
2 Mathematical preliminaries

2.1 Matrices

A matrix is a rectangular array of numbers arranged in rows and columns.
The numbers in a matrix are called entries or elements and we can refer
to the entries with a pair of indices, the row index and and column index.
The row are indexed by positive integers from top to the bottom starting
with 1. Columns are indexed by positive integers from left to right starting
with 1. Matrices are often denoted by capital latin letters, while their entries
are denoted by the corresponding lower case letter with a pair of subscript
indices. First we write the row index and then the column index separated
by a comma. An example of a matrix is the following:

A =

1 2 −1 0
3 4 0 −2
0 1 1 5


The matrix A above has 3 rows and 4 columns. We can refer to the entry in
the 2nd row and 3rd column as a2,3 and it equals to 0, while the entry in the
3rd row and 2nd column is referred as a3,2 and it equals to 1. We note here
that if the matrix is not too large and it makes no confusion we can omit the
comma between the row and column indices, thus we can refer to the above
entries as a23 and a32 too. In a larger matrix we refer to the the entry in the
i-th row and j-th column as ai,j or aij . The notation

A = (aij)

is used when we would like to refer to or denote the element of the matrix A
in the i-th row and j-th column as aij . This notation is used only when it’s
clear what are the ranges of the indices i and j (i.e. what is the number of
rows and the number of columns). Otherwise we can specify a matrix with
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m rows and n columns as

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


If a matrix has m rows and n columns then we say the size (or dimension) of
the matrix is m×n. The sample matrix A above has size 3×4. The set of all
real matrices (i.e. matrices whose entries are real numbers) with m rows and
n columns is denoted byMm×n (R). A matrix with the same number of rows
and columns is called a square matrix. The set of all real square matrices
with n rows and n columns is denoted by Mn (R).

2.1.1 Matrix operations

Now we define the basic matrix operations such as addition, scalar multipli-
cation and transposition.

Definition 1 Let a A,B ∈ Mm×n (R) be two matrices of size m × n. The
sum of A and B is the matrix C ∈Mm×n (R) of size m× n which satisfies

cij = aij + bij

if A = (aij), B = (bij) and C = (cij). The sum of the matrices A and B is
denoted by A+B.

Note that the sum of two matrices can be defined only if they have the
same size.

Definition 2 Let a A ∈Mm×n (R) be a matrix of size m× n and let λ ∈ R
(lambda) be a real number. The product of the matrix A with the number
λ is the matrix C ∈Mm×n (R) of size m× n which satisfies

cij = λ · aij

if A = (aij) and C = (cij). The product of the matrix A with the number λ
is denoted by λ ·A or shortly λA if it makes no confusion.
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The above operation is called scalar multiplication, but make sure to
not confuse it with scalar product which is a different operation defined for
vectors. The real number λ in the scalar multiplication is often called scalar
(thus the name).

Theorem 1 The addition and scalar multiplication of matrices have the fol-
lowing properties.

1. (A+B) + C = A+ (B + C) for any matrices A,B,C ∈Mm×n (R).

2. There exists a zero matrix of size m × n denoted by 0m×n which
satisfies A+ 0m×n = A for any matrix A ∈Mm×n (R).

3. For any matrix A ∈ Mm×n (R) there exists an opposite matrix of size
m× n denoted by −A which satisfies A+ (−A) = 0m×n.

4. A+B = B +A for any matrices A,B ∈Mm×n (R).

5. λ(A+B) = λA+λB for any matrices A,B ∈Mm×n (R) and any scalar
λ ∈ R.

6. (λ + µ)A = λA + µB for any matrix A ∈ Mm×n (R) and any scalars
λ, µ ∈ R (lambda and mu).

7. (λ · µ)A = λ (µA) = µ (λA).

Examples.

The zero matrix of size 2× 3 is

02×3 =

(
0 0 0
0 0 0

)
Furthermore let

A =

(
1 2 −1
3 4 0

)
and B =

(
2 −4 0
−1 1 3

)
Then

A+B =

(
1 + 2 2− 4 −1 + 0
3− 1 4 + 1 0 + 3

)
=

(
3 −2 −1
2 5 3

)
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−A =

(
−1 −2 1
−3 −4 0

)
−B =

(
−2 4 0
1 −1 −3

)
3 ·A =

(
3 · 1 3 · 2 3 · (−1)
3 · 3 3 · 4 3 · 0

)
=

(
3 6 −3
9 12 0

)
(−2) ·B =

(
(−2) · 2 (−2) · (−4) (−2) · 0

(−2) · (−1) (−2) · 1 (−2) · 3

)
=

(
−4 8 0
2 −2 −6

)
Definition 3 Let a A ∈Mm×n (R) be a matrix of size m× n and let λ ∈ R
(lambda) be a real number. The transpose of the matrix A the matrix
B ∈Mn×m (R) of size n×m which satisfies

bij = λ · aji

if A = (aij) and B = (cij). The transpose of the matrix A is denoted by A>.

As an example let

A =

(
1 2 −1
3 4 0

)
Then

A> =

 1 3
2 4
−1 0


A square matrix A ∈ Mn (R) is called symmetrical if A = A>. For example
the matrix

A =

1 2 3
2 −5 0
3 0 −1


is a symmetrical matrix.

