr{R} \subset S \times S$ with the following properties:

- Transitivity: $(x, x) \in \mathscr{R}$ for all $x \in S$.
- Symmetry: $(x, y) \in \mathscr{R} \Leftrightarrow (y, x) \in \mathscr{R}$.
- Transitivity: $(x, y) \in \mathscr{R}$ and $(y, z) \in \mathscr{R} \Rightarrow (x, z) \in \mathscr{R}$.

When $(x, y) \in \mathscr{R}$ we say that x and y are *equivalent* and write $x \sim y$.

The set \mathscr{R} is called the *graph* of the equivalence relation.

The Quotient Topology

Definition

Let \sim be an equivalence relation on *S*.

- The *class* of x ∈ S, denoted [x], is the subset of S consisting of all y ∈ S that are equivalent to x.
- The set of equivalence classes is denoted S/\sim and is called the *quotient* of S by \sim .
- The map $\pi: S \to S/\sim$, $x \to [x]$ is called the *natural* projection map (or canonical projection)

Remarks

- The equivalence classes form of partition of S.
- 2 The canonical projection $\pi: S \to S/\sim$ is always onto.

The Quotient Topology

Fact

Suppose that S is a topological space. Let \mathcal{T} be the collection of subsets $U \subset S/\sim$ such that $\pi^{-1}(U)$ is an open in S.

• \mathcal{T} is closed under unions and finite intersections: if $U_{lpha} \in \mathcal{T}$ and $V_i \in \mathcal{T}$, then

$$\pi^{-1}(\bigcup U_{\alpha}) = \bigcup \pi^{-1}(U_{\alpha}) \text{ and } \pi^{-1}(V_1 \cap V_2) = \pi^{-1}(V_1) \cap \pi^{-1}(V_2)$$

are again contained in \mathcal{T} .

• Therefore ${\mathcal T}$ defines a topology on $S/\!\sim$.

Definition

- The topology \mathcal{T} is called the *quotient topology*.
- Equipped with this topology S/\sim is called the *quotient space* of S by \sim .

The Quotient Topology

Remarks

- A subset U ⊂ S/~ is open if and only if π⁻¹(U) is an open in S.
- 2 This implies that the projection map $\pi: S \to S/\sim$ is automatically continuous.
- The quotient topology is actually the strongest topology on S/\sim for which the map $\pi: S \to S/\sim$ is continuous.

Continuity of a Map on a Quotient

Continuity of a Map on a Quotient

Proposition (Proposition 7.1)

The induced map $\overline{f} : S/\sim \to Y$ is continuous if and only if the original map $f : S \to Y$ is continuous.

Corollary

A map $g: S/\sim \to Y$ is continuous if and only if the composition $g \circ \pi: S \to Y$ is continuous.

Indentification of a Subset to a Point

Fact

Let A be a subset of S. We can define an equivalence relation \sim on S by declaring:

$$x \sim x$$
 for all $x \in S$,
 $x \sim y$ for all $x, y \in A$.

In other words, if we let $\Delta = \{(x, x); x \in S\}$ be the diagonal of $S \times S$, then the graph of the relation is just

$$\mathscr{R} = \Delta \cup (A \times A).$$

It can be checked this is an equivalence relation.

Definition

We say that the quotient space S/\sim is obtained by *identifying* A to a point.

8 / 29

Identification of a Subset to a Point

Example

Let I be the unit interval [0,1] and I/\sim the quotient space by identifying 0, 1 to a point, i.e., by identifying 0 and 1.

- The equivalence classes consists of the singletons {t}, t ∈ (0,1), and the pair {0,1}.
- 2 Let $\mathbb{S}^1 \subset \mathbb{C}$ be the unit circle, and define $f : I \to \mathbb{S}^1$ by $f(t) = e^{2i\pi t}$. As f(0) = f(1) it induces a map $\overline{f} : I/\sim \to \mathbb{S}^1$.

