1.2 Switching components

Exercise 1.2.1 Construct the elementary ghost f_{D} for the direction set $D=$ $\left(\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}\right)$, where $\underline{v}_{1}=(1,0), \underline{v}_{2}=(1,-1), \underline{v}_{3}=(3,1)$. Find the switching components f_{D+} and f_{D-} corresponding to f_{D}.

Solution. We have the lattice directions

$$
\underline{v}_{1}=\left(s_{1}, t_{1}\right)=(1,0), \quad \underline{v}_{2}=\left(s_{2}, t_{2}\right)=(1,-1), \quad \underline{v}_{3}=\left(s_{3}, t_{3}\right)=(3,1) .
$$

The picture region of the elementary ghost for the directions D is $[0, m] \times[0, n]$, where

$$
m=\sum_{k=1}^{3} s_{k}=1+1+3=5, \quad \text { and } \quad n=\sum_{k=1}^{3}\left|t_{k}\right|=0+1+1=2
$$

The polynomial corresponding to an arbitrary lattice direction $\underline{v}=(s, t)$ is defined as

$$
p_{\underline{v}}(x, y)= \begin{cases}x^{s} y^{t}-1, & \text { if } s>0, t>0 \\ x^{s}-y^{-t}, & \text { if } s>0, t<0 \\ x-1, & \text { if } s=1, t=0 \\ y-1, & \text { if } s=0, t=1\end{cases}
$$

Now the corresponding polynomials are

$$
p_{\underline{v}_{1}}(x, y)=x-1, \quad p_{\underline{v}_{2}}(x, y)=x-y, \quad p_{\underline{v}_{3}}(x, y)=x^{3} y-1
$$

The product of the above polynomials is

$$
\begin{gathered}
P_{D}(x, y)=p_{\underline{v}_{1}}(x, y) \cdot p_{\underline{v}_{2}}(x, y) \cdot p_{\underline{v}_{3}}(x, y) \\
=(x-1)(x-y)\left(x^{3} y-1\right)=x^{5} y-x^{4} y^{2}-x^{4} y+x^{2} y^{2}-x^{2}+x y+x-y
\end{gathered}
$$

The ghost f_{D} is the picture function, which takes the value at the point $(i, j) \in \mathbb{Z}^{2}$ equal to the coefficient of the term $x^{i} y^{j}$ in the polynomial $P_{D}(x, y)$. Note that if the polynomial doesn't contain the term $x^{i} y^{j}$, then it means only that its coefficient is zero.

Now the coefficient of $x^{0} y^{0}=1$ in $P_{D}(x, y)$ is 0 , which is just the (missing) constant term of $P_{D}(x, y)$. The coefficients of $x^{0} y^{1}=y$ and $x^{0} y^{2}=y^{2}$ are -1 and 0 , respectively. The coefficients of $x^{1} y^{0}=x, x^{1} y^{1}=x y$ and $x^{1} y^{2}=x y^{2}$
are 1,1 and 0 , respectively. The coefficients of $x^{2} y^{0}=x^{2}, x^{2} y^{1}=x^{2} y$ and $x^{2} y^{2}$ are $-1,0$ and 0 , respectively. The coefficients of $x^{3} y^{0}=x^{3}, x^{3} y^{1}=x^{3} y$ and $x^{3} y^{2}$ are 0,0 and 1, respectively. The coefficients of $x^{4} y^{0}=x^{4}, x^{4} y^{1}=x^{4} y$ and $x^{4} y^{2}$ are $0,-1$ and -1 , respectively. The coefficients of $x^{5} y^{0}=x^{5}, x^{5} y^{1}=x^{5} y$ and $x^{5} y^{2}$ are 0,1 and 0 , respectively. Hence the picture function f_{D} takes the following values in the picture region $[0, m] \times[0, n]=[0,5] \times[0,2]$:

$$
\begin{array}{lll}
f_{D}(0,0)=0 & f_{D}(0,1)=-1 & f_{D}(0,2)=0 \\
f_{D}(1,0)=1 & f_{D}(1,1)=1 & f_{D}(1,2)=0 \\
f_{D}(2,0)=-1 & f_{D}(2,1)=0 & f_{D}(2,2)=0 \\
f_{D}(3,0)=0 & f_{D}(3,1)=0 & f_{D}(3,2)=1 \\
f_{D}(4,0)=0 & f_{D}(4,1)=-1 & f_{D}(4,2)=-1 \\
f_{D}(5,0)=0 & f_{D}(5,1)=1 & f_{D}(5,2)=0
\end{array}
$$

