
4 Construction of topologies

4.1 Subspace

Exercise 4.1 (Induced topology on a subset of a tolpological space).
Let (E,O) be a topological space and M ⊂ E. Show that the set OM =
{U ∩M | U ∈ O} is a topology on M.

Hint.

1. ∅ = M ∩ ∅, M = M ∩ E;

2. ∪λ∈Λ(M ∩Uλ) = M ∩ (∪λ∈ΛUλ);

3. ∩n
i=1(M ∩Ui) = M ∩ (∩n

i=1Ui);

Definition 4.2 (Subspace of a topological space).
Let (E,O) be a topological space and M ⊂ E. The topological space (M,OM)
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is called the topological subspace of (E,O).

Exercise 4.3.
Show that

1. CM ⊂ M is closed in M if and only if it can be expressed as CM = C∩M,
where C is closed in E.

2. if A ⊆ M, then the closure A
M
in M is A

M
= A ∩M.

Exercise 4.4 (Characterization of open and closed sets with the induced topol-
ogy).
Show that

1. M is open in E if and only if any open set in M is open in E.

2. M is closed in E if and only if any closed set in M is closed in E.

Exercise 4.5 (Transitivity property).
Let (E,O) be a topological space and M ⊂ N ⊂ E. Let OM be the topology
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induced on M by O and (ON)M the topology induced by ON on M. Show that

(ON)M = OM

Exercise 4.6 (Inherited topological properties).
Show that

1. a subspace of a T0 (resp. T1, T2, T3) space satis�es the T0 (resp. T1, T2, T3)
property;

2. a closed subspace of a T4 space is also a T4 space;

3. a closed subspace of a normal space is normal;

4. a subspace of a metrizable space is also metrizable.

Exercise 4.7.
Show that the topological subspace of a separable space is not necessarily
separable.

Hint. Consider a non-countable set E and chose a particular point x0 ∈ E.
Then O = {U | x0 ̸∈ U } ∪ {E }. Then the topology O is separable, because
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x0 = E however, M := E \ x0 considered as a subspace of E is not separable.
(The induced topology on M is the discrete topology.)

Notation 4.8 (The restriction of a function).
If M ⊂ E and f : E → F, then f|

M
: M −→ F denotes the restriction of f on M.

Proposition 4.9 (The restriction of a continuous function).
If x ∈ M and f : E −→ F is continuous at x ∈ E, then the restriction f|

M
is also

continuous at x.

Proof. For any open neighbourhood V of f(x) there exists an open neighbour-
hood U ∈ O(x), such that f(U) ⊂ V. It follows that UM := U ∩M is an open
neighbourhood of x in M such that f|

M
(UM) ⊂ V.

Corollary 4.10.
The restriction of a continuous function is a continuous function (with respect
to the subspace topology).

Corollary 4.11.
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� The subspace of a T3a space is also T3a.

� The subspace of a completely regular space is also regular.
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4.2 Quotient space

Let (X,O) be a topological space and ∼ an equivalence relation on X. The
quotient set Y = X/∼ is the set of equivalence classes of the elements of X.
The equivalence class of x is denoted by [x] and the canonical projection is
denoted as q : X → Y, q(x) = [x]. The quotient topology on the quotient space
is introduced to be q : X → Y a continuous map: U ⊂ Y is open with respect
to the quotient topology if q−1(U) ∈ OX:

O∼ :=
{
q−1(U) | U ⊂ Y

}
.

Exercise 4.12.
Show that O∼ is a topology on Y = X/∼.
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4.3 Product space

Let (Ei,Oi) be a topological space for any i ∈ I and consider Eπ = Πi∈IEi. For
any x ∈ E we have x = (xi)i∈I, where xi ∈ Ei, i ∈ I. We not by pi the ith
projection: pi : Eπ → Ei where pi(x) = xi.

Theorem and definition 4.13.
On the product space Eπ = Πi∈IEi the family of sets

B :=

{⋂
j∈J

p−1
j (Uj)

∣∣ J is �nite, Uj ∈ Oj

}
forms a basis of a topology. This topology, denoted as Oπ, is the most coarser
topology on the product space satisfying the property that each projection
pi : E −→ Ei i ∈ I is a continuous map. This topology is called the product
topology. The elements of B will be called elementary open sets.

Exercise 4.14.
Let consider the case when I = { 1, 2 }, E1 = E2 = R, Eπ = R× R = R2.
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1. Draw the pictures of the elementary open sets in R2.

