2 Continuous functions

Definition 2.1 (Continuous function).

• Let (E, \mathcal{O}_E) and (F, \mathcal{O}_F) be topological spaces. The function $f : E \longrightarrow F$ is continuous at $a \in E$ if for any open neighbourhood V of f(a) there exists an open neighbourhood U of $a \in E$ such that

 $f(U) \subset V_{\bullet}$

• The function $f: E \longrightarrow F$ is continuous if it is continuous at any point of E.

Proposition 2.2.

Let $f: E \longrightarrow F$ be continuous at $a \in E$. Then:

$$\mathfrak{a} \in \overline{A} \quad \Rightarrow \quad \mathfrak{f}(\mathfrak{a}) \in \overline{\mathfrak{f}(A)}.$$

Proof. Let V be an open neighbourhood of f(a). Because of the continuity,

there exists a neighbourhood U of a such that $f(U) \subset V$. On the other hand, since $a \in \overline{A}$ there exists $y \in A \cap U$, that is $f(y) \in V$ or

 $V \cap f(A) \neq \emptyset.$

Proposition 2.3 (Equivalent formulation of the continuity property). Let $f: E \longrightarrow F$ be a function. Then the following statement are equivalent:

- 1. f is continuous on E;
- 2. for any open set V of F, the preimage set $f^{-1}(V)$ is open in E;
- 3. for any closed set B of F, the preimage set $f^{-1}(B)$ is closed in E;
- 4. for any set A of E one has $f(\overline{A}) \subset \overline{f(A)}$

Proof.

 $1 \Rightarrow 4$: One obtain immediately by using Proposition 2.2.

4. \Rightarrow 3. Let B be a closed set of F and $B_E=f^{-1}(B).$ Then from 4. we get: $f(\overline{B_E})\subset \overline{f(B_E)}\subset \overline{B}=B$

since B is closed. Then $\overline{B_E} \subset B_E$. On the other hand, $\overline{B_E}$ is the smallest closed set containing B_E , that is $\overline{B_E} \supset B_E$ therefore we get that $B_E = \overline{B_E}$ and B_E is a closed set in E.

3. \Rightarrow 2. For any open set $V \subset F$ we have $F \setminus V$ a close set in F. Then from 3. we get $E \setminus f^{-1}(V) = f^{-1}(F \setminus V)$ is a closed set in E. It follows that $f^{-1}(V)$ is open in E.

2. \Rightarrow 1. At an open neighbourhood V of f(x) one can chose $U = f^{-1}(V)$ which is an open neighbourhood of x, and clearly $f(f^{-1}(V)) \subset V$.

Corollary 2.4 (The continuity porperty with a basis). A function $f: E \to F$ is continuous if and only if there exists a basis \mathcal{B}_F of the topology of F such that the preimages of its elements are open sets in E.

- *Proof.* Let (E, \mathcal{O}_E) , and (F, \mathcal{O}_F) be topological spaces and \mathcal{B}_F a basis of \mathcal{O}_F .
- \Rightarrow) If f : E \longrightarrow F is continuous, then from 2.) of Proposition 2.3 we get that the preimage of any open set is also open. In particular the elements of \mathcal{B}_F are open set, therefore their preimages are open set in E.
- \Leftarrow) Let us now suppose that there \mathcal{B}_F is a basis such that the preimages of their elements are open and let us consider an arbitrary open set $V \in \mathcal{O}_F$ in F. Since \mathcal{B}_F is a basis, there exists V_λ ($\lambda \in \Lambda$) in \mathcal{B}_F such that $V = \bigcup_{\lambda \in \Lambda} B_\lambda$. Since

$$f^{-1}(V) = f^{-1}(\cup_{\lambda \in \Lambda} B_{\lambda}) = \cup_{\lambda \in \Lambda} f^{-1}(B_{\lambda})$$

we get that $f^{-1}(V)$ is open.

Exercise 2.5 (Continuious map between metric spaces).

Let (E_1, d_1) and (E_2, d_2) be metric spaces. Show that the function $f: E_1 \longrightarrow E_2$ is continuous (with respect to the induced topologies) at $x \in E_1$ if and only if for any $\varepsilon > 0$ there exists $\delta > 0$, such that if $y \in E_1$ and $d(x, y) < \delta$ then

 $d(f(x),f(y)) < \epsilon.$

Exercise 2.6 (The continuity property using open balls).

 $f: E_1 \longrightarrow E_2$ is continuous at $x \in E_1$ if and only if for any $\varepsilon > 0$ there exists $\delta > 0$ such that $B(x, \delta)$

 $f(B(x, \delta)) \subset B(f(x), \varepsilon).$

Exercise 2.7 (Continuity with convergent sequences).

Let (E, \mathcal{O}_E) be a metrizable topological space and (F, \mathcal{O}_F) a Hausdorff separable (T_2) topological space. Then the function $f : E \longrightarrow F$ is continuous at $a \in E$ if and only if for any x_n sequence in E converging to a the sequence $f(x_n)$ converges to f(a).

Exercise 2.8 (Composition of continuous functions). Let (E, \mathcal{O}_E) , and (F, \mathcal{O}_F) be (G, \mathcal{O}_G) topological spaces and let $f : E \longrightarrow F$ and $g : F \longrightarrow G$ be functions. If f is continuous at $a \in E$ and g is continuous at $f(a) \in F$, then $g \circ f : E \longrightarrow G$ is continuous at $a \in E$. **Definition 2.9** (Homeomorphism).

- 1. Let (E, \mathcal{O}_E) and (F, \mathcal{O}_F) be topological spaces. The function $f : E \longrightarrow F$ is called *homeomorphism* if it is continuous, invertible, and its inverse is also continuous.
- 2. Two topological spaces are homeomorphic if there exists a homeomorphism between them.

A property P is called *topological* if it is invariant with respect to homeomorphism, that is a topological space satisfies the P if and only if any other topological space homeomorphic with it satisfy the property.