
1 Topological spaces

1.1 Topology, open sets

Definition 1.1 (Topology).
Let E be a nonempty set. We call a family O of subsets of E a topology on E,
if the following properties are satis�ed:

T.1 ∅ ∈ O and E ∈ O;

T.2 if Ui ∈ O for any i ∈ I, then ∪i∈IUi ∈ O;

(the union of arbitrarily many elements of O is also an element of O),

T.3 if U1, . . . Un ∈ O, then U1 ∩ · · · ∩Un ∈ O.
(the intersection of �nitely many elements of O is also an element of O),
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Terminology 1.2 (Topological space, open sets, open neighbourhoods).

1. The pair (E,O) is called a topological space.
2. The elements of O are the open sets with respect to the topology O,
3. The elements of O containing the point x ∈ E are the open neighbour-

hoods of x. The set of open neighbourhoods of x is denoted by O(x). A
set containing an open neighbourhood of x is said a neighbourhood of x.

Exercise 1.3 (Indiscrete topology).
Show that Oin = {∅, E} is a topology on E. This topology is called the indis-

crete topology of E.

Exercise 1.4 (Discrete topology).
Show that Odi = 2E, the set of all subsets of E is a topology on E. This
topology is called the discrete topology of E.

Exercise 1.5 (Co-�nite topology).
Show that Oco = {U ⊂ E | E\U is �nite}∪{∅} is a topology on E. This topology
is called the co-�nite topology of E.
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Definition 1.6 (Comparaison of topologies).
Let O1 and O2 be two topologies on E. We call the topology O2 �ner then the
topology O1, or O1 coarser then the topology O2 if

O1 ⊂ O2.

Remark 1.7.
Topologies are not comparable in general.
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1.2 Closed sets in a topological space

Definition 1.8 (Closed sets).
Let (E,O) be a topological space. A set A ⊂ E is called closed set (with respect
to the topology O), if its complementary set E \A is open, that is E \A ∈ O.

Exercise 1.9 (Properties of closed sets).

Z1. ∅ and E are closed;

Z2. The intersection of arbitrarily many closed set is closed,

Z3. The union of �nitely many closed set is closed.

Theorem and definition 1.10 (The closure of a set).
Let (E,O) be a topological space. If q H ⊂ E, then from (Z.2) we get that
the intersection of all closed set containing H is a closed set. We call this set

the closure of H with respect to the topology O and it is denoted by H
O
or
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simply by O:
H = ∩ { Z | H ⊆ Z and Z is closed}

Remark 1.11.
Two trivial but useful remarks:

1. H is the smallest closed set containing H,

2. H is closed if and only if H = H.

Exercise 1.12.

1. Let Odi = 2E be the discrete topology on E and H ⊂ E. Determine H.

2. Let Oin be the indiscrete topology on E and H ⊂ E. What is H?

Exercise 1.13.
Let us consider the set E = {a, b, c} and O :=

{
∅, {a}, {b, c}, E

}
.

1. Show that O is a topology on E.

2. Find the closure of the set {a }, {b }, { c }.
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Proposition 1.14 (The characterization of the points in H).

x ∈ �H ⇐⇒ ∀ U ∈ O(x) : U ∩H ̸= ∅.
or equivalently,

x ̸∈ �H ⇐⇒ ∃ U ∈ O(x) : U ∩H = ∅.

Proof. By de�nition, if x is not in �H (which is the intersection of closed sets
containing H), there exists at least one closed set F such that H ⊂ F and x ̸∈ F.
Consequently, x ∈ U := E \ F which is an open set and H ∩U = ∅.

Proposition 1.15.
Let (E,O) be a topological space and H1, H2 two arbitrary subset in E. Then
we have the following properties

1. H1 ⊂ H2 =⇒ H1 ⊂ H2;

2. H1 ∩H2 ⊂ H1 ∩H2;

3. H1 ∪H2 = H1 ∪H2.
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Proof. The proof is based on the Proposition 1.14.

1. If x ∈ H1, then for every U ∈ O(x) we have U ∪ H1 ̸= ∅, that is, there
exists y ∈ U∩H1. From the condition 1.) we have also y ∈ H2, therefore
y ∈ U ∩ H2, and U ∩ H2 ̸= ∅. It follows that x ∈ H2. Since x was an
arbitrary element of H1, we get that

H1 ⊂ H2.