3 The induced map $\overline{f}: I/\sim \to \mathbb{S}^1$ is continuous, since f is continuous.

Proposition (Proposition 7.3)

The induced map $\overline{f}: I/\sim \rightarrow \mathbb{S}^1$ is a homeomorphism.

A Necessary Condition for a Hausdorff Quotient

Facts

- If X is a Hausdorff topological space, then every singleton {x}, x ∈ X, is a closed set in X.
- If the quotient space S/\sim is Hausdorff, then every singleton $\{[x]\}, x \in S$, is closed in S/\sim . This means that the preimage $\pi^{-1}(\{[x]\}) = [x]$ is closed in S.

Proposition (Proposition 7.4)

If the quotient space S/\sim is Hausdorff, then all the equivalence classes [x], $x \in S$, are closed sets in S.

Consequence

If there is an equivalence class that is not a closed set, then the quotient space S/\sim is not Hausdorff.

10 / 29

A Necessary Condition for a Hausdorff Quotient

Example

Let \sim be the equivalence relation on $\mathbb R$ obtained by identifying the open interval $(0,\infty)$ to a point. Then:

- The equivalence class [1] is the whole interval $(0,\infty)$.
- As $(0,\infty)$ is a not a closed set in \mathbb{R} , the quotient space \mathbb{R}/\sim is not Hausdorff.

Open Equivalence Relations

Reminder

A map $f : X \to Y$ is open when the image of any open set in X is an open set in Y.

Definition

We say that an equivalence relation \sim on a topological space S is open when the projection $\pi: S \to S/\sim$ is an open map.

Remark

- If $A \subset S$, then $\pi(A)$ is open in S/\sim if and only if $\pi^{-1}(\pi(U)) = \bigcup_{x \in A}[x]$ is an open set in S.
- Thus, the equivalence relation ~ is open if and only if, for every open U in S, the set ∪_{x∈U}[x] is open in S.

Open Equivalence Relations

Example

Let \sim be the equivalence relation on $\mathbb R$ that identifies 1 and -1.

- We have $[x] = \{x\}$ for $x \neq \pm 1$ and $[-1] = [1] = \{\pm 1\}$.
- For the open interval (-2,0) we get

$$\bigcup_{x \in (-2,0)} [x] = \big(\bigcup_{\substack{x \in (-2,0) \\ x \neq -1}} [x]\big) \cup [-1] = (-2,0) \cup \{1\}.$$

• As $(-2,0) \cup \{1\}$ is not an open set, the equivalence relation \sim is not open.

Reminder

If \sim is an equivalence relation, then its graph is

$$\mathscr{R} = \{(x, y) \in S \times S; x \sim y\} \subset S \times S.$$

Theorem (Theorem 7.7)

Suppose that \sim is an open equivalence relation on a topological space S. Then the quotient space S/\sim is Hausdorff if and only if the graph \mathscr{R} of \sim is closed in $S \times S$.

Open Equivalence Relations

Example

Let \sim be the trivial equivalence relation $x \sim y \Leftrightarrow x = y$. Then:

- $[x] = \{x\}$ for all $x \in S$.
- The graph of \sim is just the diagonal,

$$\Delta = \{(x, x); x \in S\} \subset S \times S.$$

• If S is a topological space, then the projection map $\pi: S \to S/\sim$ is a homeomorphism.

Corollary (Corollary 7.8)

A topological space S is Hausdorff if and only if the diagonal Δ is closed in $S \times S$.

Open Equivalence Relations

Proposition (Proposition 7.9)

Suppose that \sim is an open equivalence relation on S. If $\{U_{\alpha}\}$ is a basis for the topology of S, then $\{\pi(U_{\alpha})\}$ is a basis for the quotient topology on S/\sim .

Corollary (Corollary 7.10)

If \sim is an open equivalence relation on S, and S is second countable, then the quotient space S/\sim is second countable.

Real Projective Space

Definition

The *real projective space* $\mathbb{R}P^n$ is the quotient space $(\mathbb{R}^{n+1} \setminus 0)/\sim$.

