1 Topological spaces

1.1 Topology, open sets

Definition 1.1 (Topology).

Let E be a nonempty set. We call a family \mathcal{O} of subsets of E a topology on E, if the following properties are satisfied:

T.1 $\emptyset \in \mathcal{O}$ and $E \in \mathcal{O}$;

$$\mathbf{T.2} \text{ if } U_i \in \mathcal{O} \text{ for any } i \in I \text{, then } \cup_{i \in I} U_i \in \mathcal{O} \text{;}$$

(the union of arbitrarily many elements of \mathcal{O} is also an element of \mathcal{O}),

T.3 if $U_1, \ldots U_n \in \mathcal{O}$, then $U_1 \cap \cdots \cap U_n \in \mathcal{O}$.

(the intersection of finitely many elements of \mathcal{O} is also an element of \mathcal{O}),

Terminology 1.2 (Topological space, open sets, open neighbourhoods).

- 1. The pair (E, \mathcal{O}) is called a topological space.
- 2. The elements of \mathcal{O} are the open sets with respect to the topology \mathcal{O} ,
- 3. The elements of \mathcal{O} containing the point $x \in E$ are the open neighbourhoods of x. The set of open neighbourhoods of x is denoted by $\mathcal{O}(x)$. A set containing an open neighbourhood of x is said a neighbourhood of x.

Exercise 1.3 (Indiscrete topology). Show that $\mathcal{O}_{in} = \{\emptyset, E\}$ is a topology on E. This topology is called the *indis*-*crete topology* of E.

Exercise 1.4 (Discrete topology). Show that $\mathcal{O}_{di} = 2^{E}$, the set of all subsets of E is a topology on E. This topology is called the *discrete topology* of E.

Exercise 1.5 (Co-finite topology). Show that $\mathcal{O}_{co} = \{ U \subset E \mid E \setminus U \text{ is finite} \} \cup \{ \emptyset \}$ is a topology on E. This topology is called the co-finite topology of E. **Definition 1.6** (Comparaison of topologies). Let \mathcal{O}_1 and \mathcal{O}_2 be two topologies on E. We call the topology \mathcal{O}_2 finer then the topology \mathcal{O}_1 , or \mathcal{O}_1 coarser then the topology \mathcal{O}_2 if

 $\mathcal{O}_1 \subset \mathcal{O}_2$.

Remark 1.7.

Topologies are not comparable in general.

1.2 Closed sets in a topological space

Definition 1.8 (Closed sets).

Let (E, \mathcal{O}) be a topological space. A set $A \subset E$ is called closed set (with respect to the topology \mathcal{O}), if its complementary set $E \setminus A$ is open, that is $E \setminus A \in \mathcal{O}$.

Exercise 1.9 (Properties of closed sets).

Z1. \emptyset and E are closed;

Z2. The intersection of arbitrarily many closed set is closed,

Z3. The union of finitely many closed set is closed.

Theorem and definition 1.10 (The closure of a set). Let (E, \mathcal{O}) be a topological space. If $q H \subset E$, then from (Z.2) we get that

the intersection of all closed set containing H is a closed set. We call this set the *closure* of H with respect to the topology \mathcal{O} and it is denoted by $\overline{H}^{\mathcal{O}}$ or

simply by \overline{O} :

$\overline{H} = \cap \{ Z \mid H \subseteq Z \text{ and } Z \text{ is closed} \}$

Remark 1.11.

Two trivial but useful remarks:

- 1. \overline{H} is the smallest closed set containing H,
- 2. H is closed if and only if $H = \overline{H}$.

Exercise 1.12.

- 1. Let $\mathcal{O}_{di} = 2^E$ be the discrete topology on E and $H \subset E$. Determine \overline{H} .
- 2. Let \mathcal{O}_{in} be the indiscrete topology on E and $H \subset E$. What is \overline{H} ?

Exercise 1.13.

Let us consider the set $E = \{a, b, c\}$ and $\mathcal{O} := \{\emptyset, \{a\}, \{b, c\}, E\}$.

- 1. Show that \mathcal{O} is a topology on E.
- 2. Find the closure of the set $\{a\}, \{b\}, \{c\}$.

