6 Compact topological spaces

6.1 Basic properties

Definition 6.1 (Compact topological space).

A topological space E 1s called compact if each of its open covers has a finite
sub-cover. A subset A C E of a topological space is said compact if it is a
compact topological space with respect to the subspace topology.

Remark 6.2 (Compactness formulated with closed sets).

A topological space i1s compact if and only if for every collection C of closed
subsets of E such that N\cACy = () there is a finite sub-collection Aq,... A, € A,
such that NI, C,, = 0.

Proposition 6.3.
Compact subsets of a metric space are bounded.
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Proof. Let (E,d) be a metric space and A a compact subset in E. One obtain
an open covering of A if we put an open unite ball on each point of A. From
the compactness of A there exists finitely many point x; € A, (i € n) such
that A C U ;B(xi,1). Then for any x,y, € A, we have

d(x,y) < max d(x,x)+2 < +o0

1<ij<n

that 1s A 1s bounded. [ ]

Remark 6.4 (Compact sets of metric spaces).

As we will see later, the compact sets of Hausdorff separable topological space
are closed. One obtain therefore that compact sets of metric spaces are closed
and bounded.

The converse however 1s not true: in a metric space a closed and bounded set
is not necessarily compact. Indeed, let us consider a non-finite set in a discrete
metric space. It is closed and bounded, but not compact.

Proposition 6.5 (Closed subsets of a compact set).
The closed subsets of a compact set are compact.
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Proof. Let E be a compact set and A C E a closed set. If U_/U; 1s an open

covering of A, then
U Ui U(E\A)

1s an open covering of E. Because of the compactness of E there exists a finite
subset ] C I such that U, E]Lli UE — A is an open covering of E, therefore U, Elui
1s an open covering of A. []

Proposition 6.6.

Let A and B be two compact disjoint sets in a Hausdorff separable topological
space (E, ). Then there exist disjoint open sets U and V, such that A C U
and B C V.

Proof. Let a € A be fixed. Since E is Hausdorff separable, for any b € B
there exist disjoint Uy, and V, open sets, such that a € Uy, b € V4. Since B 1is
compact, there exist finitely many by, ..., b,, such that

BCVb]U---UVbn.
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Let Vo = Vp, U...U Vg, and Ug, = Uy, N --- N Uyp,. Both U, and B, are
open, a € U, and B ¢ Vg and U, NV, = . We have A C UgcalU,, and

using the compactness of A, there exist finitely many ai,... ax such that A C
Uy, N---NVg. Then if one consider U = Uy, U...UUq and V =V, N...N Vg,
we get U and V disjoint open set such that A C U, B C V. []

Proposition 6.7 (Compact set of Hausdorff spaces).
The compact subsets of a Hausdorff separable topological space are closed sets.

Proof. Let (E,O) be Hausdorff separable topological space and A C E a com-
pact set and let x € E\ A The both A and {x} are compact sets, and using
Proposition 6.6 we get that there are disjoint open sets U, and V such that
A C Uy, x € V,. It follows that ANV, =0, and

E\A = ngAVx

that is E \ A, therefore A is a closed set. []
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Remark 6.8 (Compact sets are not necessarily closed sets).
Compact sets are not necessarily closed sets. To show this, one can consider
the following examples:

e any one point set is compact, but it is not necessarily closed (the one
point sets are closed if and only if the topological space satisfies the T;
property.

e in a topology containing finitely many closed sets any set is compact, but
naturally, they are not necessarily closed;

Definition 6.9 (Accumulation point of a sequence).

Let x, be a sequence in the topological space. The point x € E is said an ac-
cumulation point of the sequence x,, if for any p € N and open neighbourhood
U of x there exists n € N such that n > p and x,, € U.

Remark 6.10 (The set of accumulation points of a sequence).
From the above definition it follows that x 1s an accumulation point on the
sequence x, if for any p € N if it 1s an accumulation point of the set S, =
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{xn | N > p}. It follows that the set of accumulation points of the sequence can
be characterized as

{ accumulation points of x, } = ﬂpzoS_p.

Proposition 6.11 (Sequences in compact sets).
In a compact space any sequence has an accumulation point.

Proof.

It is sufficient to show that the set ﬂpzog = A 1s a nonempty set. Let us
prove by contradiction: suppose that A is empty. The form the compactness
of E (using Remark 6.2) there exist finitely many p; < p2 < - -+ < px numbers
such that

Sp;N ...NS, =0

which i1s a contradiction, since S—p1 N ... NSy, = Sy, 1s a nonempty set. []

Definition 6.12 (Convergent sequence).
The sequence x,, in a topological space E is convergent if there is Xy € E such
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that for any open neighbourhood U of xy there exists nyg € N such that if
n > ngy then x,, € U. The point Xy i1s called the limit of the sequence x,.
(Notation: limx,, = x¢.)