Remarks

- $\bullet \quad \text{We denote by } [a^0,\ldots,a^n] \text{ the class of } (a^0,\ldots,a^n) \in \mathbb{R}^{n+1}/\!\!\sim.$
- **2** We call $[a^0, \ldots, a^n]$ homogeneous coordinates on $\mathbb{R}P^n$.
- **3** We also let $\pi : \mathbb{R}^{n+1} \setminus 0 \to \mathbb{R}P^n$ be the canonical projection.

Real Projective Space

Facts

• On Sⁿ⁺¹ we define an equivalence relation by

 $x \sim y \iff x = \pm y.$

- The restriction of the canonical projection $\pi_{|\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{R}P^n$ induces a continuous map $\overline{\pi} : \mathbb{S}^n / \sim \to \mathbb{R}P^n$.
- The continuous map $f : \mathbb{R}^{n+1} \setminus 0 \to \mathbb{S}^{n+1}$, $x \to \frac{x}{\|x\|}$ induces a continuous map $\overline{f} : \mathbb{R}P^n \to \mathbb{S}^n / \sim$.
- The maps $\overline{\pi}: \mathbb{S}^n/\sim \to \mathbb{R}P^n$ and $\overline{f}: \mathbb{R}P^n \to \mathbb{S}^n/\sim$ are inverses of each other.

Proposition (Exercise 7.11)

The real projective space $\mathbb{R}P^n$ is homeomorphic to the quotient space \mathbb{S}^n/\sim .

20 / 29

Real Projective Space

Example (Real projective line $\mathbb{R}P^1$; see also Example 7.12)

- If we regard as the unit circle \mathbb{S}^1 as a subset of \mathbb{C} , then the map $\mathbb{S}^1 \to \mathbb{S}^1$, $z \to z^2$ induces a continuous map $\mathbb{S}^1/\sim \to \mathbb{S}^1$.
- This is a continuous bijection between compact spaces, and hence this is a homeomorphism (by Corollary A.36).
- Here \mathbb{S}^1/\sim is compact, since this is the image of \mathbb{S}^1 by the canonical projection map $\mathbb{S}^1 \to \mathbb{S}^1/\sim$, which is continuous.
- We thus have a sequence of homeomorphisms,

$$\mathbb{R}P^1\simeq \mathbb{S}^1/\!\!\sim\simeq \mathbb{S}^1$$

Proposition (Proposition 7.14)

The equivalence relation \sim on $\mathbb{R}^{n+1} \setminus 0$ is an open equivalence relation.

Corollary (Corollary 7.15)

The real projective space $\mathbb{R}P^n$ is second countable.

Corollary (Corollary 7.16)

The real projective space $\mathbb{R}P^n$ is Hausdorff.

The Standard Differentiable Structure of $\mathbb{R}P^n$

Facts

• For $i = 0, \ldots, n$, define

$$U_i = \left\{ [a^0, \ldots, a^n] \in \mathbb{R}P^n; \ a^i \neq 0 \right\}.$$

- As the property aⁱ ≠ 0 remains unchanged when we replace (a⁰,..., aⁿ) by (ta⁰,..., taⁿ) with t ≠ 0, we see that U_i is well defined.
- We have $\pi^{-1}(U_i) = \pi^{-1}(ilde U_i)$, where

$$ilde{U}_i = \left\{ (a^0, \ldots, a^n) \in \mathbb{R}^{n+1} \setminus 0; \, \, a^i
eq 0
ight\}.$$

• As \tilde{U}_i is an open set in $\mathbb{R}^{n+1} \setminus 0$, this shows that U_i is an open set in $\mathbb{R}P^n$.