This is illustrated in the figure below, where solid red dots denote those points, where the values of f_{D} equal to 1 , solid blue dots denote those points, where the values equal to -1 , and empty dots denote those points, where the values equal to 0 .

The elementary ghost f_{D} can also be presented by the following matrix:

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & -1 & 0 \\
-1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & -1 & 0 & 0 & 0
\end{array}\right)
$$

The two switching components f_{D+} and f_{D-} are defined in the following way. f_{D+} equals to 1 in exactly those points, where f_{D} is 1 , but otherwise f_{D+}
equals to 0 , while f_{D-} equals to 1 in exactly those points, where f_{D} is -1 , but otherwise f_{D-} is 0 . Now f_{D+} and f_{D-} take the following values in the picture region $[0, m] \times[0, n]=[0,5] \times[0,2]$:

$$
\begin{array}{lll}
f_{D+}(0,0)=0 & f_{D+}(0,1)=0 & f_{D+}(0,2)=0 \\
f_{D+}(1,0)=1 & f_{D+}(1,1)=1 & f_{D+}(1,2)=0 \\
f_{D+}(2,0)=0 & f_{D+}(2,1)=0 & f_{D+}(2,2)=0 \\
f_{D+}(3,0)=0 & f_{D+}(3,1)=0 & f_{D+}(3,2)=1 \\
f_{D+}(4,0)=0 & f_{D+}(4,1)=0 & f_{D+}(4,2)=0 \\
f_{D+}(5,0)=0 & f_{D+}(5,1)=1 & f_{D+}(5,2)=0
\end{array}
$$

and

$$
\begin{array}{lll}
f_{D-}(0,0)=0 & f_{D-}(0,1)=1 & f_{D-}(0,2)=0 \\
f_{D-}(1,0)=0 & f_{D-}(1,1)=0 & f_{D-}(1,2)=0 \\
f_{D-}(2,0)=1 & f_{D-}(2,1)=0 & f_{D-}(2,2)=0 \\
f_{D-}(3,0)=0 & f_{D-}(3,1)=0 & f_{D-}(3,2)=0 \\
f_{D-}(4,0)=0 & f_{D-}(4,1)=1 & f_{D-}(4,2)=1 \\
f_{D-}(5,0)=0 & f_{D-}(5,1)=0 & f_{D-}(5,2)=0
\end{array}
$$

The switching component f_{D+} is presented in the figure below on the left, and the switching component f_{D-} is presented on the right. Solid dots denote those points, where the values of f_{D+} or f_{D-} equal to 1 , and empty dots denote those points, where the values equal to 0 .

The switching components f_{D+} and f_{D-} can also be presented by the following binary matrices:

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Exercise 1.2.2 Construct the elementary ghost f_{D} for the direction set $D=$ $\left(\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}, \underline{v}_{4}\right)$, where $\underline{v}_{1}=(0,1), \underline{v}_{2}=(1,2), \underline{v}_{3}=(1,-2), \underline{v}_{4}=(3,2)$. Find the switching components f_{D+} and f_{D-} corresponding to f_{D}.

