## Smooth Functions on a Manifold

### Definition (Smooth functions)

Let M be a manifold of dimension n.

- A function f : M → ℝ is said to be C<sup>∞</sup> or smooth at a point p ∈ M when there is a chart (U, φ) about p in M such that the function f ∘ φ<sup>-1</sup> : φ(U) → ℝ is C<sup>∞</sup> at φ(p) (here φ(U) is an open subset of ℝ<sup>n</sup>).
- We say that f is  $C^{\infty}$  on M when it is  $C^{\infty}$  at every point of M.



## Smooth Functions on a Manifold

### Remark

- The smoothness condition is independent of the choice of the chart (U, φ).
- If (V, ψ) is another chart about p and f ∘ φ<sup>-1</sup> is C<sup>∞</sup>, then f ∘ ψ<sup>-1</sup> = (f ∘ φ<sup>-1</sup>) ∘ (φ ∘ ψ<sup>-1</sup>) is C<sup>∞</sup> at p as well, since the transition map φ ∘ ψ<sup>-1</sup> is a C<sup>∞</sup>.

### Remark

- If a function  $f : M \to \mathbb{R}$  is  $C^{\infty}$  at p, then it is automatically continuous at p.
- If (U, φ) is a chart about p and f ∘ φ<sup>-1</sup> is C<sup>∞</sup> at φ(p), then f = (f ∘ φ<sup>-1</sup>) ∘ φ is continuous at p, since φ is a continuous map.
- Therefore, any  $C^{\infty}$ -function on M is continuous.

### Proposition (Proposition 6.3)

Let  $f : M \to \mathbb{R}$  be a function. Then TFAE:

- f is  $C^{\infty}$  on M.
- **2** For every chart  $(U, \phi)$  on M, the function  $f \circ \phi^{-1} : \phi(U) \to \mathbb{R}$  is  $C^{\infty}$ .

## Smooth Maps Between Manifolds

In what follows M is a manifold of dimension m and N is a manifold of dimension n.

### Definition (Smooth maps between manifolds)

Let  $F: N \to M$  be a continuous map.

- We say that F is C<sup>∞</sup> or smooth at p ∈ N when there are a chart (U, φ) about p in N and a chart (V, ψ) about F(p) on N such that the map ψ ∘ F ∘ φ<sup>-1</sup> : φ(F<sup>-1</sup>(V) ∩ U) → ℝ<sup>m</sup> is C<sup>∞</sup> at φ(p) (here φ(F<sup>-1</sup>(V) ∩ U) is an open set in ℝ<sup>n</sup>).
- Then map F is  $C^{\infty}$  on N when it is  $C^{\infty}$  at every point  $p \in N$ .



### Remark

- We assume  $F: N \to M$  to be continuous to ensure that  $F^{-1}(V)$  is an open set in N.
- When  $M = \mathbb{R}^m$  the continuity assumption can be dropped.

### Proposition (Remark 6.6)

A map  $F : N \to N$  is  $C^{\infty}$  at p if and only if there is a chart  $(U, \phi)$ about p in N such that the map  $F \circ \phi^{-1} : \phi(U) \to \mathbb{R}^m$  is  $C^{\infty}$  at p (here  $\phi(U)$  is an open set in  $\mathbb{R}^n$ ).

## Smooth Maps Between Manifolds

### Proposition (Proposition 6.7)

Suppose that  $F : N \to M$  is  $C^{\infty}$  at p. Then, for every chart  $(U, \phi)$ about p in N and every chart  $(V, \psi)$  about F(p) in M, the map  $\psi \circ F \circ \phi^{-1} : \phi(F^{-1}(V) \cap U) \to \mathbb{R}^m$  is  $C^{\infty}$  at  $\phi(p)$ .