The Standard Differentiable Structure of $\mathbb{R}P^n$

Facts
• Define
$$\tilde{\phi}_i : \tilde{U}_i \to \mathbb{R}^n$$
 by
 $\tilde{\phi}_i(a^0, \dots, a^n) = \left(\frac{a^0}{a^i}, \dots, \frac{a^{i-1}}{a^i}, \frac{a^{i+1}}{a^i}, \dots, \frac{a^n}{a^i}\right).$
• As $\tilde{\phi}_i(ta^0, \dots, ta^n) = \tilde{\phi}_i(a^0, \dots, a^n)$ for all $t \neq 0$, the map $\tilde{\phi}_i$
induces a map $\phi_i : U_i \to \mathbb{R}^n$ such that
 $\phi\left([a^0, \dots, a^n]\right) = \tilde{\phi}_i(a^0, \dots, a^n),$
 $= \left(\frac{a^0}{a^i}, \dots, \frac{a^{i-1}}{a^i}, \frac{a^{i+1}}{a^i}, \dots, \frac{a^n}{a^i}\right).$
• As $\tilde{\phi}_i : \tilde{U}_i \to \mathbb{R}^n$ is a continuous map, the induced map
 $\phi_i : U_i \to \mathbb{R}^n$ is continuous as well.

24 / 29

The Standard Differentiable Structure of $\mathbb{R}P^n$

Facts

• The map $\phi_i : U_i \to \mathbb{R}^n$ is a bijection with inverse $\psi_i : \mathbb{R}^n \to U_j$, where

$$\psi_i(x^1,\ldots,x^n) = [x^1,\ldots,x^i,1,x^{i+1},\ldots,x^n].$$

• The inverse map $\psi_i = \phi_i^{-1}$ is continuous, since $\psi_i = \pi \circ \tilde{\psi}_i$, where $\tilde{\psi}_i : \mathbb{R}^n \to \tilde{U}_i$ is the continuous map given by

$$\tilde{\psi}_i(x^1,\ldots,x^n)=(x^0,\ldots,x^i,1,x^{i+1},\ldots,x^n)$$

• Thus, the map $\phi_i : U_i \to \mathbb{R}^n$ is a homeomorphism.

The Standard Differentiable Structure of $\mathbb{R}P^n$

Facts

• We have

$$egin{aligned} &\phi_0(U_0\cap U_1)=\left\{\left(rac{a^1}{a^0},\ldots,rac{a^n}{a^0}
ight);a^j\in\mathbb{R},\ a^0
eq 0,\ a^1
eq 0
ight\}\ &=\left\{(x^1,\ldots,x^n)\in\mathbb{R}^n;\ x^1
eq 0
ight\}. \end{aligned}$$

• The transition map $\phi_1 \circ \phi_0^{-1} : \phi_0(U_0 \cap U_1) \to \mathbb{R}^n$ is given by

$$\phi_0 \circ \phi_1^{-1}(x^1, \dots, x^n) = \phi_0 \left([1, x^1, \dots, x^n] \right),$$
$$= \left(\frac{1}{x^1}, \frac{x^2}{x^1}, \dots, \frac{x^n}{x^1} \right).$$

In particular, this is a C^{∞} map.

• It can be similarly shown that all the other transition maps $\phi_i \circ \phi_j^{-1} : \phi_j(U_i \cap U_j) \to \mathbb{R}^n$ are C^{∞} maps.

The Standard Differentiable Structure of $\mathbb{R}P^n$

Conclusion

The collection $\{(U_i, \phi_i)\}_{i=0}^n$ is a C^∞ atlas for $\mathbb{R}P^n$, and so $\mathbb{R}P^n$ is a smooth manifold.

Definition

The differentiable structure defined by the atlas $\{(U_i, \phi_i)\}_{i=0}^n$ is called the *standard differentiable structure* of $\mathbb{R}P^n$.

26 / 29

Complex Projective Space

Facts

We also define complex projective spaces.

• On \mathbb{C}^{n+1} consider the equivalence relation

 $x \sim y \iff \exists \lambda \in \mathbb{C} \setminus 0 \text{ such that } x = \lambda y.$

In other words $x \sim y$ if and only if x and y lie on the same complex line through the origin.

- The equivalence classes are the complex lines through the origin (minus the origin).
- The complex projective space CPⁿ is the quotient space (Cⁿ⁺¹ \ 0)/~.
- The class of a = (a⁰,..., aⁿ) is denoted [a⁰,..., aⁿ]. We call [a⁰,..., aⁿ] homogeneous coordinates.
- The space $\mathbb{C}P^n$ is Hausdorff and 2nd countable.

