
Smooth Functions on a Manifold

Definition (Smooth functions)

Let M be a manifold of dimension n.

A function f : M → R is said to be C∞ or smooth at a point
p ∈ M when there is a chart (U, φ) about p in M such that
the function f ◦ φ−1 : φ(U)→ R is C∞ at φ(p) (here φ(U) is
an open subset of Rn).

We say that f is C∞ on M when it is C∞ at every point of M.
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§6 Smooth Maps on a Manifold

Now that we have defined smooth manifolds, it is time to consider maps between
them. Using coordinate charts, one can transfer the notion of smooth maps from
Euclidean spaces to manifolds. By the C∞ compatibility of charts in an atlas, the
smoothness of a map turns out to be independent of the choice of charts and is there-
fore well defined. We give various criteria for the smoothness of a map as well as
examples of smooth maps.

Next we transfer the notion of partial derivatives from Euclidean space to a co-
ordinate chart on a manifold. Partial derivatives relative to coordinate charts allow
us to generalize the inverse function theorem to manifolds. Using the inverse func-
tion theorem, we formulate a criterion for a set of smooth functions to serve as local
coordinates near a point.

6.1 Smooth Functions on a Manifold
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Fig. 6.1. Checking that a function f is C∞ at p by pulling back to Rn.

Definition 6.1. Let M be a smooth manifold of dimension n. A function f : M→R
is said to be C∞ or smooth at a point p in M if there is a chart (U,φ) about p in M

such that f ◦ φ−1, a function defined on the open subset φ(U) of Rn, is C∞ at φ(p)
(see Figure 6.1). The function f is said to be C∞ on M if it is C∞ at every point of M.

Remark 6.2. The definition of the smoothness of a function f at a point is indepen-
dent of the chart (U,φ), for if f ◦ φ−1 is C∞ at φ(p) and (V,ψ) is any other chart
about p in M, then on ψ(U ∩V ),

f ◦ ψ−1 = ( f ◦ φ−1) ◦ (φ ◦ ψ−1),

which is C∞ at ψ(p) (see Figure 6.2).

2 / 23

Smooth Functions on a Manifold

Remark

The smoothness condition is independent of the choice of the
chart (U, φ).

If (V , ψ) is another chart about p and f ◦ φ−1 is C∞, then
f ◦ ψ−1 = (f ◦ φ−1) ◦ (φ ◦ ψ−1) is C∞ at p as well, since the
transition map φ ◦ ψ−1 is a C∞.

Remark

If a function f : M → R is C∞ at p, then it is automatically
continuous at p.

If (U, φ) is a chart about p and f ◦ φ−1 is C∞ at φ(p), then
f = (f ◦ φ−1) ◦ φ is continuous at p, since φ is a continuous
map.

Therefore, any C∞-function on M is continuous.
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Smooth Functions on a Manifold

Proposition (Proposition 6.3)

Let f : M → R be a function. Then TFAE:

1 f is C∞ on M.

2 For every chart (U, φ) on M, the function f ◦ φ−1 : φ(U)→ R
is C∞.
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Smooth Maps Between Manifolds

In what follows M is a manifold of dimension m and N is a
manifold of dimension n.

Definition (Smooth maps between manifolds)

Let F : N → M be a continuous map.

We say that F is C∞ or smooth at p ∈ N when there are a
chart (U, φ) about p in N and a chart (V , ψ) about F (p) on
N such that the map ψ ◦ F ◦ φ−1 : φ(F−1(V ) ∩ U)→ Rm is
C∞ at φ(p) (here φ(F−1(V ) ∩ U) is an open set in Rn).

Then map F is C∞ on N when it is C∞ at every point p ∈ N.
60 §6 Smooth Maps on a Manifold
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Fig. 6.2. Checking that a function f is C∞ at p via two charts.

In Definition 6.1, f : M→ R is not assumed to be continuous. However, if f is
C∞ at p ∈M, then f ◦ φ−1 : φ(U)→ R, being a C∞ function at the point φ(p) in an
open subset of Rn, is continuous at φ(p). As a composite of continuous functions,
f = ( f ◦ φ−1) ◦ φ is continuous at p. Since we are interested only in functions that
are smooth on an open set, there is no loss of generality in assuming at the outset that
f is continuous.

Proposition 6.3 (Smoothness of a real-valued function). Let M be a manifold of

dimension n, and f : M→ R a real-valued function on M. The following are equiv-
alent:

(i) The function f : M→ R is C∞.