Solution. We have the lattice directions

$$
\begin{gathered}
\underline{v}_{1}=\left(s_{1}, t_{1}\right)=(0,1), \quad \underline{v}_{2}=\left(s_{2}, t_{2}\right)=(1,2), \\
\underline{v}_{3}=\left(s_{3}, t_{3}\right)=(1,-2), \quad \underline{v}_{4}=\left(s_{4}, t_{4}\right)=(3,2) .
\end{gathered}
$$

The picture region of the elementary ghost for the directions D is $[0, m] \times[0, n]$, where

$$
m=\sum_{k=1}^{4} s_{k}=0+1+1+3=5, \quad \text { and } \quad n=\sum_{k=1}^{4}\left|t_{k}\right|=1+2+2+2=7
$$

The corresponding polynomials are
$p_{\underline{v}_{1}}(x, y)=y-1, \quad p_{\underline{v}_{2}}(x, y)=x y^{2}-1, \quad p_{\underline{v}_{3}}(x, y)=x-y^{2}, \quad p_{\underline{v}_{3}}(x, y)=x^{3} y^{2}-1$
The product of the above polynomials is

$$
\begin{gathered}
P_{D}(x, y)=p_{\underline{v}_{1}}(x, y) \cdot p_{\underline{v}_{2}}(x, y) \cdot p_{\underline{v}_{3}}(x, y) \cdot p_{\underline{v}_{4}}(x, y) \\
=(y-1)\left(x^{2} y-1\right)\left(x-y^{2}\right)\left(x^{3} y^{2}-1\right) \\
=-x^{4} y^{7}+x^{5} y^{5}+x^{4} y^{6}-x^{5} y^{4}+x^{3} y^{5}-x^{4} y^{3}-x^{3} y^{4}+x^{4} y^{2} \\
+x y^{5}-x^{2} y^{3}-x y^{4}+x^{2} y^{2}-y^{3}+x y+y^{2}-x
\end{gathered}
$$

The ghost f_{D} is the picture function, which takes the value at the point $(i, j) \in \mathbb{Z}^{2}$ equal to the coefficient of the term $x^{i} y^{j}$ in the polynomial $P_{D}(x, y)$. Hence the picture function f_{D} takes the following values in the picture region $[0, m] \times[0, n]=[0,5] \times[0,7]:$

$$
\begin{array}{llllll}
f_{D}(0,0)=0 & f_{D}(1,0)=-1 & f_{D}(2,0)=0 & f_{D}(3,0)=0 & f_{D}(4,0)=0 & f_{D}(5,0)=0 \\
f_{D}(0,1)=0 & f_{D}(1,1)=1 & f_{D}(2,1)=0 & f_{D}(3,1)=0 & f_{D}(4,1)=0 & f_{D}(5,1)=0 \\
f_{D}(0,2)=1 & f_{D}(1,2)=0 & f_{D}(2,2)=1 & f_{D}(3,2)=0 & f_{D}(4,2)=1 & f_{D}(5,2)=0 \\
f_{D}(0,3)=-1 & f_{D}(1,3)=0 & f_{D}(2,3)=-1 & f_{D}(3,3)=0 & f_{D}(4,3)=-1 & f_{D}(5,3)=0 \\
f_{D}(0,4)=0 & f_{D}(1,4)=-1 & f_{D}(2,4)=0 & f_{D}(3,4)=-1 & f_{D}(4,4)=0 & f_{D}(5,4)=-1 \\
f_{D}(0,5)=0 & f_{D}(1,5)=1 & f_{D}(2,5)=0 & f_{D}(3,5)=1 & f_{D}(4,5)=0 & f_{D}(5,5)=1 \\
f_{D}(0,6)=0 & f_{D}(1,6)=0 & f_{D}(2,6)=0 & f_{D}(3,6)=0 & f_{D}(4,6)=1 & f_{D}(5,6)=0 \\
f_{D}(0,7)=0 & f_{D}(1,7)=0 & f_{D}(2,7)=0 & f_{D}(3,7)=0 & f_{D}(4,7)=-1 & f_{D}(5,7)=0
\end{array}
$$

This is illustrated in the figure below, where solid red dots denote those points, where the values of f_{D} equal to 1 , solid blue dots denote those points, where the values equal to -1 , and empty dots denote those points, where the values equal to 0 .

