
6 Compact topological spaces

6.1 Basic properties

Definition 6.1 (Compact topological space).
A topological space E is called compact if each of its open covers has a �nite
sub-cover. A subset A ⊂ E of a topological space is said compact if it is a
compact topological space with respect to the subspace topology.

Remark 6.2 (Compactness formulated with closed sets).
A topological space is compact if and only if for every collection C of closed
subsets of E such that ∩λ∈ΛCλ = ∅ there is a �nite sub-collection λ1, . . . λn ∈ Λ,
such that ∩n

i=1Cλi = ∅.

Proposition 6.3.
Compact subsets of a metric space are bounded.
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Proof. Let (E, d) be a metric space and A a compact subset in E. One obtain
an open covering of A if we put an open unite ball on each point of A. From
the compactness of A there exists �nitely many point xi ∈ A, (i ∈ n) such
that A ⊂ ∪n

i=1B(xi, 1). Then for any x, y,∈ A, we have

d(x, y) ≤ max
1≤i,j≤n

d(xi, xj) + 2 < +∞
that is A is bounded.

Remark 6.4 (Compact sets of metric spaces).
As we will see later, the compact sets of Hausdor� separable topological space
are closed. One obtain therefore that compact sets of metric spaces are closed
and bounded.
The converse however is not true: in a metric space a closed and bounded set
is not necessarily compact. Indeed, let us consider a non-�nite set in a discrete
metric space. It is closed and bounded, but not compact.

Proposition 6.5 (Closed subsets of a compact set).
The closed subsets of a compact set are compact.
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Proof. Let E be a compact set and A ⊂ E a closed set. If ∪
i∈IUi is an open

covering of A, then
∪

i∈IUi ∪ (E \A)

is an open covering of E. Because of the compactness of E there exists a �nite
subset J ⊂ I such that ∪

i∈JUi∪E−A is an open covering of E, therefore ∪
i∈JUi

is an open covering of A.

Proposition 6.6.
Let A and B be two compact disjoint sets in a Hausdor� separable topological
space (E,O). Then there exist disjoint open sets U and V, such that A ⊂ U

and B ⊂ V.

Proof. Let a ∈ A be �xed. Since E is Hausdor� separable, for any b ∈ B

there exist disjoint Ub and Vb open sets, such that a ∈ Ub, b ∈ Vb. Since B is
compact, there exist �nitely many b1, ..., bn such that

B ⊂ Vb1 ∪ · · · ∪ Vbn.
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Let Va = Vb1 ∪ ... ∪ Vbn and Ua = Ub1 ∩ · · · ∩ Ubn. Both Ua and Ba are
open, a ∈ Ua and B ⊂ Va and Ua ∩ Va = ∅. We have A ⊂ ∪a∈AUa, and
using the compactness of A, there exist �nitely many a1, . . . ak such that A ⊂
Ua1 ∩ · · · ∩Vak. Then if one consider U = Ua1 ∪ ...∪Uak and V = Va1 ∩ ...∩Vak,

we get U and V disjoint open set such that A ⊂ U, B ⊂ V.

Proposition 6.7 (Compact set of Hausdor� spaces).
The compact subsets of a Hausdor� separable topological space are closed sets.

Proof. Let (E,O) be Hausdor� separable topological space and A ⊂ E a com-
pact set and let x ∈ E \ A The both A and {x} are compact sets, and using
Proposition 6.6 we get that there are disjoint open sets Ux and V such that
A ⊂ Ux, x ∈ Vx. It follows that A ∩ Vx = ∅, and

E \A = ∪x ̸∈AVx

that is E \A, therefore A is a closed set.
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Remark 6.8 (Compact sets are not necessarily closed sets).
Compact sets are not necessarily closed sets. To show this, one can consider
the following examples:

� any one point set is compact, but it is not necessarily closed (the one
point sets are closed if and only if the topological space satis�es the T1
property.

� in a topology containing �nitely many closed sets any set is compact, but
naturally, they are not necessarily closed;

Definition 6.9 (Accumulation point of a sequence).
Let xn be a sequence in the topological space. The point x ∈ E is said an ac-
cumulation point of the sequence xn if for any p ∈ N and open neighbourhood
U of x there exists n ∈ N such that n > p and xn ∈ U.

Remark 6.10 (The set of accumulation points of a sequence).
From the above de�nition it follows that x is an accumulation point on the
sequence xn if for any p ∈ N if it is an accumulation point of the set Sp

.
=
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{xn | n ≥ p}. It follows that the set of accumulation points of the sequence can
be characterized as

{ accumulation points of xn } = ∩p≥0Sp.

Proposition 6.11 (Sequences in compact sets).
In a compact space any sequence has an accumulation point.

Proof.

It is su�cient to show that the set ∩p≥0Sp = A is a nonempty set. Let us
prove by contradiction: suppose that A is empty. The form the compactness
of E (using Remark 6.2) there exist �nitely many p1 < p2 < · · · < pk numbers
such that

Sp1 ∩ . . . ∩ Spk = ∅
which is a contradiction, since Sp1 ∩ . . . ∩ Spk = Snk

is a nonempty set.

Definition 6.12 (Convergent sequence).
The sequence xn in a topological space E is convergent if there is x0 ∈ E such
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that for any open neighbourhood U of x0 there exists n0 ∈ N such that if
n > n0 then xn ∈ U. The point x0 is called the limit of the sequence xn.
(Notation: lim xn = x0.)