(ii) The manifold M has an atlas such that for every chart (U,φ) in the atlas,
f ◦ φ−1 : Rn ⊃ φ(U)→ R is C∞.

(iii) For every chart (V,ψ) on M, the function f ◦ ψ−1 : Rn ⊃ ψ(V )→ R is C∞.

Proof. We will prove the proposition as a cyclic chain of implications.
(ii) ⇒ (i): This follows directly from the definition of a C∞ function, since by (ii)
every point p ∈M has a coordinate neighborhood (U,φ) such that f ◦ φ−1 is C∞ at
φ(p).
(i) ⇒ (iii): Let (V,ψ) be an arbitrary chart on M and let p ∈ V . By Remark 6.2,
f ◦ ψ−1 is C∞ at ψ(p). Since p was an arbitrary point of V , f ◦ ψ−1 is C∞ on ψ(V ).
(iii)⇒ (ii): Obvious. '(

The smoothness conditions of Proposition 6.3 will be a recurrent motif through-
out the book: to prove the smoothness of an object, it is sufficient that a smoothness
criterion hold on the charts of some atlas. Once the object is shown to be smooth, it
then follows that the same smoothness criterion holds on every chart on the manifold.

Definition 6.4. Let F : N→M be a map and h a function on M. The pullback of h
by F , denoted by F∗h, is the composite function h ◦ F .

In this terminology, a function f on M is C∞ on a chart (U,φ) if and only if its
pullback (φ−1)∗ f by φ−1 is C∞ on the subset φ(U) of Euclidean space.
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Smooth Maps Between Manifolds

Remark

We assume F : N → M to be continuous to ensure that
F−1(V ) is an open set in N.

When M = Rm the continuity assumption can be dropped.

Proposition (Remark 6.6)

A map F : N → N is C∞ at p if and only if there is a chart (U, φ)
about p in N such that the map F ◦ φ−1 : φ(U)→ Rm is C∞ at p
(here φ(U) is an open set in Rn).
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Smooth Maps Between Manifolds

Proposition (Proposition 6.7)

Suppose that F : N → M is C∞ at p. Then, for every chart (U, φ)
about p in N and every chart (V , ψ) about F (p) in M, the map
ψ ◦ F ◦ φ−1 : φ(F−1(V ) ∩ U)→ Rm is C∞ at φ(p).

Proposition (Proposition 6.8)

Let F : N → M be a continuous map. TFAE:

1 F is a C∞ map.

2 For every chart (U, φ) on N and every chart (V , ψ) on M, the
map ψ ◦ F ◦ φ−1 : φ(F−1(V ) ∩ U)→ Rm is C∞.
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Smooth Maps Between Manifolds

Proposition (Proposition 6.9; Composition of C∞ maps)

If F : N → M and G : P → N are C∞ maps (where P is a
manifold), then the composition F ◦ G : P → M is a C∞ map.
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Diffeomorphisms

Definition

We say that a map F : N → M is a diffeomorphism when it is a
bijective C∞ map with C∞ inverse F−1.

Proposition (Proposition 6.10)

If (U, φ) is a chart on M, then the coordinate map
φ : U → φ(U) ⊂ Rm is a diffeomorphism.

Proposition (Proposition 6.11)

Let U be an open subset of M. If F : U → F (U) ⊂ Rn is a
diffeomorphism onto an open subset of Rm, then the pair (U,F ) is
a chart on M.
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Smoothness in Terms of Components

Proposition (Propositions 6.12 & 6.13)

Let F : N → Rm be a map with components F 1, . . . ,Fm : N → R
(so that F (p) = (F 1(p), . . . ,F n(p)). Then TFAE:

1 F is a C∞-map.

2 For every chart (U, φ) on N, the map F ◦ φ−1 : φ(U)→ Rm is
C∞.

3 All the components F 1, . . . ,Fm : N → R are C∞ maps

Remark

We don’t need to assume F to be continuous, since the 2nd and
3rd properties both imply that F is continuous.
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Smoothness in Terms of Components

Proposition (Propositions 6.15 & 6.16)

Let F : N → M be a continuous map. Then TFAE:

1 F is a C∞ map.

2 For every chart (V , ψ) on M the vector-valued function
ψ ◦ F : F−1(V )→ Rm is C∞.

3 For very chart (V , ψ) = (V , y1, . . . , yn) the component
functions y i ◦ F : F−1(V )→ Rm are C∞.

Remark

We assume F to be continuous to insure that in the 2nd and 3rd
properties F−1(V ) is an open subset of Rn.
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Examples of Smooth Maps

Example (Example 6.17 + Exercise 6.18)

Let M1 and M2 be manifolds.

