
4.3 Graphs

We have successfully answered the problems of consistency, uniqueness and
reconstruction of discrete tomography in Section 4.1 in the special case, when
the directions of X-rays are parallel to the coordinate axises of a Cartesian
coordinate system. Now we would like to introduce a method to solve these
problems in the case of arbitrary two lattice directions, which don’t need to
be parallel to the coordinate directions, and hence don’t need to be parallel to
the sides of the picture region. The solution method involves the knowledge
of maximal flows in networks, which are important concepts in graph theory.
Thus we give a brief overview of graph theory in this section and network
flows in the next section with all the necessary tools and definitions.

A simple graph consists of a (non-empty) finite set V of elements called
vertices (or nodes), a finite set E of elements called edges, and a function
f which assigns a subset of two elements of V to every element of E, such
that if e1 6= e2, then f(e1) 6= f(e2). If f(e) = {u, v} for an e ∈ E and some
u, v ∈ V then we say the edge connects the vertices u and v. The requirement
that f(e1) 6= f(e2), whenever e1 6= e2, means that two distinct edges can’t
connect the same pair of vertices. When the edge connects the vertices u and
v, then u and v are called adjacent, and we say u is a neighbor of v, and
v is a neighbor of u. We may also write uv ∈ E and say uv is an edge of the
graph, if there exists e ∈ E such that f(e) = uv. We note that if uv is an
edge, then vu is also an edge and uv is the same edge as vu. A graph can
be visualized in the plane by presenting the vertices as points of the plane
and presenting the edges as curves or line segments connecting the vertices.
It doesn’t matter how we arrange the points, or how the shape of the curves
presenting the edges looks like, the only important thing is to define which
vertices are connected by which edges. The edges may cross each other in
points which are not vertices of the graph.

101



A simple directed graph consists of a (non-empty) finite set V of ele-
ments called vertices (or nodes), a finite set E of elements called edges,
and a function f which assigns an ordered pair of vertices to every element
of E, such that if e1 6= e2, then f(e1) 6= f(e2). We say the vertex u is con-
nected to v if there exists e ∈ E, such that f(e) = (u, v). In this case we may
write uv ∈ E and say uv is and edge of the directed graph, and v is called an
out-neighbor of u, while u is called an in-neighbor of v. If f(e) = (u, v),
then u is called the initial vertex and v is celled the terminal vertex of
the directed edge e. Note that if uv is an edge of a directed graph it may
happen that vu is not an edge. A directed graph can be visualized in the
plane by presenting the vertices as points of the plane and presenting the
edges as directed curves or directed line segments connecting the vertices.

Simple graphs and simple directed graphs are presented above, which con-
cepts help us to state most graph theoretical theorems in a simple form
without the need to care about degenerate situations, while still capable to
investigate many interesting problems. However graphs and directed graphs
can be defined in a more general context if we allow parallel edges and
loops. Two distinct edges of an undirected graph are called parallel if they
connect the same pair of vertices, while two directed edges of a directed graph
are called parallel if they share the initial vertex and the terminal vertex. A
loop is an edge which connects a vertex with itself, or if initial point and
terminal point coincide in the case of a directed graph. Note that if there
are parallel edges in a graph, then we can’t refer to the edges by a (possibly
ordered) pair of vertices, as there can be more than one edges connecting the
same vertices. Below there’s an example of a graph and a directed graph with
parallel edges and loops.

102



A walk in a graph is a finite sequence of edges e1, e2, . . . , em such that ei−1
and ei have a common vertex for all i ∈ {2, 3, . . . ,m}. A (directed) walk
in a directed graph is a finite sequence of edges e1, e2, . . . , em such that the
terminal vertex of ei−1 is the initial vertex of ei for all i ∈ {2, 3, . . . ,m}. Any
walk determines the sequence of vertices v0, v1, . . . , vm, where ei connects the
vertices vi−1 and vi (or vi−1 is connected to vi by the edge ei in the case of a
directed graph). A walk in which all the edges are distinct is called a trail.
If, in addition, all the vertices v0, v1, . . . , vm determined by the path/trail are
distinct (except possibly v0 = vm), then it’s called a path. A path or trail is
closed if v0 = vm, and a closed path is called a cycle. Below we present a
graph on the left and a directed graph on the right. In the graph on the left,
e1, e2, e4, e3, e1, e2, e6 is a walk, but not a trail, e1, e2, e4, e3, e5, e6 is a trail,
but not a path, and e1, e3, e4, e6 is a path. In the directed graph on the right,
e4, e1, e2, e8, e7, e4, e3 is a directed walk, but not a trail, e4, e1, e2, e6, e3 is a
directed trail, but not a path, and e1, e2, e8, e7, e5 is a directed path.