2. If x ∈ H1 ∩H2, then for any U ∈ O(x) there exists y ∈ U ∩ (H1 ∩ H2),
that is U ∩ H1 ̸= ∅ and U ∩ H2 ̸= ∅. Consequently, x ∈ H1 and x ∈ H2,

therefore
x ∈ H1 ∩H2.

3. Firstly, H1 ⊂ H1 and H2 ⊂ H2, therefore H1 ∪H2 ⊂ H1 ∪H2 and from 1.
we get that

H1 ∪H2 ⊂ H1 ∪H2 = H1 ∪H2, (1)

since the intersection of two closed set is also a closed set.
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Secondly, H1 ⊂ H1 ∪H2 and H2 ⊂ H1 ∪H2 and from 1. again we obtain

H1 ⊂ H1 ∪H2 and H2 ⊂ H1 ∪H2

and
H1 ∪H2 ⊆ H1 ∪H2 ⊆ H1 ∪H2 (2)

From (1) and (2) we get 3).

Exercise 1.16.

1. Give an example, where H1 ∩H2 = H1 ∩H2,

2. Give an example, where H1 ∩H2 ⊊ H1 ∩H2.

Definition 1.17 (Isolated point of a set).
Let (E,O) be a topological space and H ⊂ E. x ∈ H is an isolated point of H
if there exists U ∈ O(x), such that U ∩H = {x}
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Definition 1.18 (Accumulation point of a set).
Let (E,O) be a topological space and H ⊂ E, x ∈ E is an accumulation point
of H if for any U ∈ O(x), one has (U \ { x }) ∩H ̸= ∅.

Proposition 1.19 (Characterization of closed sets with accumulation points).
A set H is closed if and only if it contains all its accumulation points.

Proof. Let (E,O) be a topological space and H ⊂ E.

� Let H be a close set and a ∈ E an accumulation point of H. Then for
any U ∈ O(a) we have U∩H ̸= ∅, therefore a ∈ H. Since H is closed, we
have H = H, so a ∈ H.

� Let us suppose that H contains its accumulation points. We will shot
that the complementary set of H is open. Indeed, if x ̸∈ H, then it is
not an accumulation point of H, therefore there exists a neighbourhood
Ux ∈ O(x) of x such that Ux∩H = ∅, i.e. Ux ⊂ E \H. This is true for all
x ̸∈ H, therefore we get

E \H = ∪x ̸∈HUx.
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which show that the complementary set of H is open (see T.2 property
of De�nition 1.1 and therefore H is closed.

Exercise 1.20.
If a ∈ H, that is a is an element of the closure of H, then there are two
possibilities:

� a ∈ H,

� a ̸∈ H but a is an accumulation point of H:

It follows that
H = H ∪ { accumulation points of H}

Definition 1.21 (Dense subset).
Let (E,O) be a topological space. The set H ⊂ E is dense with respect to the
topology O if

H = E.

Property 1.22.
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The set H is dense (E,O) be a topological space if and only if for any nonempty
set U ∈ O one has U ∩H ̸= ∅.

Exercise 1.23.

1. Find the dense subsets with respect to the indiscrete topology.

2. Find the dense subsets with respect to the discrete topology.

3. Show that the set of rational numbers Q is dense in R with respect to
the natural topology of R.

Exercise 1.24.
Show that

1. Any nonempty set in the indiscrete topology is dense.

2. Q is dense in R with respect the natural topology, but it is not dense
with respect to the discrete topology.
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1.3 Induced topology on a metric space

Definition 1.25 (Metric and metric space).
The pair (E, d) is called a metric space if E is a nonempty set and is a metric,
that is a function d : E × E → R satisfying the following properties: for any
x, y, z ∈ E

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

Example 1.26 (Canonical metric on R).
On the set of real numbers R the usual metric is de�ned d(x, y) = |x− y|;

Example 1.27 (Metrics on Rn).
On Rn let as consider the following :

1. d(x, y) =
√∑n

i=1(x
i − yi)2
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2. d1(x, y) =
∑n

i=1 |x
i − yi|;

3. d2(x, y) = maxi|x
i − yi|

Example 1.28 (Discrete metric).
Let E be a nonempty set and let us consider

d(x, y) =

{
0, ha x = y

1, ha x ̸= y

Then d is a metric. It is called the discrete metric on E

Example 1.29 (Uniform metric).
Let X be a nonempty set and (E, d) a metric space. We denote by B(X, E) the
set of bounded function de�ned on X with value in E (The function f : X −→ E

is bounded if
δ(f) := sup{d(f(x), f(y)) : x, y ∈ X}

exists.) Let us �x a ∈ E. Then for every x ∈ E and f, g ∈ B(X, E) one has

d(f(x), g(x)) ≤ d(f(x), f(a)) + d(f(a), g(a)) + d(g(a), g(x)) ≤ δ(f) +C+ δ(g),
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therefore d(f, g) := supd(f(x), g(x)) exists. One can show that d is a metric
on B(X, E).

