4 Construction of topologies

4.1 Subspace

Exercise 4.1 (Induced topology on a subset of a tolpological space). Let (E, \mathcal{O}) be a topological space and $M \subset E$. Show that the set $\mathcal{O}_M = \{U \cap M \mid U \in \mathcal{O}\}$ is a topology on M.

Hint.

1. $\emptyset = M \cap \emptyset$, $M = M \cap E$;

2.
$$\cup_{\lambda \in \Lambda} (M \cap U_{\lambda}) = M \cap (\cup_{\lambda \in \Lambda} U_{\lambda});$$

3. $\cap_{i=1}^{n}(M \cap U_{i}) = M \cap (\cap_{i=1}^{n}U_{i});$

Definition 4.2 (Subspace of a topological space). Let (E, \mathcal{O}) be a topological space and $M \subset E$. The topological space (M, \mathcal{O}_M) is called the topological subspace of (E, \mathcal{O}) .

Exercise 4.3.

Show that

- 1. $C_M \subset M$ is closed in M if and only if it can be expressed as $C_M = C \cap M$, where C is closed in E.
- 2. if $A \subseteq M$, then the closure \overline{A}^M in M is $\overline{A}^M = \overline{A} \cap M$.

Exercise 4.4 (Characterization of open and closed sets with the induced topology).

Show that

- 1. M is open in E if and only if any open set in M is open in E.
- 2. M is closed in E if and only if any closed set in M is closed in E.

Exercise 4.5 (Transitivity property). Let (E, \mathcal{O}) be a topological space and $\mathcal{M} \subset \mathcal{N} \subset E$. Let $\mathcal{O}_{\mathcal{M}}$ be the topology induced on M by \mathcal{O} and $(\mathcal{O}_N)_M$ the topology induced by \mathcal{O}_N on M. Show that

 $(\mathcal{O}_N)_M=\mathcal{O}_M$

Exercise 4.6 (Inherited topological properties).

Show that

- 1. a subspace of a T_0 (resp. T_1 , T_2 , T_3) space satisfies the T_0 (resp. T_1 , T_2 , T_3) property;
- 2. a closed subspace of a T_4 space is also a T_4 space;
- 3. a closed subspace of a normal space is normal;
- 4. a subspace of a metrizable space is also metrizable.

Exercise 4.7.

Show that the topological subspace of a separable space is not necessarily separable.

Hint. Consider a non-countable set E and chose a particular point $x_0 \in E$. Then $\mathcal{O} = \{ U \mid x_0 \notin U \} \cup \{ E \}$. Then the topology \mathcal{O} is separable, because $\overline{x_0} = E$ however, $M := E \setminus x_0$ considered as a subspace of E is not separable. (The induced topology on M is the discrete topology.)

Notation 4.8 (The restriction of a function). If $M \subset E$ and $f: E \to F$, then $f|_M : M \longrightarrow F$ denotes the restriction of f on M.

Proposition 4.9 (The restriction of a continuous function). If $x \in M$ and $f : E \longrightarrow F$ is continuous at $x \in E$, then the restriction $f|_{M}$ is also continuous at x.

Proof. For any open neighbourhood V of f(x) there exists an open neighbourhood $U \in \mathcal{O}(x)$, such that $f(U) \subset V$. It follows that $U_M := U \cap M$ is an open neighbourhood of x in M such that $f|_M(U_M) \subset V$.

Corollary 4.10.

The restriction of a continuous function is a continuous function (with respect to the subspace topology).

```
Corollary 4.11.
```

- The subspace of a T_{3a} space is also T_{3a} .
- The subspace of a completely regular space is also regular.

4.2 Quotient space

Let (X, \mathcal{O}) be a topological space and \sim an equivalence relation on X. The quotient set $Y = X/\sim$ is the set of equivalence classes of the elements of X. The equivalence class of x is denoted by [x] and the canonical projection is denoted as $q: X \to Y$, q(x) = [x]. The quotient topology on the quotient space is introduced to be $q: X \to Y$ a continuous map: $U \subset Y$ is open with respect to the quotient topology if $q^{-1}(U) \in O_X$:

$$\mathcal{O}_{\sim} := \left\{ \, \mathfrak{q}^{-1}(\mathfrak{U}) \mid \mathfrak{U} \subset \mathsf{Y} \, \right\}.$$

Exercise 4.12.

Show that \mathcal{O}_{\sim} is a topology on $Y = X/\sim$.

4.3 Product space

Let (E_i, \mathcal{O}_i) be a topological space for any $i \in I$ and consider $E_{\pi} = \prod_{i \in I} E_i$. For any $x \in E$ we have $x = (x_i)_{i \in I}$, where $x_i \in E_i$, $i \in I$. We not by p_i the ith projection: $p_i : E_{\pi} \to E_i$ where $p_i(x) = x_i$.

Theorem and definition 4.13.

On the product space $E_{\pi}=\Pi_{i\in I}E_i$ the family of sets

$$\mathcal{B} := \left\{ igcap_{j \in J} p_j^{-1}(U_j) \ \big| \ J \ ext{is finite}, \ U_j \in \mathcal{O}_j
ight\}$$

forms a basis of a topology. This topology, denoted as \mathcal{O}_{π} , is the most coarser topology on the product space satisfying the property that each projection $p_i : E \longrightarrow E_i \ i \in I$ is a continuous map. This topology is called the product topology. The elements of \mathcal{B} will be called elementary open sets.

Exercise 4.14.

Let consider the case when $I = \{1, 2\}, E_1 = E_2 = \mathbb{R}, E_{\pi} = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

- 1. Draw the pictures of the elementary open sets in \mathbb{R}^2 .
- 2. Show that the product topology and the natural topology (determined by the standard metric) coincide.