Differentiable Structure on $\mathbb{C}P^n$

Facts

• For $i = 1, \ldots, n$, define

$$U_i=\left\{[a^0,\ldots,a^n];\;(a^0,\ldots,a^n)\in\mathbb{C}^{n+1}\setminus0,\;a^i
eq0
ight\}.$$

This is an open set in $\mathbb{C}P^n$.

• Define $\phi_i: U_i \to \mathbb{C}^n$ by

$$\phi_i\left([a^0,\ldots,a^n]\right) = \left(\frac{a^0}{a^i},\ldots,\frac{a^{i-1}}{a^i},\frac{a^{i+1}}{a^i},\ldots,\frac{a^n}{a^i}\right).$$

This is a homeomorphism from U_i on \mathbb{C}^n . It has inverse

$$\psi_i(z^1,\ldots,z^n)=(z^1,\ldots,z^i,1,z^{i+1},\ldots,z^n)$$

- The transition maps $\phi_i \circ \phi_j^{-1}$ are C^{∞} maps (they even are holomorphic maps).
- Thus, {(U_i, φ_i)}ⁿ_{i=1} is a C[∞] atlas for ℂPⁿ, and so the complex projective space ℂPⁿ is a manifold.

Submanifolds

Definition (Regular Submanifold)

Given a manifold N of dimension, a subset $S \subset N$ is called a *regular submanifold* of dimension k if, for every $p \in S$, there is a chart (U, x^1, \ldots, x^n) about p in N such that

$$U\cap S=\left\{q\in U; x^{k+1}(q)=\cdots=x^n(q)=0
ight\}.$$

Remarks

- A chart $(U, x^1, ..., x^n)$ as above is called an *adapted chart* relative to *S*.
- **2** We call n k the *codimension* of *S*.
- We always assume that S is equipped with the induced topology.
- There are other types of submanifold. By a submanifold we shall always mean a regular submanifold.

Submanifolds

Remark

Let $S \subset N$ be a regular submanifold of dimension k, and $(U, \phi) = (U, x^1, ..., x^n)$ be an adapted chart relative to S.

- We have $\phi = (x^1, \ldots, x^k, 0, \ldots, 0)$ on $U \cap S$.
- Define $\phi_S: U \cap S \to \mathbb{R}^k$ by

$$\phi(q) = (x^1(q), \dots, x^k(q)), \qquad q \in U \cap S.$$

Then ϕ_S is a homeomorphism from $U \cap S$ onto its image

• Let (r^1, \ldots, r^n) be the coordinates in \mathbb{R}^n . We have

$$\phi_{\mathcal{S}}(U\cap \mathcal{S})\times\{0\}^{n-k}=\phi(U\cap \mathcal{S})=\phi(U)\cap\{r^{k+1}=\cdots=r^n=0\}.$$

Thus, $\phi_S(U \cap S) \times \{0\}^{n-k}$ is open in \mathbb{R}^k) $\times \{0\}^{n-k}$, and hence $\phi_S(U \cap S)$ is an open in \mathbb{R}^k .

• It then follows that (U, ϕ_S) is a (topological) chart for S.

2/16

Submanifolds

Example

Any open set $U \subset N$ is a regular submanifold of codimension 0.

Example

- The open interval S = (-1, 1) on the x-axis is a regular submanifold of dimension 1 of the xy-plane.
- An adapted chart is (U, x, y), with $U = (-1, 1) \times (-1, 1)$, since

$$U \cap \{y = 0\} = (-1, 1) \times \{0\} = S.$$

Submanifolds

Facts

Let $(U, \phi) = (U, x^1, ..., x^n)$ and $(V, \psi) = (V, y^1, ..., y^n)$ be adapted charts relative to S about a point $p \in S$. Denote by $(r^1, ..., r^n)$ the coordinates in $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$.