We say that a graph is connected if there exists a path between any pair
of vertices. A connected graph which contains no cycle is called a tree. Tree
are often presented by choosing a vertex, which is called the root, and then

103



positioning the rest of the vertices above the root. Below you can see two
graphs, which present the same tree, but choosing different vertices as roots.

The length of a path or a cycle is the number of edges in it. The distance
of the vertices s and t in a connected graph is the length the shortest path
connecting s and t. Given a vertex of s ∈ V of any (directed) graph there’s
an easy method to find the distance of any further vertex form s, which can
be connected to s with a path. It’s based on assigning labels to the veritces
that give the distances from s.

1. Assign the label zero to the vertex s.

2. Assuming that the highest label of the vertices of the graph is k ∈ Z,
look for the unlabeled neighbors (or out-neighbors) of the vertices with
label k. If there’s at least one such neighbor (or out-neighbor) then
assign the label k + 1 to them.

3. Repeat step 2 as long as possible.

4. If the vertices with the highest label have no unlabeled neighbors (or
out-neighbors) then we found all the distances of the vertices of the
graph which can be connected to s with a path. If there are still unla-
beled vetrices, then those cannot be accessed from s via any path.

104



The labels assigned by the above procedure give the distances form s.
It’s also easy to find a shortest path connecting s to a vetrex t with the
help of these distances. If t has no label, then it cannot be accessed from
s. Otherwise let the label of t be k ∈ Z. Then t must have a neighbor (or
in-neighbor) denoted by vk−1, which has label k − 1. The vertex vk−1 must
have a neighbor (or in-neighbor) denoted by vk−2, which has label k−2. This
can be continued until a vertex v1 with label 1 is found. Then s must be
a neighbor (or in-neighbor) of v1, and hence the vertices s, v1, v2, . . . , vk−1, t
determine a shortest path form s to t.

We show an example of a graph with labels that present the distances from
the vertex v1 (red numbers), and a shortest path connecting v1 and v15. Two
further examples show the distances in two directed graphs from the vertex v1
(red numbers). In the first example we also present a shortest directed path
connecting v1 and v15, while there’s no path from v1 to v15 in the second
example.

105



106



4.4 Networks and flows

A network is a directed graph, where non-negative real numbers are assigned
to the directed edges, which are called capacities. The capacity of the edge e
is denoted by U(e), where U : E → R is the capacity function. A pseudo-
flow is a function Y : E → R with non-negative values, such that Y (e) ≤ U(e)
for all e ∈ E. The real number Y (e) is called the value of the flow on the edge
e, and the only condition what a pseudo-flow must satisfy is that the value
of the flow on any edge e can’t be larger than the capacity of e. The sum
of the flow values on all edges uv, where u is an in-neighbor of v, is called
the inflow at the vertex v, while the sum of the flow values on all edges vu,
where u is an out-neighbor of v, is called the outflow at the vertex v. Given
two specified vetrices s and t, which are called source and sink respectively,
a pseudo-flow is called flow is it satisfies the following conditions:

1. the inflow of the source s is zero,

2. the outflow of the sink t is zero,

3. the inflow and outflow equal to each other for all vertices, except (pos-
sibly) for s and t.

The third condition is called the flow conservation property. The size of
a flow is the outflow of the source s, which equals to the inflow of the sink t
due to the flow conservation property at rest of the vertices. Given a network
and flow, an edge e is called saturated if Y (e) = U(e), otherwise it’s called
unsaturated. A flow is called maximal if there’s no other flow on the same
network, whose size is larger.

