Definition (Locally Euclidean Spaces)

A topological space M is called *locally Euclidean of dimension* n when, for every point p, there is a neighborhood V of p that is homeomorphic to an open subset of \mathbb{R}^n .

Remark

- It can be shown that if an open set of \mathbb{R}^n is homeomorphic to an open of \mathbb{R}^m then m = n.
- This implies that the dimension of a manifold is well defined.

Topological Manifolds

Definition (Topological Manifolds)

A topological manifold of dimension n is a locally Euclidean of dimension n that is Hausdorff and second countable.

Remark

See Problem 5.1 for an example of non-Hausdorff locally Euclidean space.

Topological Manifolds

Definition (Local Charts)

Let M be locally Euclidean of dimension n.

- A (local) chart near a point p ∈ M is pair (U, φ) where U is a neighborhood of p and φ : U → ℝⁿ is a homeomorphism (from U onto its image).
- The open U is called a coordinate neighborhood or coordinate open set.

③ The map ϕ is called a *coordinate map* or *coordinate system*.

• We say that the chart (U, ϕ) is *centered at* p when $\phi(p) = 0$.

Remark

If $U \to \mathbb{R}^n$ is homeomorphism onto its image, then $\phi(U)$ must be an open subset of \mathbb{R}^n .

Topological Manifolds

Example

- The Euclidean space ℝⁿ is covered by the single (ℝⁿ, id_{ℝⁿ}), where id_{ℝⁿ} : ℝⁿ → ℝⁿ is the identity map. Thus, ℝⁿ is a topological manifold of dimension n.
- Every open subset $U \subset \mathbb{R}^n$ is a topological manifold as well, with the single chart (U, id_U) .

Remark

Second countability and Hausdorff condition are "hereditary conditions", i.e., they are satisfied by subsets.

Example

Any open subset U a topological manifold M is automatically a topological manifold: if (V, ϕ) is a chart for M, then $(V \cap U, \phi_{|V \cap U})$ is a chart for U.

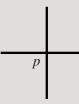
Example (A Cusp)

The graph of $y = x^{2/3}$ in \mathbb{R}^2 is a topological manifold (see below). It is homeomorphic to \mathbb{R} via $(x, x^{2/3}) \to x$.

Topological Manifolds

Example (Example 5.4, A Cross)

The cross in \mathbb{R}^2 below is not locally Euclidean at the intersection p, and so it cannot be a topological manifold.





• $\phi(U \cap V)$ and $\psi(U \cap V)$ are open subsets of \mathbb{R}^n .

2 ϕ and ψ restricts to homeomorphisms,

$$\phi_{|U\cap V}: U\cap V \to \phi(U\cap V), \qquad \psi_{|U\cap V}: U\cap V \to \psi(U\cap V).$$

- 3 The compositions $(\psi_{|U\cap V}) \circ (\phi_{|U\cap V})^{-1}$ and $(\phi_{|U\cap V}) \circ (\psi_{|U\cap V})^{-1}$ and are denoted by $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$.
- The maps $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are inverses of each other.

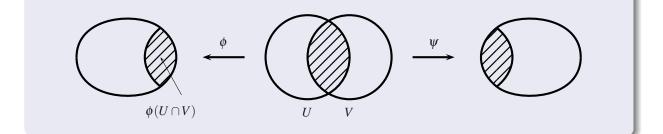
Compatible Charts

Definition (Transition Maps)

The maps

$$\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$$
 and $\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V)$

are called the *transition maps* of the charts (U, ϕ) and (V, ψ) .



Definition (C^{∞} -Compatible Charts)

We say that two charts (U, ϕ) and (V, ψ) are C^{∞} -compatible when the transition maps $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are C^{∞} -maps.

Remark

As $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are inverses of each other, the above condition means that $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are C^{∞} -diffeomorphisms.

Compatible Charts

Definition (Atlas)

A C^{∞} -atlas, or simply an atlas, on a locally Euclidean space M is a collection $\mathfrak{U} = \{(U_{\alpha}, \phi_{\alpha})\}$ of pairwise C^{∞} -compatible charts that cover M, i.e., $M = \bigcup_{\alpha} U_{\alpha}$.

Remarks

1 The pairwise C^{∞} -compatibility means that, for all α, β , the transition maps $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ are C^{∞} -maps.

2 This implies that every transition map $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ is a C^{∞} -diffeomorphism, since its inverse is the transition map $\phi_{\alpha} \circ \phi_{\beta}^{-1}$, and hence is C^{∞} .