• On $U \cap V \cap S$ we have

$$\phi = (x^1, \dots, x^k, 0, \dots, 0) = (\phi_S, 0, \dots, 0),$$

$$\psi = (y^1, \dots, y^k, 0, \dots, 0) = (\psi_S, 0, \dots, 0).$$

• Thus, on $\phi(U \cap V \cap S) = \phi_S(U \cap V \cap S) \times \{0\}^{n-k}$ we have $\psi \circ \phi^{-1}(r^1, \ldots, r^k, 0, \ldots, 0) = (\psi_S \circ \phi_S^{-1}(r^1, \ldots, r^k), 0, \ldots, 0).$

• As
$$\psi \circ \phi^{-1} = (y^1 \circ \phi^{-1}, \dots, y^n \circ \phi^{-1})$$
, we get

 $\psi_{S} \circ \phi_{S}^{-1} = (z^{1}, \dots, z^{k}), \text{ where } z^{i} = y^{i} \circ \phi^{-1}(r^{1}, \dots, r^{k}, 0, \dots, 0).$

In particular, the transition map $\psi_{S} \circ \phi_{S}^{-1}$ is smooth.

4/16

Proposition (Proposition 9.4)

Let S be a regular submanifold of dimension k in a manifold N of dimension n. Let $\{(U, \phi)\}$ be a collection of adapted charts relative to S that covers S. Then:

• The collection $\{(U \cap S, \phi_S)\}$ is a C^{∞} atlas for S.

2 S is a manifold of dimension k.

Remark

It can be shown that the differentiable structure on S defined above is unique, i.e., it does not depend on the choice of the collection $\{(U, \phi)\}$.

Level Sets of a Function

Definition

- Given F : N → M and c ∈ M, the preimage F⁻¹(c) is called a *level set* of level c.
- When N = ℝⁿ we call F⁻¹(0) the zero set of F and denote it by Z(F).

Reminder

If $F: N \to M$ is a smooth map, then we say that c is a regular value when, either $c \notin F(M)$, or for every point $p \in F^{-1}(c)$ the differential $F_{*,p}: T_pM \to T_cN$ is onto.

Definition

Let $F: N \to M$ be a smooth map, and let $c \in M$.

- If c is a regular value, then $F^{-1}(c)$ is called a *regular level set*.
- If $N = \mathbb{R}^n$ and 0 is a regular value, then we say that Z(F) is a regular zero set.

Remark

Let $f : N \to \mathbb{R}$ be a smooth function.

- If $p \in N$, then $f_{*,p} : T_p M \to T_{f(p)} R \simeq \mathbb{R}$ is onto if and only if it is non-zero.
- If $c \in f(M)$, then $f^{-1}(c)$ is a regular level set if and only if $f_{*,p} \neq 0$ for all $p \in f^{-1}(c)$.

Level Sets of a Function

Example (Example 9.6; the 2-sphere in \mathbb{R}^3)

• The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$ is the zero set of the function,

$$f(x, y, z) = x^2 + y^2 + z^2 - 1$$

• For every $p = (x, y, z) \in \mathbb{S}^2$ we have

$$\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p)\right) = (2x, 2y, 2z) \neq 0.$$

Therefore, \mathbb{S}^2 is a regular zero set.

Level Sets of a Function

Example (The 2-sphere in \mathbb{R}^3 ; continued)

- Suppose that p = (x(p), y(p), z(p)) is such that x₀ ≠ 0. It can be checked that the map F = (f, y, z) has a non-zero Jacobian determinant at p.
- By Corollary 6.27 (consequence of the inverse function theorem) there is an open U about p such that
 (U, F_{|U}) = (U, f_{|U}, y_{|U}, z_{|U}) is a chart about p in ℝ³.
- Set $u^1 = y_{|U}$, $u^2 = z_{|U}$, and $u^3 = f_{|U}$. Then (U, u^1, u^2, u^3) is a chart about p in \mathbb{R}^3 , and we have

$${u^3 = 0} = {f_{|U} = 0} = U \cap {f = 0} = U \cap \mathbb{S}^2.$$

Thus, (U, u^1, u^2, u^3) is an adapted chart relative to \mathbb{S}^2 .