Example

Let G be the simple directed graph with vertex set V = {v1, v2, v3, v4, s, t},
where all the directed edges are v1v2, v1v3, v4v2, v4v3, sv1, sv4, v2t, v3t, see
Figure 4.2. Note that we refer to the directed edges with ordered pairs of
vertices, because G is simple. Let the capacities be

U(v1v2) = 3 U(v1v3) = 2 U(v4v2) = 2 U(v4v3) = 4
U(sv1) = 4 U(sv4) = 5 U(v2t) = 3 U(v3t) = 6

The directed graph G together with the capacity function U provides a net-
work. The capacities are denoted by black numbers in brackets next to the

107



corresponding edges in Figure 4.2. We specify two flows Y and Y on this
network as

Y (v1v2) = 3 Y (v1v3) = 2 Y (v4v2) = 2 Y (v4v3) = 4
Y (sv1) = 4 Y (sv4) = 5 Y (v2t) = 3 Y (v3t) = 6

and
Y (v1v2) = 3 Y (v1v3) = 2 Y (v4v2) = 2 Y (v4v3) = 4

Y (sv1) = 4 Y (sv4) = 5 Y (v2t) = 3 Y (v3t) = 6

Figure 4.2

The flow values of Y are presented by red numbers in Figure 4.2 on the
left, and the flow values of Y are presented by red numbers in the same figure
on the right. The edges v1v2, v4v3, sv1, v2t are saturated in the flow Y , while
the rest of the edges are unsaturated. The edges v1v3, v4v3, sv1, sv4, v2t, v3t
are saturated in the flow Y , while the rest of the edges are unsaturated. The
size of the flow Y is 8, and the size of the flow Y is 9. This immediately shows
that the flow Y is not maximal, and it’s easy to see that Y is a maximal flow
as the sum of the capacities of the edges with initial vertex s equals to 9,
which can’t be exceeded by the size of any flow.

An interesting question is how can we decide whether a given flow is max-
imal or not, and how can we find a maximal flow. This problem seem to be
quite challenging for large networks at the first sight, however an easy method
exists to solve it with the help of flow-augmenting paths. Given a directed
graph G, an undirected walk is a finite sequence of edges e1, e2, . . . , em such
that ei−1 and ei have a common vertex for all i ∈ {2, 3, . . . ,m}. Note that the
difference between an undirected walk and a directed walk is that a directed
walk must also satisfy that the terminal vertex of ei−1 is the initial vertex
of ei for all i ∈ {2, 3, . . . ,m}. An undirected trail and undirected path can

108



be defined similarly. Any undirected path determines a sequence of vertices
v0, v1, . . . , vm, where ei connects the vertices vi−1 and vi. Then we say that
the path connects the vertex v0 to the vertex vm. We can assign directions to
the edges ei of the undirected path by defining vi−1 as the initial point and
vi as the terminal point of the edge ei for all i ∈ {1, 2, . . . ,m}. This (possibly
new) direction of the edge ei is called the associated direction determined
by the path e1, e2, . . . , em. An edge ei of an undirected path in a directed
graph is called forward edge if the direction of ei in the directed graph is
the same as the associated direction determined by the path. If ei is not a
forward edge of an undirected path in a directed graph, then it’s called a
backward edge.

Given a network with capacity function U , and given a flow Y , a flow-
augmenting path is an undirected path connecting the source s to the sink
t, which satisfies that Y (e) < U(e) for all forward edges of the path, and
0 < Y (e) for all backward edges of the path. Note that if there’s a flow-
augmenting path for a flow on a network, then we can increase the value of
the flow on forward edges and decrease the value of the flow on the backward
edges by the same positive number without violating the flow preserving
property. If we also don’t want to violate non-negativity and the pseudo-flow
property (which requires Y (e) ≤ U(e) for all edges), then we can decrease
the values of the flow on backward edges only by the minimum of the values
Y (e) for all the backward edges of the flow-augmenting path, and we can
increase the values of the flow on forward edges only by the minimum of
the differences U(e)− Y (e) for all the forward edges of the flow-augmenting
path. Thus let the minimum of these two be called the value of the flow-
augmenting path. Note also that the very first edge and the very last edge
of any flow-augmenting path must be a forward edge, since the inflow of the
source is zero, just as the outflow of the sink is zero. Thus if there exists a
flow-augmenting path for a flow on a network, then increasing the values of
the flow on the forward edges and decreasing the values of the flow on the
backward edges by the value of the flow-augmenting path will result a valid
flow with larger size on the same network. This shows that if there’s a flow-
augmenting path, then the given flow is not maximal. A little more interesting
fact is that the only reason of not being able to find a flow-augmenting path
is that the flow is maximal. This is summarized in the following theorem.