Proposition 1.14 (The characterization of the points in \overline{H}).

$$x \in \overline{H} \iff \forall U \in \mathcal{O}(x) : U \cap H \neq \emptyset.$$

or equivalently,

$$x\not\in\bar{H}\quad\Longleftrightarrow\quad\exists\quad U\in\mathcal{O}(x):\ U\cap H=\emptyset.$$

Proof. By definition, if x is not in \overline{H} (which is the intersection of closed sets containing H), there exists at least one closed set F such that $H \subset F$ and $x \notin F$. Consequently, $x \in U := E \setminus F$ which is an open set and $H \cap U = \emptyset$.

Proposition 1.15.

Let (E, \mathcal{O}) be a topological space and H_1, H_2 two arbitrary subset in E. Then we have the following properties

$$1. \ H_1 \subset H_2 \implies \overline{H_1} \subset \overline{H_2};$$

2.
$$\overline{H_1 \cap H_2} \subset \overline{H_1} \cap \overline{H_2};$$

3. $\overline{H_1 \cup H_2} = \overline{H_1} \cup \overline{H_2}$.

Proof. The proof is based on the Proposition 1.14.

1. If $x \in \overline{H_1}$, then for every $U \in \mathcal{O}(x)$ we have $U \cup H_1 \neq \emptyset$, that is, there exists $y \in U \cap H_1$. From the condition 1.) we have also $y \in H_2$, therefore $y \in U \cap H_2$, and $U \cap H_2 \neq \emptyset$. It follows that $x \in \overline{H_2}$. Since x was an arbitrary element of $\overline{H_1}$, we get that

$\overline{H_1} \subset \overline{H_2}$.

2. If $x \in \overline{H_1 \cap H_2}$, then for any $U \in \mathcal{O}(x)$ there exists $y \in U \cap (H_1 \cap H_2)$, that is $U \cap H_1 \neq \emptyset$ and $U \cap H_2 \neq \emptyset$. Consequently, $x \in \overline{H_1}$ and $x \in \overline{H_2}$, therefore

$$x \in \overline{H_1} \cap \overline{H_2}.$$

3. Firstly, $H_1 \subset \overline{H_1}$ and $H_2 \subset \overline{H_2}$, therefore $H_1 \cup H_2 \subset \overline{H_1} \cup \overline{H_2}$ and from 1. we get that

$$\overline{H_1 \cup H_2} \subset \overline{\overline{H_1} \cup \overline{H_2}} = \overline{H_1} \cup \overline{H_2}, \qquad (1)$$

since the intersection of two closed set is also a closed set.

Secondly, $H_1 \subset H_1 \cup H_2$ and $H_2 \subset H_1 \cup H_2$ and from 1. again we obtain $\overline{H_1} \subset \overline{H_1 \cup H_2}$ and $\overline{H_2} \subset \overline{H_1 \cup H_2}$ and

$$\overline{H_1} \cup \overline{H_2} \subseteq \overline{H_1} \cup \overline{H_2} \subseteq \overline{H_1} \cup \overline{H_2}$$
(2)

From (1) and (2) we get 3).

Exercise 1.16.

- 1. Give an example, where $\overline{H_1} \cap \overline{H_2} = \overline{H_1 \cap H_2}$,
- 2. Give an example, where $\overline{H_1} \cap \overline{H_2} \subsetneq \overline{H_1 \cap H_2}$.

Definition 1.17 (Isolated point of a set). Let (E, \mathcal{O}) be a topological space and $H \subset E$. $x \in H$ is an isolated point of H if there exists $U \in \mathcal{O}(x)$, such that $U \cap H = \{x\}$ **Definition 1.18** (Accumulation point of a set).

Let (E, \mathcal{O}) be a topological space and $H \subset E$, $x \in E$ is an accumulation point of H if for any $U \in \mathcal{O}(x)$, one has $(U \setminus \{x\}) \cap H \neq \emptyset$.

Proposition 1.19 (Characterization of closed sets with accumulation points). A set H is closed if and only if it contains all its accumulation points.

Proof. Let (E, \mathcal{O}) be a topological space and $H \subset E$.

