
4 Discrete tomography

In the previous chapters we discussed how to reconstruct an unknown picture
function (which may represent different kinds of physical quantities) if know
its line integrals along a finite set of lines. It was a continuous problem in
the sense that the value of the unknown picture function could be any real
number within a certain interval (e.g. [0, 1]). Furthermore the support of the
picture function (i.e. the set of those points of the picture region where the
value of picture function is nonzero) contained infinitely many points and
could have any shape. However, in some of the examples, we investigated the
binary solutions of the problem, which are solutions that are either constant
zero or constant one over each pixel of a digitized picture. Thus the range of
the solution function was a finite subset of the reals, and finite sets are also
called discrete sets. We deal with discrete tomography when we assume
that the range (i.e. the set of possible values) of the unknown picture function
is a given finite, or in other words discrete, set of the reals, and thus we are
interested only in solutions that take values from this given finite set. The
finite set can be for example the set {0, 1}, and then we say that we have
an unknown binary picture function, and we accept only binary solutions.
The problem of the reconstruction of an unknown binary picture function,
whose support can be any subset of the picture region, is part of the so called
geometric tomography. The word geometric refers to the fact that the
unknown picture function has binary values and thus we are only interested in
the shape of its support, where it takes the nonzero values, as it characterizes
the binary picture function. The assumption of a binary picture function is
quite reasonable in some real life situations, when we try to reconstruct the
inner structure of a homogeneous object completely made out of the same
material, such as a turbine blade. In such situation we are interested in only
whether there’s a hidden crack or hole inside the object, which is just the
lack of material in some positions, and that’s determined only by the shape
of the object.

Geometric tomography can be considered as part of discrete tomography
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for the range of the unknown picture function is discrete in its problems.
However most authors, considering discrete tomography, also assumes that
the picture region is a finite subset of a lattice, and thus the unknown picture
function is defined over a finite set. This is a reasonable assumption for exam-
ple in crystallography when we wish to reconstruct the arrangement of atoms
in crystalline solids, and atoms may appear only in restricted positions, but
this can reasonable even in computed tomography to simplify computations.
It’s very typical in science, that a simplified model is used to reduce the
amount of computation necessary to answer a problem. For example, when
computing the orbit of a satellite, all the mass of the Earth is considered to
be concentrated into its center. This assumption naturally fails in real life,
but it can be reasonable as long as the computations on the orbit remain
valid (or at least acceptable). We need this simplification, because having a
procedure, which requires the knowledge of the position of every single fly on
Earth, would be quite useless. There’s a similar thing in computed tomogra-
phy. If the size of the pixels in a digitization of the picture region compared
to the size of the picture region is small, then the different lengths of the
intersection of a line with the different pixels are not that important any-
more. What’s really important is which pixels are intersected, but not the
length of these intersections. Thus it’s the same as assuming that the pixels
are concentrated in their centers and we can only use lines that intersect at
least one of the centers. The fact that any picture function can be well ap-
proximated by a digitized picture (if the number of pixels is large enough)
gives the assumption that unknown picture function itself is digitized, and
hence can be considered to be an unknown finite subset of a lattice (as the
centers of the pixels form a lattice).

Let’s discuss now discrete tomography in details. First of all, a lattice in
the plane is the set of all linear combinations with integer coefficients of two
linearly independent vectors of the plane. Since every lattice can be trans-
formed into the lattice Z2 by a nonsingular linear transformation, we can
always assume in discrete tomography, that we have the lattice Z2. Here Z2

is the set of all ordered pairs of integer numbers, which can be identified as
the set of all points in the plane, whose Cartesian coordinates are integers.
If v is a two dimensional vector with integer Cartesian coordinates (a, b),
and these coordinates have a common divisor, which is larger than 1, then
dividing both coordinates with the common divisor gives another vector with
integer coordinates, which defines the same direction. Note that two vectors
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define the same direction if they are parallel to each other, or in other words
when they are linearly dependent, which happens exactly, if they are pro-
portional to each other. Furthermore if a vector is multiplied by −1, then it
still defines the same direction. Thus, to characterize all possible directions
in a lattice, it’s enough to collect all those two-dimensional integer vectors,
whose first component is non-negative and whose Cartesian coordinates are
coprime numbers (i.e. integers with greatest common divisor equal to zero).
Such vector is called lattice direction. This definition still includes both
(0, 1) and (0,−1) as lattice directions, despite they are parallel to each other.
Hence we agree that only the vector (0, 1) is considered as lattice direction.
A lattice line is a line, which is parallel to a lattice direction, and passes
through at least one point of Z2. A lattice set is a finite subset of the lattice
Z2, while the picture region is a rectangle [a, b]× [c, d], where a, b, c, d are all
integers.

Definition 10 Let D =
(
v1, v2, . . . , vq

)
a sequence of distinct lattice direc-

tions, and let Lk denote the set of all lattice lines parallel to vk and intersect-
ing at least one point of Z2 within a given picture region R = [a, b] × [c, d],
for all k = 1, 2, . . . , q. The X-ray of the picture function f : R ∩ Z2 → R
parallel to vk is the function

Pk,f : Lk → R, Pk,f (l) =
∑

(x,y)∈l∩R∩Z2

f(x, y)

The X-ray of the lattice set F ⊂ R parallel to vk is the function

Pk,F : Lk → Z, Pk,F (l) = |F ∩ l|

where |F ∩ l| denotes the number of elements in the set F ∩ l.