### Proposition (Proposition 6.8)

Let  $F : N \rightarrow M$  be a continuous map. TFAE:

- F is a  $C^{\infty}$  map.
- <sup>2</sup> For every chart  $(U, \phi)$  on N and every chart  $(V, \psi)$  on M, the map  $\psi \circ F \circ \phi^{-1}$ :  $\phi(F^{-1}(V) \cap U) \rightarrow \mathbb{R}^m$  is C<sup>∞</sup>.

### Proposition (Proposition 6.9; Composition of $C^{\infty}$ maps)

If  $F : N \to M$  and  $G : P \to N$  are  $C^{\infty}$  maps (where P is a manifold), then the composition  $F \circ G : P \to M$  is a  $C^{\infty}$  map.

## Diffeomorphisms

### Definition

We say that a map  $F : N \to M$  is a *diffeomorphism* when it is a bijective  $C^{\infty}$  map with  $C^{\infty}$  inverse  $F^{-1}$ .

### Proposition (Proposition 6.10)

If  $(U, \phi)$  is a chart on M, then the coordinate map  $\phi : U \to \phi(U) \subset \mathbb{R}^m$  is a diffeomorphism.

### Proposition (Proposition 6.11)

Let U be an open subset of M. If  $F : U \to F(U) \subset \mathbb{R}^n$  is a diffeomorphism onto an open subset of  $\mathbb{R}^m$ , then the pair (U, F) is a chart on M.

### Proposition (Propositions 6.12 & 6.13)

Let  $F : N \to \mathbb{R}^m$  be a map with components  $F^1, \ldots, F^m : N \to \mathbb{R}$ (so that  $F(p) = (F^1(p), \ldots, F^n(p))$ ). Then TFAE:

- F is a  $C^{\infty}$ -map.
- 2 For every chart  $(U, \phi)$  on N, the map  $F \circ \phi^{-1} : \phi(U) \to \mathbb{R}^m$  is  $C^{\infty}$ .
- **3** All the components  $F^1, \ldots, F^m : N \to \mathbb{R}$  are  $C^{\infty}$  maps

### Remark

We don't need to assume F to be continuous, since the 2nd and 3rd properties both imply that F is continuous.

## Smoothness in Terms of Components

### Proposition (Propositions 6.15 & 6.16)

Let  $F : N \rightarrow M$  be a continuous map. Then TFAE:

- F is a  $C^{\infty}$  map.
- **2** For every chart  $(V, \psi)$  on M the vector-valued function  $\psi \circ F : F^{-1}(V) \to \mathbb{R}^m$  is  $C^{\infty}$ .
- So For very chart  $(V, \psi) = (V, y^1, \dots, y^n)$  the component functions  $y^i \circ F : F^{-1}(V) \to \mathbb{R}^m$  are  $C^\infty$ .

### Remark

We assume F to be continuous to insure that in the 2nd and 3rd properties  $F^{-1}(V)$  is an open subset of  $\mathbb{R}^n$ .

### Example (Example 6.17 + Exercise 6.18)

Let  $M_1$  and  $M_2$  be manifolds.

- The 1st factor projection  $\pi_1 : M_1 \times M_2 \to M_1$ ,  $\pi_1(p_1, p_2) = p_1$  is a  $C^{\infty}$  map. Likewise, the 2nd factor projection  $\pi_2 : M_1 \times M_2 \to M_2$  is a smooth map.
- ② Given a manifold N, a map  $f: N → M_1 × M_2$  is C<sup>∞</sup> if and only if the components  $\pi_i \circ f: N → M_i$  are C<sup>∞</sup> maps.

## Examples of Smooth Maps

### Example (Example 6.19)

Let  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$  be the unit sphere. If  $f : \mathbb{R}^{n+1} \to \mathbb{R}$  is a  $C^{\infty}$  function, then the restriction  $f_{|\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{R}$  is a  $C^{\infty}$  function on  $\mathbb{S}^n$ .