- Let H be a close set and $a \in E$ an accumulation point of H. Then for any $U \in \mathcal{O}(a)$ we have $U \cap H \neq \emptyset$, therefore $a \in \overline{H}$. Since H is closed, we have $H = \overline{H}$, so $a \in H$.
- Let us suppose that H contains its accumulation points. We will shot that the complementary set of H is open. Indeed, if $x \notin H$, then it is not an accumulation point of H, therefore there exists a neighbourhood $U_x \in \mathcal{O}(x)$ of x such that $U_x \cap H = \emptyset$, i.e. $U_x \subset E \setminus H$. This is true for all $x \notin H$, therefore we get

$$\mathsf{E}\setminus\mathsf{H}=\cup_{x\notin\mathsf{H}}\mathsf{U}_x.$$

which show that the complementary set of H is open (see T.2 property of Definition 1.1 and therefore H is closed.

Exercise 1.20.

If $a \in \overline{H}$, that is a is an element of the closure of H, then there are two possibilities:

- $a \in H$,
- $a \notin H$ but a is an accumulation point of H:

It follows that

 $\overline{H} = H \cup \{ \text{ accumulation points of } H \}$

Definition 1.21 (Dense subset).

Let (E, \mathcal{O}) be a topological space. The set $H \subset E$ is *dense* with respect to the topology \mathcal{O} if

$$\overline{H} = E.$$

Property 1.22.

The set H is dense (E, \mathcal{O}) be a topological space if and only if for any nonempty set $U \in \mathcal{O}$ one has $U \cap H \neq \emptyset$.

Exercise 1.23.

- 1. Find the dense subsets with respect to the indiscrete topology.
- 2. Find the dense subsets with respect to the discrete topology.
- 3. Show that the set of rational numbers \mathbb{Q} is dense in \mathbb{R} with respect to the natural topology of \mathbb{R} .

Exercise 1.24.

Show that

- 1. Any nonempty set in the indiscrete topology is dense.
- 2. \mathbb{Q} is dense in \mathbb{R} with respect the natural topology, but it is not dense with respect to the discrete topology.

Definition 1.25 (Metric and metric space).

The pair (E, d) is called a metric space if E is a nonempty set and is a metric, that is a function $d : E \times E \rightarrow \mathbb{R}$ satisfying the following properties: for any $x, y, z \in E$

1.
$$d(x,y) \ge 0$$
 and $d(x,y) = 0$ if and only if $x = y_i$

2.
$$d(x,y) = d(y,x);$$

3.
$$d(x,y) \le d(x,z) + d(z,y)$$
.

Example 1.26 (Canonical metric on \mathbb{R}). On the set of real numbers \mathbb{R} the usual metric is defined d(x, y) = |x - y|;

Example 1.27 (Metrics on \mathbb{R}^n). On \mathbb{R}^n let as consider the following :

1.
$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x^i - y^i)^2}$$

2.
$$d_1(x,y) = \sum_{i=1}^{n} |x^i - y^i|;$$

3. $d_2(x,y) = \max_i |x^i - y^i|$

Example 1.28 (Discrete metric). Let E be a nonempty set and let us consider

$$d(x,y) = \begin{cases} 0, & ha \quad x = y \\ 1, & ha \quad x \neq y \end{cases}$$

Then d is a metric. It is called the *discrete metric* on E

Example 1.29 (Uniform metric).

Let X be a nonempty set and (E, d) a metric space. We denote by $\mathcal{B}(X, E)$ the set of bounded function defined on X with value in E (The function $f : X \longrightarrow E$ is bounded if

$$\delta(f) := \sup\{d(f(x), f(y)) : x, y \in X\}$$

exists.) Let us fix $a \in E$. Then for every $x \in E$ and $f, g \in \mathcal{B}(X, E)$ one has $d(f(x), g(x)) \leq d(f(x), f(a)) + d(f(a), g(a)) + d(g(a), g(x)) \leq \delta(f) + C + \delta(g),$ therefore $d(f,g) := \sup d(f(x),g(x))$ exists. One can show that d is a metric on $\mathcal{B}(X, E)$.

Definition 1.30 (Metric induced on a subset).

Let (E, d) be a metric space and $A \subset E$ be a nonempty subset. Then on A one can consider the metric d_A as the restriction of the metric d on $A \times A$. The metric space (A, d_A) is called the subspace of (E, d).

Notation 1.31 (Open ball).