An example of a lattice set and line set is shown in Figure 4.1. The pic-
ture region is the rectangle [2, 8] × [1, 5]. The points of the lattice set F are
presented by solid dots, while the rest of the points of the integer lattice Z2

inside the picture region are presented by empty dots. The red lines show the
line set L = {l1, l2, . . . , l17}, where all lines are parallel to the lattice direction
v = (1, 2), and li passes through the point

(
i−2
2 , 0

)
for all i = 1, 2, . . . , 17. The
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Figure 4.1

X-ray of the lattice set is the function PF : L → Z with values

PF (l1) = 0 PF (l2) = 0 PF (l3) = 0 PF (l4) = 1 PF (l5) = 1
PF (l6) = 0 PF (l7) = 2 PF (l8) = 2 PF (l9) = 1 PF (l10) = 1
PF (l11) = 3 PF (l12) = 2 PF (l13) = 1 PF (l14) = 2 PF (l15) = 1
PF (l16) = 3 PF (l17) = 2

Note that both the X-ray of a picture function and the X-ray of a lattice
set are functions defined on the set of lines Lk. Given a line l, the X-ray of
the picture function f , defined on the lattice points of the picture region,
assigns the sum of the values of the picture function along the line l. The
X-ray of the lattice set F assigns the number of points of F , which lie on
the line l. Hence the X-ray of a lattice set F is just the X-ray of the picture
function, which equals to 1 in the points of F and equals to 0 everywhere
else. It shows that the problem of reconstruction of an unknown lattice set
from its X-rays is just a special case of the problem of reconstruction of an
unknown picture function from its X-rays, however it’s a very important case,
which can be much harder to solve. To illustrate this just think about that
solving the equation x2 + y2 = z3 for the unknowns x, y, z over the set of the
real numbers is easy. Just choose arbitrary values of x and y, and then take
z = 3

√
x2 + y2, but to give all the integer solutions of the above equations
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is much more challenging. It’s a similar situation with the reconstruction
of lattice sets, which requires more advanced techniques to solve, than the
reconstruction of arbitrary picture functions defined over lattice sets.

Now we define some classes of lattice sets. First a set H (not necessarily
discrete) in the plane is called convex if, for any two points A,B ∈ H,
all the points of the line segment AB are points of H. A solid disc and a
solid rectangle are a convex sets, while there are non-convex quadrilaterals.
A lattice set F is called convex if there exists a convex set H in the plane
such that F = H ∩ Z2. In other words a lattice set F is convex if, for any
two points A,B ∈ F , all the points of the line segment AB intersected by
the lattice Z2 are elements of F . Given a Cartesian coordinate system in the
plane, a set H is called vertically convex if for any two points A,B ∈ H
with equal first components, all the points of the line segment AB are points
of H. A set H is called horizontally convex if for any two points A,B ∈ H
with equal second components, all the points of the line segment AB are
points of H. A set, which is horizontally and vertically convex at the same
time, is shortly called hv-convex. Horizontally convex, vertically convex and
hv-convex lattice sets can be defined in a similar manner as in the case of
convex lattice sets. It’s clear from the definition, that every convex (lattice)
set is hv-convex, but there are hv-convex sets, which are not convex. We show
a few examples below.
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The lattice set in the upper left corner is convex, the one in the upper right
corner is hv-convex, but not convex. The example in the lower left corner is
horizontally convex, but not vertically convex, while the set in the lower
right corner is vertically convex, but not horizontally convex. Further types
of lattice sets can be defined such as 4-connected and 8-connected sets, but
we don’t need these. Convex and hv-convex set are also presented only to
have an idea what classes of lattice sets can be defined.

Let D =
(
v1, v2, . . . , vq

)
a sequence of distinct lattice directions. We say

that two lattice sets F and F ′ are tomographically equivalent with respect
to the directionsD, if the X-rays of F and F ′ are the same for all k = 1, 2, . . . q.
This means we can’t distinguish F and F ′ upon their X-rays parallel to the
directions in D. Let E be a class of lattice sets in the plane, such as the class of
convex sets, hv-convex set, or 4-connected sets. Then the lattice set F ∈ E is
determined by its X-rays parallel to D in the class E , if there’s no other set
in E , which is tomographically equivalent to F with respect to the directions
in D. The role of the class E is important, since a convex lattice set may
be determined in the class of convex sets, despite having a tomographically
equivalent non-convex alternative, and hence not being determined in the
class of all lattice sets.

Let Lk denote the sets of lines just as in Definition 10 for all k = 1, 2, . . . , q.
There are three basic problems which are heavily investigated in discrete
tomography: consistency, uniqueness and reconstruction. The problem of
consistency is about to find an answer to the question: Given the functions
pk : Lk → Z, is there a lattice set F ∈ E , such that the X-ray of F parallel
to vk equals to pk for all k = 1, 2, . . . , q? The problem of uniqueness is
about to find an answer to the question: Is the lattice set F ∈ E determined
by its X-rays parallel to D in the class E? Given the functions pk : Lk → Z,
the problem of reconstruction is about to construct a lattice set F ∈ E ,
such that the X-ray of F parallel to vk equals to pk for all k = 1, 2, . . . , q.

All these three problems can be answered easily if the number of distinct
directions is q = 2, but they are much harder if q ≥ 3. In the next section
we present an elegant solution to the three basic problems, if the two X-rays
parallel to the coordinate directions are taken. Later a network-flow algorithm
is used to solve them in the case of two arbitrary directions.
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