Definition 1.30 (Metric induced on a subset).
Let (E, d) be a metric space and A ⊂ E be a nonempty subset. Then on A one
can consider the metric dA as the restriction of the metric d on A × A. The
metric space (A,dA) is called the subspace of (E, d).

Notation 1.31 (Open ball).
Let x ∈ E and r < 0. B(x, r) denotes the open ball centered at x with radius r:

B(x, r) := {y ∈ E | d(x, y) < r};

Definition 1.32 (Open sets of a metric space).
Let (E, d) be a metric space. The set U ⊂ E is called open set with respect to
the metric d if it is the empty set of if for any x ∈ U there exist r > 0, such
that B(x, r) ⊂ U. The set of open sets with respect to the metric d will be
denoted as Od.
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Exercise 1.33.
Show that in a metric space (E, d) open balls are open sets with respect to the
metric, that is for any x ∈ E and r > 0 one has B(x, r) ∈ Od.

Theorem and definition 1.34 (Topology induced by a metric).
In a metric space (E, d), the sets Od of open sets with respect to the metric d

satis�es the condition (T.1) { (T.3) of De�nition 1.1, therefore Od is a topology
on E. Od is called the topology induced by the metric d.

Definition 1.35 (Metrizable topological space).
A topology O on E is called metrizable if there exists a metric d on E such that
O coincides with the topology Od induced by the metric d, that is O = Od.

Definition 1.36 (Equivalent metrics).
Two metrics d1 and d2 on the set E are called equivalent if the induced metrics
coincide, that is Od1 = Od2.
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Exercise 1.37.
Show that on R the canonical and the discrete metrics (see Example 1.26 and
1.28) are not equivalent.

Exercise 1.38 (Natural topology of Rn).
Show that on Rn the metrics introduced in Example 1.27 are equivalent. This
topology is denoted by OT and called the natural topology of Rn.

Exercise 1.39.
Show that any �nite set in a metric space is closed.

Exercise 1.40.

1. Show that the closed ball B(x, r] := {y ∈ E | d(x, y) ≤ r } is a closed set.

2. Show that the closure of the open ball B(x, r] and the closed ball B(x, r]
are not necessarily equal.

3. Show that in a normed vector space the open ball B(x, r] and the closed
ball B(x, r] are equal.
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1.4 Basis and local basis of a topology

Definition 1.41 (Basis of a topology).
Let (E,O) be a topological space. The subset B of O is a basis of the topology
O if any open sets can be written as a union of elements of B.

Exercise 1.42.
Show that in a metric space the open balls form a basis.

Exercise 1.43.
Let us consider in R the natural topology O and let Im(q) :=]q− 1

m
; q+ 1

m
[ be

the open interval, where m ∈ N and q ∈ Q. Show that the set

B := { Im(q) | m ∈ N,q ∈ Q }

is a countable basis of O.
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Exercise 1.44.
Show that the collection of a subset B in a a topological space (E,O) is a basis
of the topology O if and only if the following two properties are satis�ed:

1. B ⊂ O,

2. for any x ∈ E and U ∈ Ox there exists B ∈ B such that x ∈ V ⊂ U.

Indication.⇒ When B is a basis, then 1. is satis�ed by the de�nition. Moreover if
U ∈ Ox then U can be write as a union ∪λ∈ΛBλ where Bλ are elements of
B. Pick for V one, containing x.⇐ If B satis�es the conditions 1. and 2. then let us consider an arbitrary
U ∈ O. Then

U ⊂ ∪{B | B ∈ B and B ⊂ U} ⊂ U.

that is
U = ∪{B | B ∈ B and B ⊂ U}

21



Proposition 1.45 (Existence of a topology having given B as a basis).
A family B is a basis for some topology if and only if the following two condi-
tions are satis�ed:

1. If U,V ∈ B and x ∈ U ∩ V, then there exists W ∈ B such that x ∈ W ⊂
U ∩ V.

2. B is covering E, that is ∪{B | ∈ B} = E

Proof. � The condition is necessary. Indeed if U V are element of B which
is a basis of a topology, the both are open sets, therefore U ∩ V is an
open neighbourhood of x. Since B is a basis, then from 2.) if Exercise
1.44 there exists W such that x ∈ W ⊂ U ∩ V which show 1.) Moreover,
E is an open set, therefore is can be written as a union of elements of B.
We have therefore 2.) as well.