Let $x \in E$ and r < 0. B(x, r) denotes the open ball centered at x with radius r:

$$B(x,r) := \{y \in E \mid d(x,y) < r\};$$

Definition 1.32 (Open sets of a metric space).

Let (E, d) be a metric space. The set $U \subset E$ is called open set with respect to the metric d if it is the empty set of if for any $x \in U$ there exist r > 0, such that $B(x, r) \subset U$. The set of open sets with respect to the metric d will be denoted as \mathcal{O}_d .

Exercise 1.33.

Show that in a metric space (E, d) open balls are open sets with respect to the metric, that is for any $x \in E$ and r > 0 one has $B(x, r) \in \mathcal{O}_d$.

Theorem and definition 1.34 (Topology induced by a metric). In a metric space (E, d), the sets \mathcal{O}_d of open sets with respect to the metric d satisfies the condition (T.1) - (T.3) of Definition 1.1, therefore \mathcal{O}_d is a topology on E. \mathcal{O}_d is called the topology induced by the metric d.

Definition 1.35 (Metrizable topological space).

A topology \mathcal{O} on E is called metrizable if there exists a metric d on E such that \mathcal{O} coincides with the topology \mathcal{O}_d induced by the metric d, that is $\mathcal{O} = \mathcal{O}_d$.

Definition 1.36 (Equivalent metrics).

Two metrics d_1 and d_2 on the set E are called equivalent if the induced metrics coincide, that is $\mathcal{O}_{d_1} = \mathcal{O}_{d_2}$.

Exercise 1.37. Show that on \mathbb{R} the canonical and the discrete metrics (see Example 1.26 and 1.28) are not equivalent.

Exercise 1.38 (Natural topology of \mathbb{R}^n). Show that on \mathbb{R}^n the metrics introduced in Example 1.27 are equivalent. This topology is denoted by \mathcal{O}_T and called the natural topology of \mathbb{R}^n .

Exercise 1.39.

Show that any finite set in a metric space is closed.

Exercise 1.40.

- 1. Show that the closed ball $B(x,r] := \{y \in E \mid d(x,y) \le r\}$ is a closed set.
- 2. Show that the closure of the open ball B(x, r] and the closed ball B(x, r] are not necessarily equal.
- 3. Show that in a normed vector space the open ball B(x, r] and the closed ball B(x, r] are equal.

Definition 1.41 (Basis of a topology).

Let (E, \mathcal{O}) be a topological space. The subset \mathcal{B} of \mathcal{O} is a basis of the topology \mathcal{O} if any open sets can be written as a union of elements of \mathcal{B} .

Exercise 1.42. Show that in a metric space the open balls form a basis.

Exercise 1.43.

Let us consider in \mathbb{R} the natural topology \mathcal{O} and let $I_m(q) :=]q - \frac{1}{m}; q + \frac{1}{m}[$ be the open interval, where $m \in \mathbb{N}$ and $q \in \mathbb{Q}$. Show that the set

$$\mathcal{B} := \{ I_{\mathfrak{m}}(\mathfrak{q}) \mid \mathfrak{m} \in \mathsf{N}, \mathfrak{q} \in \mathbb{Q} \}$$

is a countable basis of \mathcal{O} .

Exercise 1.44.

Show that the collection of a subset \mathcal{B} in a a topological space (E, \mathcal{O}) is a basis of the topology \mathcal{O} if and only if the following two properties are satisfied:

- 1. $\mathcal{B} \subset \mathcal{O},$
- 2. for any $x \in E$ and $U \in \mathcal{O}_x$ there exists $B \in \mathcal{B}$ such that $x \in V \subset U$.

Indication.

