4 Construction of topologies

4.1 Subspace

Exercise 4.1 (Induced topology on a subset of a tolpological space).
Let (E,O) be a topological space and M C E. Show that the set Oy =
{UNM | Ue O} is a topology on M.

Hint.
1.0=MnO, M=MnE
2. Uanena (M N Uy) = M N (Upealn);
3. ML, (MNUy) =Mn (N, W);
]

Definition 4.2 (Subspace of a topological space).
Let (E, O) be a topological space and M C E. The topological space (M, Om)

55



is called the topological subspace of (E, O).

Exercise 4.3.
Show that

1. Cm C M s closed in M if and only if it can be expressed as Cyy = CNM,
where C 1s closed in E.

2. if A C M, then the closure AVinMis A" =ANM.

Exercise 4.4 (Characterization of open and closed sets with the induced topol-

ogy).
Show that

1. M is open in E if and only if any open set in M is open in E.
2. M 1s closed in E if and only if any closed set in M 1is closed in E.

Exercise 4.5 (Transitivity property).
Let (E,O) be a topological space and M C N C E. Let Opm be the topology
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induced on M by O and (On)m the topology induced by Oy on M. Show that

(OnIM = Om

Exercise 4.6 (Inherited topological properties).
Show that

1. a subspace of a Ty (resp. Tq, T2, T3) space satisfies the Ty (resp. Ty, Ty, T3)
property;

2. a closed subspace of a T4 space is also a I space;

3. a closed subspace of a normal space is normal;

4. a subspace of a metrizable space is also metrizable.

Exercise 4.7.
Show that the topological subspace of a separable space is not necessarily
separable.

Hint. Consider a non-countable set E and chose a particular point xy € E.
Then O = {U|xo &€ U} U{E}. Then the topology O is separable, because
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xo = E however, M := E \ x; considered as a subspace of E is not separable.
(The induced topology on M is the discrete topology.) ]

Notation 4.8 (The restriction of a function).
If MCEandf:E—F, then f|, : M — F denotes the restriction of f on M.

Proposition 4.9 (The restriction of a continuous function).
If x € M and f: E — T is continuous at x € E, then the restriction f|,, is also
continuous at x.

Proof. For any open neighbourhood V of f(x) there exists an open neighbour-
hood U € O(x), such that f(U) C V. It follows that Uy, := U N M is an open
neighbourhood of x in M such that f| (Um) C V. ]

Corollary 4.10.

The restriction of a continuous function is a continuous function (with respect
to the subspace topology).

Corollary 4.11.
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e The subspace of a T3, space is also Ts,.
e The subspace of a completely regular space is also regular.
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4.2 (Quotient space

Let (X, O) be a topological space and ~ an equivalence relation on X. The
quotient set Y = X/~ is the set of equivalence classes of the elements of X.
The equivalence class of x is denoted by [x] and the canonical projection is
denoted as q: X = Y, q(x) = [x]. The quotient topology on the quotient space
1s 1ntroduced to be q : X — Y a continuous map: U C Y 1s open with respect
to the quotient topology if ' (U) € Ox:

O.={q ' (W|UcyY}.

Exercise 4.12.
Show that O. is a topology on Y = X/~.
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4.3 Product space

Let (Ei, O;) be a topological space for any i € I and consider E,, = TT;¢;E;. For
any x € E we have x = (xi)ic1, where x; € E;, 1 € I. We not by p; the ith
projection: p;: E; — E; where pi(x) = x4.

Theorem and definition 4.13.
On the product space E,; = Il;cE; the family of sets

B = {ﬂpj1(uj) ‘ J 1s finite, U; € C”)j}
€]
forms a basis of a topology. This topology, denoted as Oy, is the most coarser
topology on the product space satisfying the property that each projection

pi: B — Ei 1 € I 1s a continuous map. This topology 1s called the product
topology. The elements of 5 will be called elementary open sets.