Compatible Charts

Example (Example 5.7, A C^{∞} -atlas on the circle)

We realize the circle \mathbb{S}^1 a subset of the complex plane,

$$\mathbb{S}^1 = \{z \in \mathbb{C}; \ |z| = 1\} = \{e^{it}; \ t \in [0, 2\pi]\}.$$

Let U_1 and U_2 be the open subsets,

$$egin{aligned} U_1 &= \{e^{it}; \ t \in (-\pi,\pi)\} = \mathbb{S}^1 \setminus \{-1\}, \ U_2 &= \{e^{it}; \ t \in (0,2\pi)\} = \mathbb{S}^1 \setminus \{1\}. \end{aligned}$$

Define $\phi_1: U_1 \to (-\pi, \pi)$ and $\phi_2: U_2 \to (0, 2\pi)$ as the inverses of the maps $\psi_1: (-\pi, \pi) \to U_1$ and $\psi_2: (0, 2\pi) \to U_2$ given by

$$\psi_j(t)=e^{it}.$$

Then $\{(U_1, \phi_1), (U_2, \phi_2)\}$ is a C^{∞} atlas for \mathbb{S}^1 .

13 / 35

Compatible Charts

Definition

We say that a chart (V, ψ) is compatible with an atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ when it is compatible with every chart $(U_{\alpha}, \phi_{\alpha})$ of the atlas.

Lemma (Lemma 5.8)

Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas on a locally Euclidean space. If two charts (V, ψ) and (W, σ) are both compatible with the atlas $\{(U_{\alpha}, \phi_{\alpha})\}$, then they are compatible with each other.

Definition (Smooth manifolds; first definition)

A smooth manifold, or C^{∞} manifold (of dimension *n*) is a topological manifold (of dimension *n*) that is equipped with a C^{∞} atlas.

Remark

- A 1-dimensional manifold is called a *curve*.
- A 2-dimensional manifolds is called a *surface*.

Smooth Manifolds

Remarks

- Two C[∞]-atlases on a given topological manifold may define the same ring of C[∞]-functions (see Section 6).
- ② We would like to say that we have the same C[∞]-manifold structure when this happens.
- To deal with this issue it is convenient to use the notion of maximal atlas.

Definition (Maximal Atlas)

An atlas \mathscr{M} of a locally Euclidean space is said to be *maximal* when it is not contained in another atlas, i.e., if \mathscr{A} is an atlas containing \mathscr{M} , then it must agree with \mathscr{M} .

Proposition (Proposition 5.8)

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ be a C^{∞} -atlas on a locally Euclidean space.

- (i) There is a unique maximal C^{∞} -atlas \mathcal{M} that contains \mathscr{A} .
- (ii) \mathscr{M} consists of all local charts (V, ψ) that are C^{∞} -compatible with all the charts $(U_{\alpha}, \phi_{\alpha})$.

Smooth Manifolds

Definition (Smooth Structure, C^{∞} -Manifold; 2nd definition)

- A smooth structure, or C[∞]-structure, on a topological manifold is given by the datum of a maximal C[∞]-atlas.
- A C[∞]-manifold is a topological manifold equipped with a C[∞]-structure (i.e., a maximal C[∞]-atlas).

Remark

The two definitions of C^{∞} -manifolds are equivalent.

- A C[∞]-atlas A on a topological manifold M is contained in a unique maximal C[∞]-atlas M.
- It thus defines a unique C[∞]-structure on M (given by the maximal atlas M).

Remark

Two C^{∞} -manifolds agree if and only if they agree as sets and have the same topology and C^{∞} -structure (i.e., maximal C^{∞} -atlas).

Fact

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ and $\mathscr{B} = \{(V_{\beta}, \psi_{\beta})\}$ be C^{∞} -atlases on a topological manifold M. TFAE:

- (i) \mathscr{A} and \mathscr{B} define the same C^{∞} -structure on M.
- (ii) \mathscr{A} and \mathscr{B} are contained in the same maximal C^{∞} -atlas.
- (iii) The charts of \mathscr{A} and \mathscr{B} are pairwise C^{∞} -compatible, i.e., for all α, β the charts $(U_{\alpha}, \phi_{\alpha})$ and $(V_{\beta}, \psi_{\beta})$ are C^{∞} -compatible.

Smooth Manifolds

Remark

- In practice we may forget about maximal atlases.
- In order to verify that a topological space M is a C[∞]-manifold we only need to check that
 - (a) M is Hausdorff and second countable.
 - (b) M has a C^{∞} -atlas.

Remarks

- In what follows, by a "manifold" it will be always meant a "smooth manifold".
- 2 By a *chart* (U, ϕ) *about* p in a (smooth) manifold M, we shall mean a chart in the maximal C^{∞} atlas of M such that $p \in U$.

Smooth Manifolds

Notation

We denote by (r^1, \ldots, r^n) the standard coordinates in \mathbb{R}^n ,

Definition (Local Coordinates)

- If (U, φ) is a chart of a (smooth) manifold, we let xⁱ = rⁱ ο φ be the *i*-th coordinate of φ.
- The functions x^1, \ldots, x^n are called *local coordinates on U*.