- $\Rightarrow \text{ When } \mathcal{B} \text{ is a basis, then 1. is satisfied by the definition. Moreover if } \\ U \in \mathcal{O}_x \text{ then } U \text{ can be write as a union } \cup_{\lambda \in \Lambda} B_\lambda \text{ where } B_\lambda \text{ are elements of } \\ \mathcal{B}. \text{ Pick for } V \text{ one, containing } x. \end{cases}$
- \Leftarrow If ${\mathcal B}$ satisfies the conditions 1. and 2. then let us consider an arbitrary $U\in {\mathcal O}.$ Then

$$U \subset \cup \{B \mid B \in \mathcal{B} \text{ and } B \subset U\} \subset U.$$

that is

$$U = \cup \{B \mid B \in \mathcal{B} \text{ and } B \subset U\}$$

Proposition 1.45 (Existence of a topology having given \mathcal{B} as a basis). A family \mathcal{B} is a basis for some topology if and only if the following two conditions are satisfied:

- 1. If $U, V \in \mathcal{B}$ and $x \in U \cap V$, then there exists $W \in \mathcal{B}$ such that $x \in W \subset U \cap V$.
- 2. \mathcal{B} is covering E, that is $\cup \{B \mid \in \mathcal{B}\} = E$
- **Proof.** The condition is necessary. Indeed if U V are element of \mathcal{B} which is a basis of a topology, the both are open sets, therefore $U \cap V$ is an open neighbourhood of x. Since \mathcal{B} is a basis, then from 2.) if Exercise 1.44 there exists W such that $x \in W \subset U \cap V$ which show 1.) Moreover, E is an open set, therefore is can be written as a union of elements of \mathcal{B} . We have therefore 2.) as well.
 - \bullet The conditions are also sufficient. Let ${\cal O}$ be the family of subsets of E

which can be written as a union of of elements of \mathcal{B} :

 $\mathsf{H} \in \mathcal{O} \Longleftrightarrow \mathsf{H} = \cup \mathsf{B}_{\lambda}.$

Then \mathcal{O} is a topology. Indeed, the first two properties of the topology (see Definition 1.1) are trivial:

T.1 poperty: \emptyset and $E \in \mathcal{O}$,

T.2 poperty: if $H_{\gamma} \in \mathcal{O} \ (\gamma \in \Gamma) \iff \cup_{\gamma \in \Gamma} \ \{H_{\gamma} \mid \gamma \in \Gamma\} \in \mathcal{O}$

T.3 poperty: this condition (the finite intersection of elements of \mathcal{O} are also elements of \mathcal{O}) is a bit more interesting to show. Let us consider $U, V \in \mathcal{O}$. If the intersection is not empty, then both can be written as a union of elements in \mathcal{B} . Consequently, there exist $B_U \in \mathcal{B}$ and $B_V \in \mathcal{B}$ such that $x \in B_U \subset U$ and $x \in B_V \subset V$. From the second condition of the proposition, there exists also $W_x \in \mathcal{B}$, such that $x \in W_x \subset B_U \cap B_V$, and therefore $x \in W_x \subset U \cap V$. Considering this for all $x \in U \cap V$ we have

 $U \cap V \subset \bigcup_{x \in U \cap W} B_x \subset U \cap V.$ that is $U \cap V = \bigcup_{x \in U \cap W} B_x$ and $\cap V \in \mathcal{O}$.

Exercise 1.46.

Show that if \mathcal{B} is a family of subset of E verifying the property that it is covering of E and it contains all finite intersections of their elements, then there exists a topology, such that \mathcal{B} a basis for it.

Exercise* 1.47 (The construction of a topology).

Let \mathcal{A} be a family of subset of E. Find the most coarser topology such that the elements of \mathcal{A} are open sets.

Indication. Let suppose that $E \in A$ (if not, then add it) and consider the family of subset of E defined as

$$\mathcal{B}_{\mathcal{A}} = \{ B \subset E | \exists A_1 \dots A_k \in \mathcal{A} : A_1 \cap \dots \cap A_k = B \}$$

Show that there is a topology $\mathcal{O}_{\mathcal{A}}$ such that $\mathcal{B}_{\mathcal{A}}$ is a basis. This topology is the most coarser topology such that the elements of \mathcal{A} are open sets.

Exercise 1.48.

What is the most coarser topology on ${\mathbb R}$ such that

- 1. the set [0, 1], [2, 3], and [4, 5] are open sets?
- 2. contains the closed intervals $\mathcal{A} = \{ [a, b] \mid a, b \in \mathbb{R} \}$?
- 3. contains the open intervals $\mathcal{A} = \{]a, b[| a, b \in \mathbb{R} \}$?

Indication.

