
3 Separation axioms

3.1 T0, T1, T2 topological spaces

Definition 3.1 (T0, T1, T2 separation axioms).
A topological space is called

1. T0, if any two distinct points at least one of them has a neighbourhood
that is not a neighbourhood of the other, or equivalently there is an open
set that one point belongs to but the other point does not.

2. T1 if any two distinct points are separated, that is if each of them has a
neighbourhood that is not a neighbourhood of the other;

3. T2 if any two distinct points are separated by neighbourhoods, that is if
they have disjoint neighbourhoods.

Remark 3.2.
The T2 topological space is also called Hausdor� topological space.
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Remark 3.3.
The T1 property is stronger than the T0 property, that is a T1 topological space
is necessarily satisfying T0. Similarly, the T2 property is stronger than the T1
property, that is a T2 topological space is necessarily T1.

Exercise 3.4 (Examples).

1. Show that the indiscrete topology on a set with cardinality greater then
1 is not a T0 topology.

2. Let E be a set with cardinality at least two and let x0 ∈ E be a �xed
point. Than we consider: O = {H | x0 ̸∈ H} ∪ {E}. Show that O is a T0
but not T1 topology on E.

3. T1 but not T2 topology :

Let E be an in�nite set and O the co-�nite topology. Show that O is a
T1 but not T2 topology on E.

4. Show that any metrizable topology is T2 .
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Exercise 3.5 (Characterization of T0 topologies).
A topology is T0 if and only is for any distinct points their closures are di�erent.

Indication.

� Let (E,O) be a T0 topological space and x ̸= y. Then there exists an
open set U which contains one but not the another. For the sake of
concreteness, let say that x ∈ U and y ̸∈ U. Therefore y ∈ E \U, which
is a closed set, therefore {y} ⊂ E \U and x ∈ E \ {y}, therefore {x} ̸= {y}.

� For the converse, let us suppose that we have the property that the
closure of di�erent points are di�erent, that is

x ̸= y =⇒ {x} ̸= {y}.

If x ∈ {y} and y ∈ {x} are both true, then

x ∈ {y} =⇒ {x} ⊂ {y}

y ∈ {x} =⇒ {y} ⊂ {x}

 =⇒ {x} = {y}
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It follows that either x ̸∈ {y} or y ̸∈ {x}. Let say we have x ̸∈ {y}. Then
E \ {y} is an open neighbourhood of x which does not contain y.

Exercise 3.6 (Characterization of T1 topologies).
A topology is T1 if and only if every single-point set is a closed set.

Indication.

� Let (E,O) be a T1 topological space and x ∈ E. Because of the T1 property,
for any y ̸= x there exists an open neighbourhood Uy of y such that
x ̸∈ Uy. Then Fy := E \Uy is closed and contains x. Moreover

∩{ Fy | y ∈ E \ {x}} = {x},

and
{x} ⊂ {x} ⊂ ∩{ Fy | y ̸= x} = {x}

showing that {x} = {x}, that is a one point set {x} is closed.
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� For the converse, let us suppose that every single-point set is a closed
set. If x ̸= y, then E \ { x } is an open neighbourhood of y and E \ {y } is
an open neighbourhood of x.
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3.2 T3 and regular topological spaces

Definition 3.7 (T3 topology).
A topology is T3 if, given any closed set F and any point x that does not belong
to F, there exists an open neighbourhood U of x and an open neighbourhood
V of F that are disjoint. Concisely put, it must be possible to separate x and
F with disjoint open neighborhoods.

Proposition 3.8 (Characterization of T3 topology).
The topological space (E,O) is T3 if and only if for any x ∈ E and x ∈ V ∈ O
there exists U ∈ O, such that x ∈ U ⊂ U ⊂ V.

Proof.

� Let E a T3 topological space, x ∈ E and x ∈ V ∈ O. From T3 there exist
U1 and U2 disjoint open sets such that x ∈ U1 and E−V ⊂ U2. It follows
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U1 ⊂ E−U2 ⊂ V. The set E \U2 is closed, we have

x ∈ U1 ⊂ U1 ⊂ E−U2 ⊂ V,

since from F ⊂ U2 we have E \U2 ⊂ E \ F = V.

� Conversely, let us suppose now that the property of the proposition is
satis�ed. If x ∈ E and F is a closed set such that x ̸∈ F, then x ∈ E−F ∈ O
and by the hypotheses there exists an open set U, such that x ∈ U ⊂
U ⊂ E−F. Then U and E\U are disjoint open sets, and x ∈ U, F ⊂ E−U.

Remark 3.9 (T3 ̸⇒ T0).
From the property T3 does not follow the property T0 (and therefore neither
the property T1, nor the property T2): see Example 3.10.

Example 3.10.
Let us consider the set E = {a, b, c} and O = {∅, {a}, {b, c}, {a, b, c}}. Then O is
a topology on E, and we have the particular property that any open set is also
closed. One can verify that the T3 property is trivially satis�ed. However, the
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topology O does not satisfy the T0 property, since b and c cannot be separated
as required for the T0 property.