Remarks

- If $p \in U$, then $(x^1(p), \ldots, x^n(p))$ is a point in \mathbb{R}^n .
- We often omit p from the notation, so that, depending on context, (x¹,...,xⁿ) may denote local coordinates (functions) or a point in Rⁿ.

Examples of Manifolds

Example (Example 5.11; Euclidean Spaces)

The Euclidean space \mathbb{R}^n is a smooth manifold with single chart $(\mathbb{R}^n, r^1, \ldots, r^n)$, where r^1, \ldots, r^n are the standard coordinates in \mathbb{R}^n .

Examples of Manifolds

Example (Vector Spaces)

Let *E* be a (real) vector space of dimension *n*. Any basis (e_1, \ldots, e_n) of *E* defines a chart (E, ϕ) , where $\phi : E \to \mathbb{R}^n$ is defined by

$$\phi(r^1e_1+\cdots+r^ne_n)=(r^1,\ldots,r^n), \qquad r^i\in\mathbb{R}.$$

This is a linear isomorphism with inverse,

$$\phi^{-1}(r^1,\ldots,r^n)=r^1e_1+\cdots+r^ne_n.$$

Therefore, E is a smooth manifold with single chart (E, ϕ) .

Remarks

- The topology of E is such that the open subsets are of the form φ⁻¹(U), where U ranges over open subsets of ℝⁿ.
- 2 The topology and smooth structure of E do not depend on the choice of the basis e_1, \ldots, e_n .

23 / 35

Examples of Manifolds

Example (Example 5.12; Open subset of a manifold)

An open subset V of a smooth manifold M is a smooth manifold. If $\{(U_{\alpha}, \phi_{\alpha}) \text{ is a } C^{\infty}\text{-atlas for } M$, then $\{(U_{\alpha} \cap V, \phi_{\alpha|V \cap U_{\alpha}})\}$ is a $C^{\infty}\text{-atlas for } V$.

Example (Example 5.13; Manifolds of dimension 0)

Let M be a 0-dimensional manifold. Then

- For every point $p \in M$, the singleton $\{p\}$ is homeomorphic to $\mathbb{R}^0 = \{0\}$, and hence is open. Therefore, M is discrete.
- Second countability then implies that *M* is countable.
- The charts $(\{p\}, p
 ightarrow 0)$, $p \in M$, form a C^{∞} -atlas.

Examples of Manifolds

Example (Example 5.14; Graph of a smooth function)

Let $f: U \to \mathbb{R}^m$ a C^∞ function, where U is an open subset. The graph of f is

$$f(f) = \{(x, f(x)); x \in U\}$$

= $\{(x, y) \in U \times \mathbb{R}^m; y = f(x)\}.$
$$(x, f(x))$$

This is a smooth manifold with single chart $(\Gamma(f), \phi)$, where $\phi : \Gamma(f) \to U$ is defined by

$$\phi(x, f(x)) = x, \qquad x \in U.$$

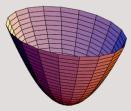
Here $\phi^{-1}: U \to \Gamma(f)$ is just $x \to (x, f(x))$.

Examples of Manifolds

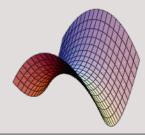
Examples

The following surfaces are graphs of smooth functions, and hence are C^{∞} -manifolds:

• Elliptic paraboloid: $z = x^2 + y^2$.



• Hyperbolic paraboloid: $z = y^2 - x^2$.



Example (Example 5.15; Real matrices)

- Let ℝ^{m×n} be the space of m×n matrices A = (a_{ij}) with real entries. This is smooth manifold, since this is a vector space. Its dimension is mn.
- The real linear group is

$$\mathsf{GL}(n,\mathbb{R}) = \{A \in \mathbb{R}^{n imes n}; \; \mathsf{det}(A) \neq 0\} = \mathsf{det}^{-1}(\mathbb{R} \setminus 0).$$

This is an open subset of $\mathbb{R}^{n \times n}$, since the determinant map det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous. Therefore, $GL(n, \mathbb{R})$ is a smooth manifold of dimension n^2 .

27 / 35

Example (Example 5.15; Complex matrices)

- Let C^{m×n} be the space of m×n matrices A = (a_{ij}) with real entries. This is smooth manifold, since this is a real vector space. It has complex dimension mn, and so its real dimension is 2mn.
- The complex linear group is

$$\mathsf{GL}(n,\mathbb{R})=\{A\in\mathbb{C}^{n imes n};\;\det(A)
eq0\}=\det{}^{-1}(\mathbb{C}\setminus0).$$

As in the real case, this is an open subset of $\mathbb{C}^{n \times n}$, and so $GL(n, \mathbb{C})$ is a smooth manifold of dimension $2n^2$.