## Examples of Smooth Maps



A *Lie group* is a group G equipped equipped with a differentiable structure such that:

- (i) The multiplication map  $\mu: G \times G \to G$ ,  $(x, y) \to xy$  is a  $C^{\infty}$  map.
- (ii) The inverse map  $\iota: G \to G$ ,  $x \to x^{-1}$  is a  $C^{\infty}$  map.

### Examples

- The Euclidean spaces ℝ<sup>n</sup> and ℂ<sup>n</sup> are Lie groups under addition.
- ② The set of non-zero complex numbers C<sup>×</sup> := C \ 0 is a Lie group under multiplication.
- **3** The unit circle  $\mathbb{S}^1 \subset \mathbb{C}^{\times}$  is a Lie group under multiplication.
- If  $G_1$  and  $G_2$  are Lie groups, then their Cartesian product  $G_1 \times G_2$  is again a Lie group.

## Examples of Smooth Maps

### Example (Example 6.21; see Tu's book)

We saw in Section 5 that the general groups  $GL(n, \mathbb{R})$  and  $GL(n, \mathbb{C})$  are manifolds. They are also Lie groups under multiplication of matrices.

### Remark

Further examples of Lie groups are studied in Section 15.

14 / 23

## Partial Derivatives

In what follows M is a manifold of dimension n.

### Reminder

If  $(U, \phi) = (U, x^1, ..., x^n)$  a chart on M, then by definition the components  $x^1, ..., x^n$  of  $\phi$  are given by  $x^i = r^i \circ \phi : U \to \mathbb{R}$ .

### Definition

Let  $f: M \to \mathbb{R}$  be a  $C^{\infty}$  function. For  $p \in U$  the partial derivative of f with respect to  $x^i$  at p is

$$rac{\partial f}{\partial x^i}(p) := rac{\partial (f \circ \phi^{-1})}{\partial r^i} \left( \phi(p) 
ight).$$

### Remark

The partial derivative  $\frac{\partial f}{\partial x^i}(p)$  is also denoted  $\frac{\partial}{\partial x^i}\Big|_p f$ .

## Partial Derivatives

### Remark

As  $\phi^{-1}(\phi(p))$  the equality  $\frac{\partial f}{\partial x^i}(p) = \frac{\partial (f \circ \phi^{-1})}{\partial r^i}(\phi(p))$  can be rewritten as

$$rac{\partial f}{\partial x^i} \circ \phi^{-1}\left(\phi(p)
ight) = rac{\partial (f \circ \phi^{-1})}{\partial r^i}\left(\phi(p)
ight).$$

Thus, as functions on  $\phi(U)$  we have

$$\frac{\partial f}{\partial x^{i}} \circ \phi^{-1} = \frac{\partial (f \circ \phi^{-1})}{\partial r^{i}}.$$

In particular, this shows that  $\frac{\partial f}{\partial x^i}: U \to \mathbb{R}$  is  $C^{\infty}$  function on U.

Proposition (Proposition 6.22)

If  $(U, x^1, ..., x^n)$  is a chart on M, then  $\frac{\partial x^i}{\partial x^j} = \delta^i_j$ .

## Partial Derivatives

In what follows M is a manifold of dimension m and N is a manifold of dimension n.

### Definition (Jacobian matrices and Jacobian determinants)

Let  $F: M \to N$  be a  $C^{\infty}$  map. Let  $(U, \phi) = (U, x^1, \dots, x^n)$  be a chart on N and  $(V, \psi) = (V, y^1, \dots, y^n)$  a chart on M such that  $F(U) \subset V$ . Denote  $F^i := y^i \circ F = r^i \circ \psi \circ F : U \to \mathbb{R}$  the *i*-th component of F in the chart  $(V, \psi)$ .

- The matrix  $\left[\partial F^i / \partial x^j\right]$  is called the *Jacobian matrix* of *F* relative to the charts  $(U, \phi)$  and  $(V, \psi)$ .
- 2 When m = n the determinant det  $\left[\partial F^i / \partial x^j\right]$  is called the *Jacobian determinant* of *F* relative to the charts.