2. Show that the product topology and the natural topology (determined
by the standard metric) coincide.

Exercise 4.15.
Let consider the case when I = { 1, . . . , n }, Ei = R, Eπ = R × · · · × R = Rn.
Show that the product topology and the natural topology (determined by the
standard metric) of Rn coincide.

Proposition 4.16 (Functions with image in a product space).
Let (F,OF) be a topological space and consider the function

f : F −→ Eπ = Π
i∈IEi

with value in the product space. We denote for any i ∈ I the coordinate
function fi = pi ◦ f of the function f. Then f is continuous if and only if the
functions fi are continuous (i ∈ I).

Indication.

62



� If f is continuous, then fi = pi◦f is a composition of continuous functions,
therefore it is also continuous.

� Let V ∈ B be an elementary open set in the product space. If V =
∩

j∈Jp
−1
j (Uj) then:

f−1(V) = f−1
(
∩

j∈Jp
−1
j (Uj)

)
= ∩

j∈Jf
−1
(
p−1
j (Uj)

)
= ∩

j∈J

(
f−1
j (Uj)

)
which is an open set, since the functions fj are continuous. Since the
preimages of a basis are open sets, we get that f is continuous (see Corol-
lary 2.4).

Exercise 4.17.
A topological space E is Hausdor� separable if and only if the diagonal

∆E = {(x, x) | x ∈ E} (3)

is closed in the product space E× E.
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Indication. The diagonal ∆E is closed if and only if the complementary set
(E× E) \ ∆E is open in E× E.⇒) Let us suppose that ∆E is closed. Then for any x ̸= y the set (E×E) \∆E

is an open neighbourhood of (x, y). Since on the elementary sets form a
basis of the topology, there exists an elementary set U×V (U and V are
open in E) such that

(x, y) ∈ U× V and U× V ⊂ (E× E) \ ∆E

Then U ∩ V = ∅, x ∈ U, y ∈ V, that is E satis�es the T2 property that is
Hausdor� separable.⇐) Let us suppose that E satis�es the Hausdor� property. Then for any
x ̸= y, there exists Ux and Vy open set in E, such that Ux∩Vy = ∅. Then
Ux × Vy is an open neighbourhood of (x, y) in E× E and

(Ux × Vy) ∩ ∆E = ∅.
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It follows that

(E× E) \ ∆E ⊂
⋃
x ̸=y

(Ux × Vy) ⊂ (E× E) \ ∆E

that is ⋃
x ̸=y

(Ux × Vy) = (E× E) \ ∆E

which shows that

Proposition 4.18 (Closed graph theorem).
If f : E −→ F is a continuous function into a Hausdor� separable topological
space F, then its graph

Gf =
{
(x, f(x)) | x ∈ E

}
is a closed set in E× F.
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Proof. Let g : E × F −→ F × F be the function de�ned as g(x, y) = (f(x), y).
Since the coordinate functions of g are continuous, then g is continuous (see
Proposition 4.16). It follows that Gf = g−1(∆F) is closed.

Proposition 4.19 (Prolongation of equality with a continous function).
Let h and g two continuous functions on E with values in F, where F is Haus-
dor� separable. If there exists a dense subset A ⊂ E where h(x) = g(x) for
any x ∈ A, then h ≡ g, that is h(x) = g(x) for any x ∈ E.

Proof. Let
f : E −→ F× F f(x) = (h(x), g(x)).

Since the coordinate functions of f are continuous, therefore f is continuous
(Proposition 4.16), and f−1(∆F), that is the points, where g and h are equal,
is closed containing A. It follows that f−1(∆F) contains also A, and we have

A ⊂ A = E ⊂ f−1(∆F) ⊂ E.
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Exercise 4.20 (Prolongation of an inequality with a continous function).
Let h and g be two function de�ned on E with value in R. If there exists dense
subset A ⊂ E where h(x) ≤ g(x) for any x ∈ A, then the inequality holds for
any x ∈ E.

Proof. Let B = {x ∈ E | h(x) ≤ g(x)}. Then A ⊂ B. Let us consider the
following two functions:

E −→ R× R R× R −→ R
x −→ (h(x), g(x)) λ× µ −→ λ− µ

The composition of the two functions is also continuous. Consider the preim-
age of the closed set [0,+∞).
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