Examples of Manifolds

Example (Spheres; Example 5.16 and Problem 5.3)

The *unit sphere* of \mathbb{R}^{n+1} is

$$\mathbb{S}^n = \left\{ (x^1, \dots, x^{n+1}) \in \mathbb{R}^{n+1}; \ (x^1)^2 + \dots + (x^{n+1})^2 = 1 \right\}.$$

This is a smooth manifold of dimension *n*. An atlas is $\{(U_i^{\pm}, \phi_i^{\pm})\}_{i=1}^{n+1}$, where

$$U_i^{\pm} = \left\{ (x^1, \dots, x^{n+1}) \in \mathbb{S}^n; \ \pm x^i > 0 \right\},$$

and $\phi_i^\pm:U_i^\pm o\mathbb{B}^n$ is defined by

$$\phi_i^{\pm}(x^1,\ldots,x^{n+1}) = (x^1,\ldots,x^i,x^{i+1},\ldots,x^{n+1})$$

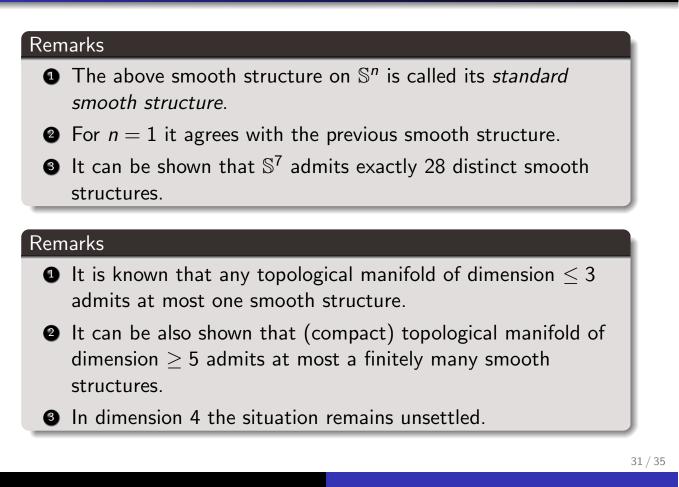
Here \mathbb{B}^n is the unit ball of \mathbb{R}^n . The inverse map of ϕ_i^{\pm} is

$$(\phi_i^{\pm})^{-1}(u^1,\ldots,u^n) =$$

 $(u^1,\ldots,u^{i-1},\pm\sqrt{1-(u^1)^2-\cdots-(u^n)^2},u^i,\ldots,u^n).$

30 / 35

Examples of Manifolds



Examples of Manifolds

Definition

Let M and N be locally Euclidean spaces of respective dimensions m and n. If (U, ϕ) is a chart for M and (V, ψ) is a chart for V, then the map $\phi \times \psi : U \times V \to \mathbb{R}^{m+n}$ is defined by

$$(\varphi \times \phi)(x, y) = (\phi(x), \psi(y)) \in \mathbb{R}^{m+n}, \qquad x \in U, \ y \in V.$$

Remark

 $\phi \times \psi$ is a homeomorphism from $U \times V$ onto the open subset $\phi(U) \times \psi(V) \subset \mathbb{R}^{m+n}$.

Fact (Corollary A.21 and Proposition A.22)

If M and N are both Hausdorff second countable topological spaces, then the product $M \times N$ is again Hausdorff and second countable.

Proposition (Proposition 5.18, Example 5.17)

Suppose that M and N are smooth manifolds of respective dimensions m and n. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be a C^{∞} -atlas for M and $\{(V_{\beta}, \psi_{\beta})\}$ a C^{∞} -atlas for N. Then

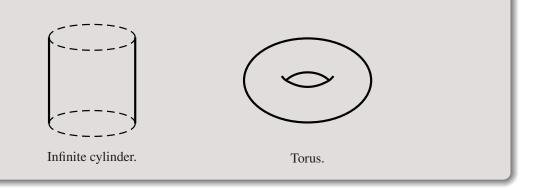
- The collection $\{(U_{\alpha} \times V_{\beta}, \phi_{\alpha} \times \psi_{\beta})\}$ is a C^{∞} atlas for $M \times N$.
- 2 The product $M \times N$ is a smooth manifold of dimension m + n.

Remark

The smooth structure of $M \times N$ does not depend on the choices of the atlases $\{(U_{\alpha}, \phi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$.

Examples of Manifolds

The infinite cylinder $\mathbb{S}^1 \times \mathbb{R}$ and the torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ are both smooth manifolds of dimension 2, since they are product of 1-dimensional smooth manifolds.



Remark

More generally, if M_1, \ldots, M_k are smooth manifolds, then their $M_1 \times \cdots \times M_k$ is a smooth manifold of dimension dim $M_1 + \cdots + \dim M_k$.

Example

The *n*-torus $\mathbb{T}^n = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ (*n* times) is a smooth manifold of dimension *n*.