### Remark

The Jacobian determinant is also denoted  $\partial(F^1, \ldots, F^n) / \partial(x^1, \ldots, x^n)$ .

### Remark

If N = U is an open subset of  $\mathbb{R}^n$  and M = V is an open subset of  $\mathbb{R}^m$ , and we use the charts  $(U, r^1, \ldots, r^n)$  and  $(V, r^1, \ldots, r^m)$ , then the Jacobian matrix  $\left[\partial F^i / \partial r^j\right]$  is the usual Jacobian matrix from calculus.

### Example (Example 6.24; Jacobian matrix of a transition map)

Let  $(U, \phi) = (U, x^1, ..., x^n)$  and  $(V, \psi) = (V, y^1, ..., y^n)$  be overlapping charts on N. The transition map  $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$  is a diffeomorphism between open subsets of  $\mathbb{R}^n$ . Given any  $p \in U \cap V$ , we have

$$rac{\partial y^i}{\partial x^j}(p) = rac{(\psi \circ \phi^{-1})^i}{\partial r^j} \left( \phi(p) 
ight).$$

18 / 23

## The Inverse Function Theorem

In what follows M and N are manifolds of dimension n.

### Reminder

By Proposition 6.11, given an open  $U \subset M$ , any diffeomorphism  $F : U \subset F(U) \subset \mathbb{R}^n$  defines a coordinate system on U, i.e., (U, F) is a chart on M.

### Definition

We say that a  $C^{\infty}$  map  $F : N \to M$  is *locally invertible* or is *local diffeomorphism* near  $p \in N$  if there is an open neighborhood U of p in N such that  $F_{|U} : U \to F(U)$  is a diffeomorphism.

### Remark

If  $F = (F^1, \ldots, F^n) : N \to \mathbb{R}^n$  is locally invertible near  $p \in N$ , then it defines a coordinate system about p.

## The Inverse Function Theorem

# Theorem (Theorem 6.25, Inverse Function Theorem for $\mathbb{R}^n$ ; see also Appendix B)

Let  $F = (F^1, ..., F^n) : W \to \mathbb{R}^n$  be a  $C^{\infty}$ -map, where W is an open set in  $\mathbb{R}^n$ . Given any  $p \in W$ , TFAE:

- (i) F is locally invertible near p.
- (ii) The Jacobian determinant det[ $\partial F^i / \partial x^j(p)$ ] is non-zero.

## The Inverse Function Theorem

Theorem (Theorem 6.26, Inverse Function Theorem for manifolds)

Let  $F : N \to M$  be a  $C^{\infty}$ -map. Given any  $p \in N$ , TFAE:

(i) F is locally invertible near p.

(ii) We have a non-zero Jacobian determinant det[ $\partial F^i / \partial x^j(p)$ ].

### Remarks

- In (ii) the Jacobian determinant det[∂F<sup>i</sup>/∂x<sup>j</sup>(p)] relatively to some chart (U, x<sup>1</sup>,...,x<sup>n</sup>) about p in N and some chart (V, y<sup>1</sup>,...,y<sup>n</sup>) about F(p) in M and we have F<sup>i</sup> = y<sup>i</sup> ∘ F.
- ② The condition det[ $\partial F^i / \partial x^j(p)$ ] ≠ 0 is independent of the choice of the charts.

## The Inverse Function Theorem



**Fig. 6.4.** The map *F* is locally invertible at *p* because  $\psi \circ F \circ \phi^{-1}$  is locally invertible at  $\phi(p)$ .

### Corollary (Corollary 6.27)

Let  $F = (F^1, ..., F^n) : U \to \mathbb{R}^n$  be  $C^{\infty}$  map on a neighborhood U of a point p in N. TFAE:

- $F = (F^1, \ldots, F^n)$  defines a coordinate system near p.
- 2 det $[\partial F^i/\partial x^j(p)] \neq 0.$