- Similarly, if y(p) ≠ 0 or z(p) ≠ 0, then there is an adapted chart about p.
- Thus, $\mathbb{S}^2 \subset \mathbb{R}^3$ is a regular submanifold of codimension 1.

10 / 16

Level Sets of a Function

More generally, we have the following result:

Theorem (Theorem 9.8)

Let $g: N \to \mathbb{R}$ be a smooth function. Any non-empty regular level set $g^{-1}(c)$ is a regular submanifold of codimension 1.

Remark

A codimension 1 submanifold is called a *hypersurface*.

Example (Example 9.11)

Let S be the solution set of $x^3 + y^3 + z^3 = 1$ in \mathbb{R}^3 .

- S is the zero set of $f(x, y, z) = x^3 + y^3 + z^3 1$.
- If $p = (x, y, z) \in S$, then

$$\left(\frac{\partial f}{\partial x}(p),\frac{\partial f}{\partial y}(p),\frac{\partial f}{\partial z}(p)\right) = \left(3x^2,3y^2,3z^2\right) \neq 0.$$

Thus, every $p \in S$ is a regular point.

• Therefore, S is a regular zero set, and hence is a regular hypersurface.

Level Sets of a Function

Example (Example 9.13; Special Linear Group)

• Let $\mathbb{R}^{n \times n}$ be the vector space of $n \times n$ matrices with real entries. The general linear group is

$$\operatorname{GL}(n,\mathbb{R}) = \left\{ A \in \mathbb{R}^{n \times n}; \operatorname{det} A \neq 0 \right\}.$$

This an open set in $\mathbb{R}^{n \times n}$, and hence is a manifold of dimension n^2 .

• The special linear group is

 $\mathsf{SL}(n,\mathbb{R}) = \{A \in \mathsf{GL}(n,\mathbb{R}); \det A = 1\}.$

This is the level set $f^{-1}(1)$ of the function $f(A) = \det A$.

Example (Special Linear Group, continued)

• If $A = [a_{ij}] \in GL(n, \mathbb{R})$ and $m_{ij} = \det S_{ij}$ is the (i, j)-minor, then

$$rac{\partial f}{\mathsf{a}_{ij}} = (-1)^{i+j} \mathsf{m}_{ij}.$$

- If A ∈ GL(n, ℝ), then at least one minor is non-zero, and so A is a regular point of f.
- In particular, every $A \in SL(n, \mathbb{R})$ is a regular point.
- Therefore, $SL(n, \mathbb{R})$ is a regular level set, and hence is a regular hypersurface in $GL(n, \mathbb{R})$.

The Regular Level Set Theorem

Even more generally we have:

Theorem (Regular Level Set Theorem; Theorem 9.9)

Let $F : N \to M$ be a C^{∞} map. Any non-empty regular level set $F^{-1}(c)$ is a regular submanifold of codimension equal to dim M.

The Regular Level Set Theorem

Example (Example 9.12)

Let S be the solution set in \mathbb{R}^3 of the polynomial equations,

$$x^3 + y^3 + z^3 = 1$$
, $x + y + z = 0$.

• By definition S is the level set $F^{-1}(1,0)$, where $F : \mathbb{R}^3 \to \mathbb{R}^2$ is the smooth function given by

$$F(x, y, z) = (x^3 + y^3 + z^3, x + y + z).$$

• The Jacobian matrix of F is

$$J(F) = \begin{bmatrix} 3x^2 & 3y^2 & 3z^2 \\ 1 & 1 & 1 \end{bmatrix}$$

It has rank 2 unless $x^2 = y^2 = z^2$, i.e., $x = \pm y = \pm z$.

- For such a point F(x, y, z) = λ(x³, x) ≠ (1,0), so all the points of S are regular points.
- Thus, S is a regular level set of F, and hence is a regular submanifold of codimension 2.

16 / 16