� The conditions are also su�cient. Let O be the family of subsets of E
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which can be written as a union of of elements of B:
H ∈ O ⇐⇒ H = ∪Bλ.

Then O is a topology. Indeed, the �rst two properties of the topology
(see De�nition 1.1) are trivial:

T.1 poperty: ∅ and E ∈ O,

T.2 poperty: if Hγ ∈ O (γ ∈ Γ) ⇐⇒ ∪γ∈Γ {Hγ | γ ∈ Γ } ∈ O
T.3 poperty: this condition (the �nite intersection of elements of O are
also elements of O) is a bit more interesting to show. Let us consider
U,V ∈ O. If the intersection is not empty, then both can be written as
a union of elements in B. Consequently, there exist BU ∈ B and BV ∈ B
such that x ∈ BU ⊂ U and x ∈ BV ⊂ V. From the second condition of
the proposition, there exists also Wx ∈ B, such that x ∈ Wx ⊂ BU∩BV,

and therefore x ∈ Wx ⊂ U ∩ V. Considering this for all x ∈ U ∩ V we
have

U ∩ V ⊂ ∪x∈U∩WBx ⊂ U ∩ V.

that is U ∩ V = ∪x∈U∩WBx and ∩V ∈ O.
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Exercise 1.46.
Show that if B is a family of subset of E verifying the property that it is
covering of E and it contains all �nite intersections of their elements, then
there exists a topology, such that B a basis for it.

Exercise* 1.47 (The construction of a topology).
Let A be a family of subset of E. Find the most coarser topology such that
the elements of A are open sets.

Indication. Let suppose that E ∈ A (if not, then add it) and consider the
family of subset of E de�ned as

BA = {B ⊂ E| ∃ A1 . . . Ak ∈ A : A1 ∩ · · · ∩Ak = B}

Show that there is a topology OA such that BA is a basis. This topology is
the most coarser topology such that the elements of A are open sets.
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Exercise 1.48.
What is the most coarser topology on R such that

1. the set [0, 1], [2, 3], and [4, 5] are open sets?

2. contains the closed intervals A = { [a, b] | a, b ∈ R } ?

3. contains the open intervals A = { ]a, b[ | a, b ∈ R } ?

Indication.

1. use the result of the previous exercise.

2. use the result of the previous exercise: since the intersections contain the
one-point sets, the topology will be the discrete topology.

3. Show that the answer is the natural topology of R.

Definition 1.49 (Local basis of a topology).
Let O be a topology on E and let x ∈ E. B(x) is called a local basis of the
topology O at x if B(x) ⊂ O(x) and for every open neighbourhood U of x
there exists B ∈ B(x), such that V ⊂ U.
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Example 1.50.
For a topology Od generated by a metric d, the x-centered balls

B(x) := {B(x, r) | r > 0 }

form a local basis at x.

Exercise 1.51 (Basis ⇒ local basis).
Let (E,O) be a topological space. Show that if B is a basis of O and B(x) are
the element of B containing a �xed x ∈ E, then B(x) is a local basis of O at x.

Exercise 1.52 (Local basis at any point ⇒ basis).
Let (E,O) be a topological space. Show that if for any x ∈ E the B(x) is a
local basis of O at x, then the collection B = ∪x∈EB(x) is a basis of O.
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1.5 Countability axioms and their consequences

Definition 1.53 (Countability axioms).
One say that a topological space satis�es the

� �rst countability axiom (shortly: a �rst-countable space) if any points
has a countable local basis,

� second countability axiom (shortly: a second-countable space) if it has a
countable basis,

Remark 1.54.
The second countability axiom implies the �rst countability axiom, that is if a
topology satis�es the second countability axiom, then it also satis�es the �rst
countability axiom.

Exercise 1.55 (Non �rst-countable topology).
Show that on a non-countable set E the co-�nite topology does not satisfy the
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�rst countability axiom.

Exercise 1.56 (First-countable topology).
Show that metric spaces are �rst-countable spaces.

Exercise 1.57 (First-countable but not second-countable topology).
Show that on a non-countable set, the discrete topology satis�es the �rst
countability axiom, but does not satis�es the second countability axiom.

Exercise 1.58 (Second-countable topology).
Show that on R the natural topology satis�es the second countability axiom.