Theorem 13 A flow on a network is maximal if and only if there exists no

109



flow-augmenting path for the flow.

In the example above, presented by Figure 4.3, sv4, v4v2, v2v1, v1v3, v3t is
a flow-augmenting path for the the flow Y . This is highlighted by red in
Figure 4.3 on the left. Note that all these edges are forward edges except
v2v1. The value of the flow on this backward edge is 3. The differences of the
capacities and flow values on the forward edges sv4, v4v2, v1v3, v3t are 1, 2, 1, 1
respectively. The minimum of these values is 1, and then the minimum of 3
and 1 equals to 1. Thus the value of the flow-augmenting path is 1. If we
increase the values of the flow by 1 on the forward edges sv4, v4v2, v1v3, v3t,
and decrease the value of the flow by 1 on the backward edge v2v1, then we
get the valid flow Y (see Figure 4.2 on the right). There’s no flow-augmenting
path for the flow Y , since all edges with initial point s are saturated, and
hence we can’t increase the value of the flow on any of them.

Figure 4.3

Now the only questions we need to answer is how to find a flow-augmenting
path and how to know if there’s no such path. This can be answered easily
with the help of the associated graph. Let G be a network with capacity
function U and let Y be a flow on this network. The associated graph is the
directed graph G′ with the same vertices as G and directed edges are chosen
in the following way:

1. If e is a directed edge of G with zero capacity then it’s deleted from G.

2. If e is a directed edge of G with nonzero capacity and zero flow value,
then e is preserved as a directed edge of G′.

3. If e is an unsaturated directed edge of G with a positive flow value,

110



connecting vertex vi to the vertex vj , then preserving e as a directed
edge of G′, we add a new directed edge e′, which connects vj to vi.

4. If e is a saturated directed edge of G with a positive flow value, con-
necting vertex vi to the vertex vj , then e is deleted form G and replaced
by an directed edge e′, which connects vj to vi.

The associated graph G′, corresponding to the network G and flow Y pre-
sented on the left of Figure 4.3, is shown in the same figure on the right.
There’s no edge in G with zero capacity. The directed edge v4v2 has a nonzero
capacity, but the value of the flow is zero on it, thus it remains a directed
edge in G′. The directed edges v1v3, sv4 and v3t in G are unsaturated with
positive flow values, thus these remain edges of G′, but edges of the opposite
directions are also added, which are v3v1, v4s, tv3. The directed edges v1v2,
v4v3, sv1, v2t in G are saturated with positive flow values, thus these edges
are deleted and replaced by edges of the opposite directions, which are v2v1,
v3v4, v1s, tv2. We discussed in the previous section how to find the shortest
directed path connecting the source s to the sink t in the associated graph
G′. The shortest directed path sv4, v4v2, v2v1, v1v3, v3t is highlighted by red
in Figure 4.3 on the right. Note that we can tell exactly that which edge of G
corresponds to each edge of the directed path in G′. Hence we have a corre-
sponding undirected path in G. If the path in G′ contains an edge which is not
an edge of G, then it defines a backward edge in the corresponding undirected
path, while the rest of the edges define forward edges of the corresponding
undirected path. The way we define the associated graph ensures that undi-
rected path in G, corresponding to any directed path in G′ connecting s to t,
is a flow-augmenting path. The flow-augmenting path corresponding to the
directed path in Figure 4.3 on the right is presented in the same figure on
the left.

Now we can collect all the steps required to find a maximal flow on any
network. Let G be a network with capacity function U .

1. First let Y be the zero flow on the network G, which assigns the value
zero to every directed edge of G. Note that this is a valid flow for any
network G.

2. Create the associated graph G′ for the network G and flow Y .

111



3. If there’s no directed path in G′ connecting the source s to the sink t,
then Y is maximal and the procedure terminates. Otherwise choose a
shortest directed path in G′ connecting the source s to the sink t.

4. Consider the undirected path in G corresponding to the directed path
we’ve chosen in the previous step. This is a flow-augmenting path for
the flow Y .

5. Compute the value of the flow-augmenting path found in the previous
step.

6. Decrease the values of Y on the backward edges, and increase the values
of Y on the forward edges of the flow-augmenting path by the value of
the flow-augmenting path.

7. Repeat steps (2)-(6) as long as possible.

112