1 The 1st factor projection π1 : M1 ×M2 → M1,
π1(p1, p2) = p1 is a C∞ map. Likewise, the 2nd factor
projection π2 : M1 ×M2 → M2 is a smooth map.

2 Given a manifold N, a map f : N → M1 ×M2 is C∞ if and
only if the components πi ◦ f : N → Mi are C∞ maps.
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Examples of Smooth Maps

Example (Example 6.19)

Let Sn ⊂ Rn+1 be the unit sphere. If f : Rn+1 → R is a C∞

function, then the restriction f|Sn : Sn → R is a C∞ function on Sn.
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Examples of Smooth Maps

Definition (Lie Groups)

A Lie group is a group G equipped equipped with a differentiable
structure such that:

(i) The multiplication map µ : G × G → G , (x , y)→ xy is a C∞

map.

(ii) The inverse map ι : G → G , x → x−1 is a C∞ map.

Examples

1 The Euclidean spaces Rn and Cn are Lie groups under
addition.

2 The set of non-zero complex numbers C× := C \ 0 is a Lie
group under multiplication.

3 The unit circle S1 ⊂ C× is a Lie group under multiplication.

4 If G1 and G2 are Lie groups, then their Cartesian product
G1 × G2 is again a Lie group.
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Examples of Smooth Maps

Example (Example 6.21; see Tu’s book)

We saw in Section 5 that the general groups GL(n,R) and
GL(n,C) are manifolds. They are also Lie groups under
multiplication of matrices.

Remark

Further examples of Lie groups are studied in Section 15.
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Partial Derivatives

In what follows M is a manifold of dimension n.

Reminder

If (U, φ) = (U, x1, . . . , xn) a chart on M, then by definition the
components x1, . . . , xn of φ are given by x i = r i ◦ φ : U → R.

Definition

Let f : M → R be a C∞ function. For p ∈ U the partial derivative
of f with respect to x i at p is

∂f

∂x i
(p) :=

∂(f ◦ φ−1)

∂r i
(φ(p)) .

Remark

The partial derivative ∂f
∂x i

(p) is also denoted ∂
∂x i

∣∣
p
f .
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Partial Derivatives

Remark

As φ−1(φ(p)) the equality ∂f
∂x i

(p) = ∂(f ◦φ−1)
∂r i

(φ(p)) can be
rewritten as

∂f

∂x i
◦ φ−1 (φ(p)) =

∂(f ◦ φ−1)

∂r i
(φ(p)) .

Thus, as functions on φ(U) we have

∂f

∂x i
◦ φ−1 =

∂(f ◦ φ−1)

∂r i
.

In particular, this shows that ∂f
∂x i

: U → R is C∞ function on U.

Proposition (Proposition 6.22)

If (U, x1, . . . , xn) is a chart on M, then ∂x i

∂x j
= δij .
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Partial Derivatives

In what follows M is a manifold of dimension m and N is a
manifold of dimension n.

Definition (Jacobian matrices and Jacobian determinants)

Let F : M → N be a C∞ map. Let (U, φ) = (U, x1, . . . , xn) be a
chart on N and (V , ψ) = (V , y1, . . . , yn) a chart on M such that
F (U) ⊂ V . Denote F i := y i ◦ F = r i ◦ ψ ◦ F : U → R the i-th
component of F in the chart (V , ψ).

1 The matrix
[
∂F i/∂x j

]
is called the Jacobian matrix of F

relative to the charts (U, φ) and (V , ψ).

2 When m = n the determinant det
[
∂F i/∂x j

]
is called the

Jacobian determinant of F relative to the charts.

Remark

The Jacobian determinant is also denoted
∂(F 1, . . . ,F n)/∂(x1, . . . , xn).
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Remark

If N = U is an open subset of Rn and M = V is an open subset of
Rm, and we use the charts (U, r1, . . . , rn) and (V , r1, . . . , rm),
then the Jacobian matrix

[
∂F i/∂r j

]
is the usual Jacobian matrix

from calculus.