Proposition 3.11.
If a topology satis�es both the T0 and T3 properties, then it also satis�es the
T2 property, that is

T0 and T3 =⇒ T2.

Proof. Let (E,O) be a topology satisfying both the T0 and T3 properties. From
the T0 if x and y are di�erent points, then at least one of them has a neighbour-
hood that is not a neighbourhood of the other. For the seek of the argument
let x be a point having a neighbourhood V not containing y. From the T3
property there exists U ∈ Ox, such that U ⊂ V is satis�ed. Then Ux = U and
Uy := V \U, are disjoint open neighbourhood of x ∈ E and y ∈ E.

Remark 3.12 ( T1 and T3) ⇒ T2).
As a corollary of Proposition 3.11 we get T1 and T3 together ensure the property
T2.
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Remark 3.13 (T2 ̸⇒ T3).
The property T2 does not imply the property T3. In order to show this, we
consider the following example: on R we consider the set

K =
{
1, 1

2
, 1
3
, . . .

}
and

A .
= {U ⊂ R | U ∈ O0 or U = U ′ \ K for some U ′ ∈ O0}

where O0 is the natural topology of R and we consider the coarser topology
O such taht A ⊂ O, i.e. the coarser topology in which the elements of A
are open sets. Then, by the construction, this topology contains the elements
of the natural topology O0 of R, therefore it is satisfying the T2 property.
Moreover, Z is closed, since A (and therefore also O) contains R \ Z, that is
the complementary set of Z. One can remark that one can consider as a local
basis for O, one can choose

B(x) =

{
{U | where U ∈ OT(x)} if x ̸= 0;

{UK | UK = U \ K where U ∈ OT(0)} if x = 0.
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One can show that it is impossible to separate the set Z and the point 0 with
disjoint open sets of O, therefore O does not satisfy the property T3.

Definition 3.14 (Regular topology).
A topology called regular if it satis�es T1 and T3 properties.

Remark 3.15.
Using 3.11, any regular topological space satis�es T2. One can show however,
that there are non-regular topological spaces satisfying the T2 property.

Property 3.16.
Metrizable topology is is regular.

Proof. Indeed, let O be a metrizable topology on E. If x ∈ U where U ∈ O,
then there exists ε > 0 such that x ∈ B(x, ε), and it follows that

x ∈ B (x, ε/2) ⊂ B (x, ε/2) ⊂ B (x, ε) ⊂ U.

According to Proposition 3.8, the topology satis�es the T3 property.
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3.3 T3a and completely regular topological spaces

Definition 3.17 (T3a property).
A topological space (E,O) is called regular or T3a if for every closed subset C
of E and every point x in E such that x ̸∈ C there exists a continuous function
f : E → [0, 1] such that f(x) = 0 and f(C) = 1.

Exercise 3.18.
Show that every T3a topology is also T3.

Hint: For x ∈ E and closed C (x ̸∈ C) consider the sets U1 = f−1([0, 1
2
)) and

U2 = f−1((1
2
, 1]) . . .

Definition 3.19 (Completely regular topology).
A topology is called completely regular if it satis�es the T1 and T3a properties.
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3.4 T4 and normal topological spaces

Definition 3.20 (T4 topology).
A topological space (E,O) is called T4 space if for any every two disjoint closed
sets A and B have disjoint open neighborhoods, i.e. there exist U,V ∈ O
disjoint open sets, such that A ⊂ U and B ⊂ V.

Remark 3.21 (T2 ̸⇒ T4).
From the property T4 does not follow the property T0 (and therefore neither
the property T1, nor the property T2): the topology presented in Example 3.10
satis�es T4 but not the T0 property.

Definition 3.22 (Normal topology).
A topological space (E,O) called normal if its topology satis�es the T1 and T4
properties.

Example 3.23.
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Hausdor� separable compact topological space are normal spaces (see Chapter
6: Theorem 6.6, Proposition 6.7).

Exercise 3.24.
Metrizable topological spaces are normal spaces.

Hint. Show that if A are B closed disjoint sets, then the function

f(x) =
d(x,A)

d(x,A) + d(x, B)

is continuous and separates the A and B sets.

Proposition 3.25.
Show that

1. normal spaces are completely regular, that is (T1 + T4) ⇒ (T1 + T3a).

2. normal spaces are Hausdor� separable, that is (T1 + T4) ⇒ T2.

Theorem 3.26 (Urysohn's lemma).
If a topological space (E,O) satis�es the T4 property, then any two disjoint
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closed sets A and B can be separated by a continuous function, that is there
exists a continuous function f : E −→ [0, 1] such that f(a) = 0 for a ∈ A and
f(b) = 1 if b ∈ B.

Remark 3.27.
Urysohn's Lemma shows the rather surprising fact that being able to separate
closed sets from one another with a continuous function is not stronger than
being able to separate them with open sets.

Exercise 3.28.
Show that T0, T1, T2, T3, T4 are topological properties, that is invariant with
respect to a homeomorphism.
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