Exercise 6.13 (Convergent sequence in Hausdor� space).
Show that if a sequence is convergent, then its limit is unique and it is the
only accumulation point of the sequence.

Proposition 6.14 (Convergent sequences in compact Hausdor� spaces).
In a Hausdor� separable compact topological space a sequence is convergent
if and only if it has exactly one accumulation point.

Proof. If a sequence xn is convergent in a Hausdor� separable space, then its
limit is the unique accumulation point (see Exercise 6.13).
On the other hand, let us suppose that a sequence xn has exactly one accu-
mulation point in a compact Hausdor� space. We denote this point by a ∈ E

and we will show that the sequence is convergent and lim xn = a. We argue
by contradiction: let us suppose that xn is not convergent. Then there is an
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open neighbourhood U of a ∈ E such that for any k ∈ N there exists nk > k,
such that xnk

̸∈ U. We can obtain that way a sub-sequence (xnk
)∞k=1 such that

the sub-sequence has no point in U, therefore a cannot be an accumulation
point of this sequence. From Theorem 6.11 however we get that this sub-
sequence has an accumulation point. This accumulation, let it be denoted by
b ∈ E, is di�erent from a. One obtains therefore that the original sequence
has two di�erent accumulation points (a and b) which is a contradiction with
the hypothesis.

Theorem 6.15 (Tychono�'s theorem: product of compact spaces).
The product of compact topological spaces is compact.

Proof. The proof of the theorem is using the notion of �lter: F if a �lter if the
following two properties are satis�ed: 1) for any A, B ∈ F one has A∩B ∈ F ;
2) for any A ∈ F and A ⊂ C one has C ∈ F . A �lter M is said maximal if
from M ⊂ F one has M = F .
In order to prove the theorem, we will use Remark 6.2 where the compactness
was formulated in terms of closed sets. Let us consider the product space
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E = Πi∈IEi of the compact topological spaces Ei and let us suppose that we
have a family of closed sets

(Fλ)λ∈Λ (4)

such that the intersection of any �nite subfamily is nonempty. We will show,
that the intersection of the family is nonempty which proves the compactness
of E.

1. Let F be the subset of E containing a �nite intersection of (4). Then F
is a �lter. Moreover, there exists a maximal �lter M containing F .

2. Let i ∈ I be an arbitrary index. For any �nite set A1, . . . , An of elements
in M we have A1 ∩ · · · ∩An ̸= ∅, therefore

∅ ≠ pi(A1∩ · · · ∩An) ⊂ pi(A1)∩ · · · ∩pi(An) ⊂ pi(A1)∩ · · · ∩pi(An).

It follows that {pi(A) | A ∈ M} is a family of closed sets such that any
�nite subfamily is nonempty. From the compactness of Ei we obtain that
their intersection cannot be empty, that is there exists ai ∈ Ei such that

ai ∈ pi(A) for any A ∈ M.
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3. If Vi ⊂ Ei is an open neighbourhood of ai, then p−1(Vi) ∈ M, since for
every A ∈ M one has ai ∈ pi(Ai), that is Vi∩pi(A) ̸= ∅ i.e. p−1

i (Vi)∩A ̸=
∅. Since M is maximal,

p−1
i (Vi) ∈ M.

4. Let us consider in the product space a = (ai)i∈I. We will prove that

a ∈ ∩
λ∈ΛFλ.

We remark that it is enough tho show that any open neighbourhood of
a intersects Fλ (since that would show that the closure of Fλ contains a,
but the closure if Fλ is itself since Fλ is closed).

Let V be an elementary open (elementary open sets form a basis of the
product topology) set containing a: V = ∩i∈Jp

−1
i (Vi) where J is �nite,

and Vi are open neighbourhood of ai in Ei. From item 3.) we know
that p−1

i (Vi) ∈ M, therefore V ∈ M. Since Fλ ∈ F ⊂ M we have also
V ∩ Fλ ∈ M, and V ∩ Fλ ̸= ∅.
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6.2 Continuous functions on compact sets

Theorem 6.16 (Continuous image of a compact set).
The image of a compact set under a continuous map is compact.

Proof. Let (E,OE) be a compact topological space and f : E −→ F a continuous
map into the topological space (F,OF). Let ∪i∈IVi an open covering of the image
set f(E). Then

∪
i∈If

−1(Vi)

is an open covering of E. Using the compactness of E, there exists a �nite
subset J of I such that E ⊂ ∪

j∈Jf
−1(Vj) Then ∪

j∈JVj give a �nite open covering
of f(E).

Proposition 6.17.
Let (E,OE) compact, (F,OF) Hausdor� separable, and f : E −→ F a continuous
bijection. Then f is a homeomorphism.

Proof. For any A closed set in E we have f(A) compact in f(E) = F, therefore
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(using the Hausdor� property of F) the set f(A) is closed. It follows that f−1

is a continuous function.

Exercise 6.18 (Extreme value theorem).
Let f : E −→ R be a continuous function de�ned on a compact set. Then f(E)
is bounded and there exists a ∈ E and b ∈ E such that

f(a) = inf f(E) and f(b) = sup f(E),

Proof. Since f(E) is compact, it is bounded, and (using the Hausdor� property
of R it is also closed. Because of the boundedness f(E) has an in�num and a
supremum, and because of the closedness f(E) contains them . . .
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