
5 Connectedness and path connectedness

5.1 Connectedness

Definition 5.1.
The topological space (E,O) is said to be connected if the only subsets of E
that are both open and closed are the empty set ∅ and E itself. A subset of E
is said to be connected if it is connected with respect of the induced subspace
topology.

Exercise 5.2 (Equivalent formulations of the connectedness).

1. (E,O) is connected if and only if one writes E = U∪V as a union of two
disjoint open sets, then U or V is necessarily the empty set.

2. (E,O) is connected if and only if one writes E = A∪ B as a union of two
disjoint closed sets, then A or B is necessarily the empty set.
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Exercise 5.3 (The image of conneted sets under continuous maps).
The image of a connected set under a continuous function is also connected.

Indication. Use the fact that the preimage of an open (resp. closed) set is
also an open (resp. closed) set.

Remark 5.4 (Separation).
One says that the space can be \separated" if it can be broken up into
nonempty disjoint open sets. A topological space is connected if and only
if it cannot be separated.

Exercise 5.5 (Connected subset).
Let A be a connected set in E, then

� the closure A of A is connected;

� if A ⊂ B ⊂ A, then the set B is connected;

� if A is dense in E, then E is also connected.

Proof. It is enough to show that if A ⊂ E is a connected dense subset of E,
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then E is also connected. Indeed, let us suppose that E = U ∪ V where U and
V are disjoint open sets. Then A = (A∩U)∪ (A∩V) where A∩U and A∩V

are open in the subspace topology of A. It follows that one of them must be
the empty set. If A ∩U = ∅ (resp. A ∩ V = ∅), then from the density of A it
follows that U (resp. V) is empty.

Proposition 5.6.
The union of connected sets having pairwisely nonempty intersections is con-
nected.

Proof. Let us suppose that Aα ⊂ E is connected and let us suppose that any
pairwise intersection is nonempty. Let A = ∪αAα denote the union of those
sets and let us consider the separation U∪V of A with disjoint open sets. For
any α we have Aα ⊂ U or Aα ⊂ V is open, because of the connectedness of
Aα. Since any two sets has a common points, it follows that all Aα should be
a subset of the same set: either U or V. Then necessarily the other set is the
empty set.
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Exercise 5.7 (Connected set of the real line).
On the set of real numbers (with the usual topology) the connected sets are
the intervals.

Indication. If A is not an interval, then there exists a number c such that c is
not in A but A has greater and smaller elements then c. Then (A∩ (−∞, c))∪
(A ∩ (c,+∞)) is a separation of A, and A is not connected.
Moreover,

� for an closed interval [a, b], let us suppose that U ∪ V is a separation.
Let for example a ∈ U and c = inf(V). Since U is open, therefore c > a.
If c ∈ U, then U from the openness of U c < inf(V) and c wouldn't be
the in�num of V. On the other hand, if c ∈ V, since an open set could
not contain its in�num.

� for an open interval ]a, b[, let us suppose that there is a separation. Then
there is a closed interval in ]a, b[ such that one part is in U, the other
part is in V. That would give a separation of the closed interval which is
impossible.

71



� Similar argument works for non-bounded intervals: for any separation
one could chose a closed interval such that the two endpoints of the
interval are in di�erent sets of the separation . . .

Exercise 5.8.

1. Rn is a connected set.

2. If K ⊂ Rn is a star-shaped set, then it is connected.

Indication.

1. From Exercise 5.7 we know that R is connected. Moreover, Rn is just the
union of straight line passing through O ∈ Rn. From Proposition 5.6 we
get the statement.

2. From Proposition 5.6 we get the statement.

Proposition 5.9.
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For any a ∈ E there exists the largest connected set containing a.

Proof. Indeed, consider the set

∪ {A ⊂ E | a ∈ A and A is connected } .

It is connected and contains a.

Definition 5.10 (Components of a topological space).
The maximal connected subsets of the topological space E are called compo-
nents of E.

Proposition 5.11.
Any component of a topological space is a closed set.

Proof. Indeed if C is a component of a topological space E, the its closure C

is connected, and because of the maximal property we have C = C.

Remark 5.12.
If a topological space has �nitely many components, then those components are
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not only closed, but open sets as well. However if the number of components is
not �nite, then it may happen that the components are not open sets. Indeed,
let us consider the set Q ⊂ R with the subspace topology. The maximal
connected components are the one-point sets. On the other hand, those sets
are not open sets.
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5.2 Path-connectedness

Definition 5.13 (Paths of a topological space).
A path in a topological space is a continuous map f : [0, 1] → E. f(0) is the
starting point, f(1) is the ending point of the path f. The path is called loop
if f(0) = f(1).

Definition 5.14.
If f and g are path of E and f(1) = g(0), then let f ⋆ g be the product of the
two path de�ned as follows:

f ⋆ g(t) =


= f(2t), 0 ≤ t ≤ 1

2

= g(2t− 1),
1

2
≤ t ≤ 1

Lemma 5.15 (Gluing/pasting rule).
If E = C1∪· · ·∪Cn where the sets Ci are closed, and the restriction of f : E → Y

on each Ci is continuous, then f is continuous.
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Proof. We show that the preimage of any closed set is closed. Let H be a
closed set. Then

f−1(H) = ∪n
i=1(f|Ci

)−1(H),

where the ith preimage is closed in Ci, therefore in E as well. The intersection
of �nitely many closed sets is also closed.

Remark 5.16.
Using Lemma 5.15 it is clear that f ⋆ g introduced in De�nition 5.14 is a path
in E.

Definition 5.17.
A topological space E is said to be path connected if every pair of points of E
can be joined by a path in E.

Proposition 5.18.
If E is path connected, then it is also connected.

Proof. Let us �x a point x0 in E. Any x ∈ E can be connected with x0 with
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a path fx. The union of the images of the paths is E, and according to the
proposition 5.3, it is connected.

Remark 5.19.
There connected but not path connected topological spaces. One example on
such topological space, let consider

E := (0, 0) ∪
{(

x, sin
1

x

)}
x∈]0,1[

.

On E ⊂ R2 one considers the subspace topology. Then E is connected but
not path connected. Indeed if one suppose that (0, 0) and (1, sin 1

1
) can be

connected with a continuous path, then one could consider a sequence xn
converging to 0 such that sin(xn) converges to 1. From the continuity of the
sin function this is impossible.

Exercise 5.20 (The continuous image of a path connected topological space).
The continuous image of a path connected topological space is also path con-
nected.
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Indication. Let y0 = f(x0) and y1 = f(x1) be two points in the image and
consider the image of the path connecting x0 and x1. . .

Definition 5.21 (Path connected components).
The path connected components of a topological space are the maximal path
connected subsets.

Remark 5.22 (Path connected and connected partitioning).
The path connected components give partitioning of a topological space. This
partitioning is usually �ner then the partitioning given by connected compo-
nents (see the example in Remark 5.19).

Proposition 5.23.
If E is connected and locally path connected (i.e. any point has a path con-
nected open neighbourhood), then it is path connected.

Proof. From the locally path connected property we get that the path con-
nected component is open, and from the partitioning it is also closed (since its
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complementary set is the union of open sets). It follows that such a component
is open and close at the same time. From the connectedness of E it follows
that the pathconnected component is E.
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