Exercise 4.15.

Let consider the case when $I = \{1, ..., n\}$, $E_i = \mathbb{R}$, $E_{\pi} = \mathbb{R} \times \cdots \times \mathbb{R} = \mathbb{R}^n$. Show that the product topology and the natural topology (determined by the standard metric) of \mathbb{R}^n coincide.

Proposition 4.16 (Functions with image in a product space). Let (F, \mathcal{O}_F) be a topological space and consider the function

$$f: F \longrightarrow E_{\pi} = \Pi_{i \in I} E_i$$

with value in the product space. We denote for any $i \in I$ the coordinate function $f_i = p_i \circ f$ of the function f. Then f is continuous if and only if the functions f_i are continuous $(i \in I)$.

Indication.

- If f is continuous, then $f_i = p_i \circ f$ is a composition of continuous functions, therefore it is also continuous.
- Let $V\in \mathcal{B}$ be an elementary open set in the product space. If $V=\cap_{_{j\in J}}p_{j}^{-1}(U_{j})$ then:

$$f^{-1}(V) = f^{-1}\big(\cap_{j \in J} p_j^{-1}(U_j)\big) = \cap_{j \in J} f^{-1}\big(p_j^{-1}(U_j)\big) = \cap_{j \in J}\big(f_j^{-1}(U_j)\big)$$

which is an open set, since the functions f_j are continuous. Since the preimages of a basis are open sets, we get that f is continuous (see Corollary 2.4).

Exercise 4.17.

A topological space E is Hausdorff separable if and only if the diagonal

$$\Delta_{\mathsf{E}} = \{ (\mathbf{x}, \mathbf{x}) \mid \mathbf{x} \in \mathsf{E} \}$$
(3)

is closed in the product space $\mathsf{E}\times\mathsf{E}.$

Indication. The diagonal Δ_E is closed if and only if the complementary set $(E \times E) \setminus \Delta_E$ is open in $E \times E$.

 $\Rightarrow) \text{ Let us suppose that } \Delta_E \text{ is closed. Then for any } x \neq y \text{ the set } (E \times E) \setminus \Delta_E \\ \text{ is an open neighbourhood of } (x, y). \text{ Since on the elementary sets form a } \\ \text{ basis of the topology, there exists an elementary set } U \times V (U \text{ and } V \text{ are } \\ \text{ open in } E) \text{ such that } \end{cases}$

 $(x,y) \in U \times V$ and $U \times V \subset (E \times E) \setminus \Delta_E$

Then $U \cap V = \emptyset$, $x \in U$, $y \in V$, that is E satisfies the T₂ property that is Hausdorff separable.

 \Leftarrow) Let us suppose that E satisfies the Hausdorff property. Then for any $x \neq y$, there exists U_x and V_y open set in E, such that $U_x \cap V_y = \emptyset$. Then $U_x \times V_y$ is an open neighbourhood of (x, y) in $E \times E$ and

 $(\mathbf{U}_{\mathbf{x}}\times \mathbf{V}_{\mathbf{y}})\cap \Delta_{\mathsf{E}}=\emptyset.$

It follows that

$$(\mathsf{E} \times \mathsf{E}) \setminus \Delta_{\mathsf{E}} \subset \bigcup_{x \neq y} (\mathsf{U}_x \times \mathsf{V}_y) \quad \subset (\mathsf{E} \times \mathsf{E}) \setminus \Delta_{\mathsf{E}}$$

that is

$$\bigcup_{x\neq y} (\mathbf{U}_x \times \mathbf{V}_y) = (\mathbf{E} \times \mathbf{E}) \setminus \Delta_{\mathbf{E}}$$

which shows that

Proposition 4.18 (Closed graph theorem). If $f: E \longrightarrow F$ is a continuous function into a Hausdorff separable topological space F, then its graph

$$G_{f} = \left\{ (x, f(x)) \mid x \in E \right\}$$

is a closed set in $E \times F$.

Proof. Let $g: E \times F \longrightarrow F \times F$ be the function defined as g(x, y) = (f(x), y). Since the coordinate functions of g are continuous, then g is continuous (see Proposition 4.16). It follows that $G_f = g^{-1}(\Delta_F)$ is closed.

Proposition 4.19 (Prolongation of equality with a continuous function). Let h and g two continuous functions on E with values in F, where F is Hausdorff separable. If there exists a dense subset $A \subset E$ where h(x) = g(x) for any $x \in A$, then $h \equiv g$, that is h(x) = g(x) for any $x \in E$.

Proof. Let

$$f: E \longrightarrow F \times F$$
 $f(x) = (h(x), g(x)).$

Since the coordinate functions of f are continuous, therefore f is continuous (Proposition 4.16), and $f^{-1}(\Delta_F)$, that is the points, where g and h are equal, is closed containing A. It follows that $f^{-1}(\Delta_F)$ contains also \overline{A} , and we have

$$A \subset \overline{A} = E \subset f^{-1}(\Delta_F) \subset E.$$

Exercise 4.20 (Prolongation of an inequality with a continous function). Let h and g be two function defined on E with value in \mathbb{R} . If there exists dense subset $A \subset E$ where $h(x) \leq g(x)$ for any $x \in A$, then the inequality holds for any $x \in E$.

Proof. Let $B = \{x \in E \mid h(x) \leq g(x)\}$. Then $A \subset B$. Let us consider the following two functions:

The composition of the two functions is also continuous. Consider the preimage of the closed set $[0, +\infty)$.