- 1. use the result of the previous exercise.
- 2. use the result of the previous exercise: since the intersections contain the one-point sets, the topology will be the discrete topology.
- 3. Show that the answer is the natural topology of \mathbb{R} .

Definition 1.49 (Local basis of a topology).

Let \mathcal{O} be a topology on E and let $x \in E$. $\mathcal{B}(x)$ is called a local basis of the topology \mathcal{O} at x if $\mathcal{B}(x) \subset \mathcal{O}(x)$ and for every open neighbourhood U of x there exists $B \in \mathcal{B}(x)$, such that $V \subset U$.

Example 1.50.

For a topology \mathcal{O}_d generated by a metric d, the x-centered balls

 $\mathcal{B}(\mathbf{x}) := \{ \mathbf{B}(\mathbf{x}, \mathbf{r}) \mid \mathbf{r} > \mathbf{0} \}$

form a local basis at x.

Exercise 1.51 (Basis \Rightarrow local basis). Let (E, \mathcal{O}) be a topological space. Show that if \mathcal{B} is a basis of \mathcal{O} and $\mathcal{B}(x)$ are the element of \mathcal{B} containing a fixed $x \in E$, then $\mathcal{B}(x)$ is a local basis of \mathcal{O} at x.

Exercise 1.52 (Local basis at any point \Rightarrow basis). Let (E, \mathcal{O}) be a topological space. Show that if for any $x \in E$ the $\mathcal{B}(x)$ is a local basis of \mathcal{O} at x, then the collection $\mathcal{B} = \bigcup_{x \in E} \mathcal{B}(x)$ is a basis of \mathcal{O} .

1.5 Countability axioms and their consequences

Definition 1.53 (Countability axioms).

One say that a topological space satisfies the

- first countability axiom (shortly: a first-countable space) if any points has a countable local basis,
- second countability axiom (shortly: a second-countable space) if it has a countable basis,

Remark 1.54.

The second countability axiom implies the first countability axiom, that is if a topology satisfies the second countability axiom, then it also satisfies the first countability axiom.

Exercise 1.55 (Non first-countable topology). Show that on a non-countable set E the co-finite topology does not satisfy the

first countability axiom.

Exercise 1.56 (First-countable topology). Show that metric spaces are first-countable spaces.

Exercise 1.57 (First-countable but not second-countable topology). Show that on a non-countable set, the discrete topology satisfies the first countability axiom, but does not satisfies the second countability axiom.

Exercise 1.58 (Second-countable topology). Show that on \mathbb{R} the natural topology satisfies the second countability axiom.

Theorem 1.59 (Lindelöf).

Any open covering of a second-countable topological space contains a countable sub-covering.

Proof. Let (E, \mathcal{O}) be a second-countable topological space and $\mathcal{L} = \{L_{\lambda} \mid \lambda \in \Lambda\}$ an open covering of E. There exists a countable $\mathcal{B}_0 = \{U_1, U_2, ...\}$ basis for the

topology \mathcal{O} . We denote

$$\mathcal{B}_{\mathcal{L}} = \{ U \mid U \in \mathcal{B} \text{ and } \exists L \in \mathcal{L} : U \subset L \}$$

Then $\mathcal{B}_{\mathcal{L}}$ is countable. Let us consider for each element $B \in \mathcal{B}_{\mathcal{L}}$ of let us choose one element of \mathcal{L} and the family of chosen elements is

$$\mathcal{L}_0 = \{L_{\lambda(U)} \mid U \in \mathcal{B}_{\mathcal{L}} \text{ and } U \subset L_{\lambda(U)}\}.$$

The set \mathcal{L}_0 is countable. Moreover, we shall show that it is also a covering of E. Let $p \in E$. Since L is a covering, there exists $L \in \mathcal{L}$ such that $p \in L$. Since \mathcal{B} is a basis, there exists $U \in \mathcal{B}$ such that $x \in U \subset L$. U is then an element of $\mathcal{B}_{\mathcal{L}}$. Moreover, from the construction of \mathcal{L}_0 there is an element $L_{\lambda(U)}$ in \mathcal{L}_0 associated to U verifying $U \subset L_{\lambda(U)}$. Since $p \in U$, we have also $p \in L_{\lambda(U)}$. Since $p \in E$ is arbitrary, the theorem is proven.