Exercise 6.13 (Convergent sequence in Hausdorft space).
Show that if a sequence is convergent, then its limit is unique and it is the
only accumulation point of the sequence.

Proposition 6.14 (Convergent sequences in compact Hausdorff spaces).
In a Hausdorff separable compact topological space a sequence is convergent
if and only if it has exactly one accumulation point.

Proof. If a sequence x,, 1s convergent in a Hausdorff separable space, then its
limit is the unique accumulation point (see Exercise 6.13).

On the other hand, let us suppose that a sequence x, has exactly one accu-
mulation point in a compact Hausdorff space. We denote this point by a € E
and we will show that the sequence is convergent and limx,, = a. We argue
by contradiction: let us suppose that x,, is not convergent. Then there is an
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open neighbourhood U of a € E such that for any k € N there exists ny > Kk,
such that x, & U. We can obtain that way a sub-sequence (x,,)¢>; such that
the sub-sequence has no point in U, therefore a cannot be an accumulation
point of this sequence. From Theorem 6.11 however we get that this sub-
sequence has an accumulation point. This accumulation, let it be denoted by
b € E, 1s different from a. One obtains therefore that the original sequence
has two different accumulation points (a and b) which is a contradiction with
the hypothesis. []

Theorem 6.15 (Tychonoff’s theorem: product of compact spaces).
The product of compact topological spaces is compact.

Proof. The proof of the theorem is using the notion of filter: F if a filter if the
following two properties are satisfied: 1) for any A, B € F one has ANB € F;
2) for any A € F and A C C one has C € F. A filter M is said maximal if
from M C F one has M = F.

In order to prove the theorem, we will use Remark 6.2 where the compactness
was formulated in terms of closed sets. Let us consider the product space
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E = Tlic1E; of the compact topological spaces E; and let us suppose that we
have a family of closed sets

(Fa)aen (4)

such that the intersection of any finite subfamily is nonempty. We will show,
that the intersection of the family is nonempty which proves the compactness
of E.

1. Let F be the subset of E containing a finite intersection of (4). Then F
1s a filter. Moreover, there exists a maximal filter M containing F.

2. Let 1 € I be an arbitrary index. For any finite set A4,..., A, of elements
in M we have A; N --- N A, # 0, therefore

0 # pi(AiN---NAL) C pilA)N---NPpilAn) C pi(A1)N---NpilAn).

It follows that {pi(A) | A € M} is a family of closed sets such that any
finite subfamily is nonempty. From the compactness of E; we obtain that
their intersection cannot be empty, that is there exists a; € E; such that

a; € pi(A) for any A e M.
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3. If Vi C E; is an open neighbourhood of a;, then p_1 (Vi) € M, since for
every A € M one has a; € pi(Ai), that is Vinpi(A) # 0 i.e. pf (Vi)NA #
(. Since M is maximal,
p; (Vi) € M.

4. Let us consider in the product space a = (a;)ic;. We will prove that

aen,  F.

AEA

We remark that it is enough tho show that any open neighbourhood of
a intersects F, (since that would show that the closure of F, contains a,
but the closure if F, is itself since F, is closed).

Let V be an elementary open (elementary open sets form a basis of the
product topology) set containing a: V = Nigp; "(V;) where ] is finite,
and V; are open neighbourhood of a; in E;. From item 3.) we know
that pf (Vi) € M, therefore V € M. Since F, € F C M we have also
VNFyeM,and VNF, #0.

[]
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6.2 Continuous functions on compact sets

Theorem 6.16 (Continuous image of a compact set).
The image of a compact set under a continuous map is compact.

Proof. Let (E, O¢) be a compact topological space and f: E — F a continuous
map into the topological space (F, Or). Let U,_ Vi an open covering of the image
set f(E). Then

U £ (VA)

is an open covering of E. Using the compactness of E, there exists a finite
subs(et)] of I such that E C U, e]f_1 (V;) Then U, V; give a finite open covering
of f(E). []

Proposition 6.17.
Let (E, Og) compact, (F, Of) Hausdorff separable, and f: E — F a continuous
bijection. Then f is a homeomorphism.

Proof. For any A closed set in E we have f(A) compact in f(E) = F, therefore
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(using the Hausdorff property of F) the set f(A) is closed. It follows that f~
1s a continuous function. []

Exercise 6.18 (Extreme value theorem).
Let f: E — R be a continuous function defined on a compact set. Then f(E)
1s bounded and there exists a € E and b € E such that

f(a) =inf f(E) and f(b) =sup f(E),

Proof. Since f(E) is compact, it is bounded, and (using the Hausdorff property
of R it is also closed. Because of the boundedness f(E) has an infinum and a
supremum, and because of the closedness f(E) contains them ... []
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