Theorem 1.59 (Lindel�of).
Any open covering of a second-countable topological space contains a countable
sub-covering.

Proof. Let (E,O) be a second-countable topological space and L = {Lλ | λ ∈ Λ}

an open covering of E. There exists a countable B0 = {U1, U2, ...} basis for the
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topology O. We denote

BL = {U | U ∈ B and ∃ L ∈ L : U ⊂ L}

Then BL is countable. Let us consider for each element B ∈ BL of let us choose
one element of L and the family of chosen elements is

L0 = {Lλ(U) | U ∈ BL and U ⊂ Lλ(U)}.

The set L0 is countable. Moreover, we shall show that it is also a covering of
E. Let p ∈ E. Since L is a covering, there exists L ∈ L such that p ∈ L. Since
B is a basis, there exists U ∈ B such that x ∈ U ⊂ L. U is then an element
of BL. Moreover, from the construction of L0 there is an element Lλ(U) in L0

associated to U verifying U ⊂ Lλ(U). Since p ∈ U, we have also p ∈ Lλ(U).
Since p ∈ E is arbitrary, the theorem is proven.

Theorem 1.60 (Alexandrov).
Every basis of a second countable space contains a countable basis.
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Proof. Let on a second-countable topological space (E,O) be B0 a countable
basis such that ∅, E ∈ B0, and B an arbitrary basis. We consider the subset
of B0 × B0 composed by (U,V) pairs such that there exists W ∈ B with
U ⊂ W ⊂ V. This subset is nonempty, since it contains at least the pair (∅, E),
and countable, therefore one can write as a

(U1, V1), . . . , (Un, Vn), . . .

For each n ∈ N let us consider Wn ∈ B with the property Un ⊂ Wn ⊂ Vn, and
consider

B1 = {Wn | n ∈ N}.

It is easy to verify the conditions of Exercise 1.44 are satis�ed. Indeed, the
elements of B1 are open sets. Moreover if G is an open set and p ∈ G, then
(because B0 is a basis) there exists V ∈ B0 such that p ∈ V ⊂ G. Then, (because
B is a basis), there exists W ∈ B such that p ∈ W ⊂ V. then (because B0 is a
basis) there exists U ∈ B0 such that p ∈ U ⊂ W. It follows that (U,V) ∈ B0×B0

is a pair with the property that there an element of B can be written between
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them, therefore there exists n ∈ N, such that (U,V) = (Un, Vn). Moreover, for
the chosen Wn we have

p ∈ Un ⊂ Vn ⊂ Wn ⊂ G,

we have p ∈ Wn ⊂ G showing the condition 2.) of Exercise 1.44.
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1.6 Separability of topological spaces

Definition 1.61.
The topological space (E,O) is called separable if there exists in E a countable
dense subset.

Exercise 1.62.
Second-countable topological spaces are separable.

Indication. Consider a countable basis B and for every nonempty B ∈ B
choose xB ∈ B. Then the set { xB | B ∈ B } is a countable and dense set.

Exercise 1.63.
Show that the converse of the statement of Exercise 1.62 is in general not true,
that is there exists a separable topologyical space which is not satisfying the
second-countablilty axiom.

Indication. Consider the co-�nite topology Oco on a set E. It is separable.
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Indeed if E is �nite, then this is trivial, when E is not �nite, then any in�nite
sets (in particular the countable in�nite sets) are separable.
On the other hand if E is a non-countable set, then (E,Oco) is not a �rst-
countable (therefore not a second-countable) topological space. Indeed if it
would be a a �rst-countable topological space, the let �x x ∈ E and a countable
local basis B(x) in x. Then

∩{U | x ∈ U ∈ O} = {x},

since
x ̸= y ⇐⇒ x ∈ E \ {y} ∈ O.

It follows that
∩{B | x ∈ B ∈ B} = {x},

and
{x} ⊂ ∩{B | x ∈ B ∈ B} ⊂ ∩{U | x ∈ U ∈ O} = {x},

therefore
E \ {x} = ∪{E \ B | x ∈ B ∈ B},
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where on the right-hand side there is a countable union of �nite sets. It follows
that E\ {x} is countable, consequently E is countable, which is a contradiction.

Exercise 1.64.
Separable metrizable space are second countable.

Indication. Let (E,O) be a separable metrizable space and let A ⊂ E be a
countable dense subset. Using open balls de�ned by the metric,

B = {B(x, q)| x ∈ A, q ∈ Q}

is a countable basis for the topology.
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