Theorem 1.60 (Alexandrov).

Every basis of a second countable space contains a countable basis.

Proof. Let on a second-countable topological space (E, \mathcal{O}) be \mathcal{B}_0 a countable basis such that $\emptyset, E \in \mathcal{B}_0$, and \mathcal{B} an arbitrary basis. We consider the subset of $B_0 \times B_0$ composed by (U, V) pairs such that there exists $W \in \mathcal{B}$ with $U \subset W \subset V$. This subset is nonempty, since it contains at least the pair (\emptyset, E) , and countable, therefore one can write as a

$$(\mathbf{U}_1,\mathbf{V}_1),\ldots,(\mathbf{U}_n,\mathbf{V}_n),\ldots$$

For each $n \in \mathbb{N}$ let us consider $W_n \in \mathcal{B}$ with the property $U_n \subset W_n \subset V_n$, and consider

$$\mathcal{B}_1 = \{W_n \mid n \in \mathbb{N}\}.$$

It is easy to verify the conditions of Exercise 1.44 are satisfied. Indeed, the elements of \mathcal{B}_1 are open sets. Moreover if G is an open set and $p \in G$, then (because \mathcal{B}_0 is a basis) there exists $V \in \mathcal{B}_0$ such that $p \in V \subset G$. Then, (because \mathcal{B} is a basis), there exists $W \in \mathcal{B}$ such that $p \in W \subset V$. then (because \mathcal{B}_0 is a basis) there exists $U \in \mathcal{B}_0$ such that $p \in U \subset W$. It follows that $(U, V) \in \mathcal{B}_0 \times \mathcal{B}_0$ is a pair with the property that there an element of \mathcal{B} can be written between

them, therefore there exists $n\in\mathbb{N},$ such that $(U,V)=(U_n,V_n).$ Moreover, for the chosen \mathcal{W}_n we have

$$p \in U_n \subset V_n \subset W_n \subset G$$
,

we have $p \in W_n \subset G$ showing the condition 2.) of Exercise 1.44.

Definition 1.61.

The topological space (E, O) is called *separable* if there exists in E a countable dense subset.

Exercise 1.62.

Second-countable topological spaces are separable.

Indication. Consider a countable basis \mathcal{B} and for every nonempty $B \in \mathcal{B}$ choose $x_B \in B$. Then the set $\{x_B \mid B \in \mathcal{B}\}$ is a countable and dense set. \Box

Exercise 1.63.

Show that the converse of the statement of Exercise 1.62 is in general not true, that is there exists a separable topologyical space which is not satisfying the second-countablilty axiom.

Indication. Consider the co-finite topology \mathcal{O}_{co} on a set E. It is separable.

Indeed if E is finite, then this is trivial, when E is not finite, then any infinite sets (in particular the countable infinite sets) are separable.

On the other hand if E is a non-countable set, then (E, \mathcal{O}_{co}) is not a firstcountable (therefore not a second-countable) topological space. Indeed if it would be a a first-countable topological space, the let fix $x \in E$ and a countable local basis $\mathcal{B}(x)$ in x. Then

 $\cap \{ U \mid x \in U \in \mathcal{O} \} = \{ x \},$

since

$$x \neq y \iff x \in E \setminus \{y\} \in \mathcal{O}.$$

It follows that

 $\cap \{B \mid x \in B \in \mathcal{B}\} = \{x\},\$

and

$$\{x\} \subset \cap \{B \mid x \in B \in \mathcal{B}\} \subset \cap \{U \mid x \in U \in \mathcal{O}\} = \{x\},\$$

therefore

$$\mathsf{E} \setminus \{x\} = \cup \{\mathsf{E} \setminus \mathsf{B} \mid x \in \mathsf{B} \in \mathcal{B}\},\$$

where on the right-hand side there is a countable union of finite sets. It follows that $E \setminus \{x\}$ is countable, consequently E is countable, which is a contradiction.

Exercise 1.64. Separable metrizable space are second countable.

Indication. Let (E, \mathcal{O}) be a separable metrizable space and let $A \subset E$ be a countable dense subset. Using open balls defined by the metric,

$$\mathcal{B} = \{ B(x,q) | x \in A, q \in \mathbb{Q} \}$$

is a countable basis for the topology.