Example (Example 6.24; Jacobian matrix of a transition map)

Let (U, φ) = (U, x1, . . . , xn) and (V , ψ) = (V , y1, . . . , yn) be
overlapping charts on N. The transition map
ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is a diffeomorphism between
open subsets of Rn. Given any p ∈ U ∩ V , we have

∂y i

∂x j
(p) =

(ψ ◦ φ−1)i

∂r j
(φ(p)) .
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The Inverse Function Theorem

In what follows M and N are manifolds of dimension n.

Reminder

By Proposition 6.11, given an open U ⊂ M, any diffeomorphism
F : U ⊂ F (U) ⊂ Rn defines a coordinate system on U, i.e., (U,F )
is a chart on M.

Definition

We say that a C∞ map F : N → M is locally invertible or is local
diffeomorphism near p ∈ N if there is an open neighborhood U of
p in N such that F|U : U → F (U) is a diffeomorphism.

Remark

If F = (F 1, . . . ,F n) : N → Rn is locally invertible near p ∈ N, then
it defines a coordinate system about p.
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The Inverse Function Theorem

Theorem (Theorem 6.25, Inverse Function Theorem for Rn; see
also Appendix B)

Let F = (F 1, . . . ,F n) : W → Rn be a C∞-map, where W is an
open set in Rn. Given any p ∈W, TFAE:

(i) F is locally invertible near p.

(ii) The Jacobian determinant det[∂F i/∂x j(p)] is non-zero.
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The Inverse Function Theorem

Theorem (Theorem 6.26, Inverse Function Theorem for manifolds)

Let F : N → M be a C∞-map. Given any p ∈ N, TFAE:

(i) F is locally invertible near p.

(ii) We have a non-zero Jacobian determinant det[∂F i/∂x j(p)].

Remarks

1 In (ii) the Jacobian determinant det[∂F i/∂x j(p)] relatively to
some chart (U, x1, . . . , xn) about p in N and some chart
(V , y1, . . . , yn) about F (p) in M and we have F i = y i ◦ F .

2 The condition det[∂F i/∂x j(p)] 6= 0 is independent of the
choice of the charts.
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The Inverse Function Theorem

6.7 The Inverse Function Theorem 69
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Fig. 6.4. The map F is locally invertible at p because ψ ◦ F ◦ φ−1 is locally invertible at φ(p).

Proof. Since Fi = yi ◦ F = ri ◦ ψ ◦ F , the Jacobian matrix of F relative to the charts
(U,φ) and (V,ψ) is

[
∂Fi

∂x j
(p)

]
=

[
∂ (ri ◦ ψ ◦ F)

∂x j
(p)

]
=

[
∂ (ri ◦ ψ ◦ F ◦ φ−1)

∂ r j
(φ(p))

]
,

which is precisely the Jacobian matrix at φ(p) of the map

ψ ◦ F ◦ φ−1 : Rn ⊃ φ(U)→ ψ(V )⊂ Rn

between two open subsets of Rn. By the inverse function theorem for Rn,

det

[
∂Fi

∂x j
(p)

]
= det

[
∂ ri ◦ (ψ ◦ F ◦ φ−1)

∂ r j
(φ(p))

]
'= 0

if and only if ψ ◦ F ◦ φ−1 is locally invertible at φ(p). Since ψ and φ are diffeomor-
phisms (Proposition 6.10), this last statement is equivalent to the local invertibility
of F at p (see Figure 6.4). ()

We usually apply the inverse function theorem in the following form.

Corollary 6.27. Let N be a manifold of dimension n. A set of n smooth func-
tions F1, . . . ,Fn defined on a coordinate neighborhood (U,x1, . . . ,xn) of a point

p ∈ N forms a coordinate system about p if and only if the Jacobian determinant

det[∂Fi/∂x j(p)] is nonzero.

Proof. Let F = (F1, . . . ,Fn) : U →Rn. Then

det[∂Fi/∂x j(p)] '= 0
⇐⇒ F : U → Rn is locally invertible at p (by the inverse function theorem)
⇐⇒ there is a neighborhood W of p in N such that F : W → F(W ) is a diffeomor-

phism (by the definition of local invertibility)

Corollary (Corollary 6.27)

Let F = (F 1, . . . ,F n) : U → Rn be C∞ map on a neighborhood U
of a point p in N. TFAE:

1 F = (F 1, . . . ,F n) defines a coordinate system near p.

2 det[∂F i/∂x j(p)] 6= 0.
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