The elementary ghost f_{D} can also be presented by the following matrix:

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0 & -1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The switching components f_{D+} and f_{D-} take the following values in the picture region $[0, m] \times[0, n]=[0,5] \times[0,7]$:

$$
\begin{array}{llllll}
f_{D+}(0,0)=0 & f_{D+}(1,0)=0 & f_{D+}(2,0)=0 & f_{D+}(3,0)=0 & f_{D+}(4,0)=0 & f_{D+}(5,0)=0 \\
f_{D+}(0,1)=0 & f_{D+}(1,1)=1 & f_{D+}(2,1)=0 & f_{D+}(3,1)=0 & f_{D+}(4,1)=0 & f_{D+}(5,1)=0 \\
f_{D+}(0,2)=1 & f_{D+}(1,2)=0 & f_{D+}(2,2)=1 & f_{D+}(3,2)=0 & f_{D+}(4,2)=1 & f_{D+}(5,2)=0 \\
f_{D+}(0,3)=0 & f_{D+}(1,3)=0 & f_{D+}(2,3)=0 & f_{D+}(3,3)=0 & f_{D+}(4,3)=0 & f_{D+}(5,3)=0 \\
f_{D+}(0,4)=0 & f_{D+}(1,4)=0 & f_{D+}(2,4)=0 & f_{D+(3,4)=0}(3,4)=0 & f_{D+}(4,4)=0 & f_{D+}(5,4)=0 \\
f_{D+}(0,5)=0 & f_{D+}(1,5)=1 & f_{D+}(2,5)=0 & f_{D+}(3,5)=1 & f_{D+}(4,5)=0 & f_{D+}(5,5)=1 \\
f_{D+}(0,6)=0 & f_{D+}(1,6)=0 & f_{D+}(2,6)=0 & f_{D+}(3,6)=0 & f_{D+}(4,6)=1 & f_{D+}(5,6)=0 \\
f_{D+}(0,7)=0 & f_{D+}(1,7)=0 & f_{D+}(2,7)=0 & f_{D+}(3,7)=0 & f_{D+}(4,7)=0 & f_{D+}(5,7)=0
\end{array}
$$

and

$$
\begin{array}{llllll}
f_{D-}(0,0)=0 & f_{D-}(1,0)=1 & f_{D-}(2,0)=0 & f_{D-}(3,0)=0 & f_{D-}(4,0)=0 & f_{D-}(5,0)=0 \\
f_{D-}(0,1)=0 & f_{D-}(1,1)=0 & f_{D-}(2,1)=0 & f_{D-}(3,1)=0 & f_{D-}(4,1)=0 & f_{D-}(5,1)=0 \\
f_{D-}(0,2)=0 & f_{D-}(1,2)=0 & f_{D-}(2,2)=0 & f_{D-}(3,2)=0 & f_{D-}(4,2)=0 & f_{D-}(5,2)=0 \\
f_{D-}(0,3)=1 & f_{D-}(1,3)=0 & f_{D-}(2,3)=1 & f_{D-}(3,3)=0 & f_{D-}(4,3)=1 & f_{D-}(5,3)=0 \\
f_{D-}(0,4)=0 & f_{D-}(1,4)=1 & f_{D-}(2,4)=0 & f_{D-}(3,4)=1 & f_{D-}(4,4)=0 & f_{D-}(5,4)=1 \\
f_{D-}(0,5)=0 & f_{D-}(1,5)=0 & f_{D-}(2,5)=0 & f_{D-}(3,5)=0 & f_{D-}(4,5)=0 & f_{D-}(5,5)=0 \\
f_{D-}(0,6)=0 & f_{D-}(1,6)=0 & f_{D-}(2,6)=0 & f_{D-}(3,6)=0 & f_{D-}(4,6)=0 & f_{D-}(5,6)=0 \\
f_{D-}(0,7)=0 & f_{D-}(1,7)=0 & f_{D-}(2,7)=0 & f_{D-}(3,7)=0 & f_{D-}(4,7)=1 & f_{D-}(5,7)=0
\end{array}
$$

The binary picture function f_{D+} is presented in the figure below on the left, and the picture function f_{D-} is presented on the right. Solid dots denote those points, where the values of f_{D+} or f_{D-} equal to 1 , and empty dots denote those points, where the values equal to 0 .

The picture functions f_{D+} and f_{D-} can also be presented by the following binary matrices:

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