Exercise 4.14.
Let consider the case when I ={1,2}, [y =E, =R, E, =R x R =R2.
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1. Draw the pictures of the elementary open sets in R?.

2. Show that the product topology and the natural topology (determined
by the standard metric) coincide.

Exercise 4.15.

Let consider the case when I ={1,...,n}, E;, =R, E, =R x --- x R = R™
Show that the product topology and the natural topology (determined by the
standard metric) of R™ coincide.

Proposition 4.16 (Functions with image in a product space).
Let (F, Of) be a topological space and consider the function

f:F— E.=T1_FE

with value in the product space. We denote for any 1 € I the coordinate
function f; = p; o f of the function f. Then f is continuous if and only if the
functions f; are continuous (i € I).

Indication.
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e If f1s continuous, then f; = p;of 1s a composition of continuous functions,
therefore i1t 1s also continuous.

e et V € B be an elementary open set in the product space. If V =
ﬂjelpj_1(uj) then:

V) = 17 (0ygpy (W)= N 7 (py (W) = Ny (17 (W)

which is an open set, since the functions f; are continuous. Since the
preimages of a basis are open sets, we get that f is continuous (see Corol-

lary 2.4).
[]
Exercise 4.17.
A topological space E 1s Hausdorff separable if and only if the diagonal
Ae ={(x,x) | x € E} (3)

is closed in the product space E x E.
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Indication. The diagonal Ag is closed if and only if the complementary set
(ExE)\Afisopenin E x E.

=) Let us suppose that Ag is closed. Then for any x # y the set (E X E)\ Ag
is an open neighbourhood of (x,y). Since on the elementary sets form a
basis of the topology, there exists an elementary set U x V (U and V are
open in E) such that

(x,y) eUxV and UxVC(ExE)\Ae

Then UNV =10, x € U, y € V, that is E satisfies the T, property that is
Hausdorff separable.

&) Let us suppose that E satisfies the Hausdorff property. Then for any
x # Y, there exists Uy and V,, open set in E, such that U, NV, = (. Then
U, x Vy is an open neighbourhood of (x,y) in E x E and

(Uy x Vi) N Ag = ().
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It follows that

ExE)\AeC [ J(UxxVy) C(ExE)\Ag
X7y
that 1s
J U x V) = (Ex E)\ A
X7#Y
which shows that

Proposition 4.18 (Closed graph theorem).
If f: E — F i1s a continuous function into a Hausdorff separable topological

space F, then its graph
Gr={(x,f(x)) | x € E}

1s a closed set in E x F.
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Proof. Let g: E x F — F x F be the function defined as g(x,y) = (f(x),y).
Since the coordinate functions of g are continuous, then g is continuous (see
Proposition 4.16). It follows that G = g~ '(Af) is closed. []

Proposition 4.19 (Prolongation of equality with a continous function).

Let h and g two continuous functions on E with values in F, where F 1s Haus-
dorff separable. If there exists a dense subset A C E where h(x) = g(x) for
any x € A, then h = g, that is h(x) = g(x) for any x € E.

Proof. Let
f:E— FxF f(x) = (h(x), g(x)).

Since the coordinate functions of f are continuous, therefore f is continuous
(Proposition 4.16), and f~'(Af), that is the points, where g and h are equal,
is closed containing A. It follows that f~'(Af) contains also A, and we have

ACA=Ecf(A}) CE.
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Exercise 4.20 (Prolongation of an inequality with a continous function).
Let h and g be two function defined on E with value in R. If there exists dense
subset A C E where h(x) < g(x) for any x € A, then the inequality holds for
any x € E.

Proof. Let B = {x € E | h(x) < g(x)}. Then A C B. Let us consider the
following two functions:

E— RxR RxR — R
x — (h(x), g(x)) AX P — A—p

The composition of the two functions is also continuous. Consider the preim-
age of the closed set [0, +00). []
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