Theorem 2 Let A,B ∈ Mm×n (R) be arbitrary matrices of size m× n and
let λ ∈ R be an arbitrary scalar. Then

1. (A+B)> = A> +B>,

2. (λA)> = λA>,

3.
(
A>
)>

= A.
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2.1.2 Matrix multiplication

The addition and scalar multiplication of matrices defined in the previous
section are calculated elementwise. This means that if we want to add the
matrices A and B, then we only need to add the corresponding elements.
Similarly to multiply a matrix by a scalar we need to multiply each element
of the matrix with that scalar. Now we introduce the product of two matrices,
which is defined in a different manner (not elementwise).

Definition 4 Let a A ∈ Mm×n (R) be a matrix of size m × n and B ∈
Mn×l (R) be a matrix of size n× l. The product of A and B is the matrix
C ∈Mm×l (R) of size m× l which satisfies

cij =

n∑
k=1

aik · bkj

if A = (aij), B = (bij) and C = (cij). The product of the matrices A and B
is denoted by A ·B or shortly AB.

Note that the product of A and B is defined only if A has the same number
of columns as the the number of rows of B. Note also that the element of the
product matrix in the i-th row and j-th column is computed as the product
of the i-th row of A and the j-th column of B in the same manner as the dot
product of two n-dimensional vectors are defined. To see an example let

A =

1 2 −1 0
3 4 0 −2
0 1 1 5

 and B =


2 −1
−1 1
0 3
1 2


Then the product matrix is A ·B = C = (cij), where

c11 =

4∑
k=1

a1k · bk1 = a11 · b11 + a12 · b21 + a13 · b31 + a14 · b41

= 1 · 2 + 2 · (−1) + (−1) · 0 + 0 · 1 = 0

c12 =
4∑

k=1

a1k · bk2 = a11 · b12 + a12 · b22 + a13 · b32 + a14 · b42

= 1 · (−1) + 2 · 1 + (−1) · 3 + 0 · 2 = −2
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c21 =

4∑
k=1

a2k · bk1 = a21 · b11 + a22 · b21 + a23 · b31 + a24 · b41

= 3 · 2 + 4 · (−1) + 0 · 0 + (−2) · 1 = 0

c22 =

4∑
k=1

a2k · bk2 = a21 · b12 + a22 · b22 + a23 · b32 + a24 · b42

= 3 · (−1) + 4 · 1 + 0 · 3 + (−2) · 2 = −3

c31 =
4∑

k=1

a3k · bk1 = a31 · b11 + a32 · b21 + a33 · b31 + a34 · b41

= 0 · 2 + 1 · (−1) + 1 · 0 + 5 · 1 = 4

c32 =
4∑

k=1

a3k · bk2 = a31 · b12 + a32 · b22 + a33 · b32 + a44 · b42

= 0 · (−1) + 1 · 1 + 1 · 3 + 5 · 2 = 14

Thus

A ·B =

c11 c12
c21 c22
c31 c32

 =

0 −2
0 −3
4 14


Until you are not experienced in the multiplication of matrices it makes easier
to calculate the product if you arrange the factors A and B not next to each
other, but A to the bottom left and B to the top right position of a 2-by-2
arrangement. Then the product matrix is written in the bottom right position
as the following formula shows. 

2 −1
−1 1
0 3
1 2


1 2 −1 0

3 4 0 −2
0 1 1 5

 0 −2
0 −3
4 14


Theorem 3 The multiplication of matrices has the following properties.
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1. A · (B ·C) = (A ·B) ·C for any matrices A,B,C with appropriate sizes.

2. There exists an identity matrix of size n× n denoted by In, which sat-
isfies In ·A = A · In = A for any square matrix A of size n× n.

3. A · (B + C) = A ·B +A · C for any matrices A,B,C with appropriate
sizes.

4. (A+B) · C = A · C +B · C for any matrices A,B,C with appropriate
sizes.

5. λ(A ·B) = (λA) ·B = A · (λB) for any scalar λ ∈ R and any matrices
A,B with appropriate sizes.

Examples:

The identity matrices of size 2× 2 and 3× 3 are

I2 =

(
1 0
0 1

)
and I3 =

1 0 0
0 1 0
0 0 1


The identity matrix of size n× n is

In =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1


We can also define the identity matrix with the help of the Kronecker-delta,
which is

δij =

{
1, if i = j,

0, if i 6= j.

Then the identity matrix of size n× n is In = (δij).

Consider now the following matrices.

A =

(
1 −1
−2 2

)
B =

(
1 2 −1
3 4 0

)
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C =

2 0
1 3
0 −1

 D =

(
1 −1
1 −1

)
Then

A ·B =

(
−2 −2 −1
4 4 2

)
but the product B · A doesn’t exist as B has 3 columns and A has 2 rows.
Similarly the product A · C doesn’t exist as A has 2 columns and C has 3
rows, but the product C ·A exists and

C ·A =

 2 −2
−5 5
2 −2


Both of the products B · C and C ·B exist

B · C =

(
4 7
10 12

)
and C ·B =

 2 4 −2
10 14 −1
−3 −4 0


but B · C 6= C · B as these product don’t even have the same size. Similarly
both of the products A ·D and D ·A exist

A ·D =

(
0 0
0 0

)
and D ·A =

(
3 −3
3 −3

)
but A ·D 6= D ·A even though these products have the same size. Finally we
see that

A2 = A ·A =

(
3 −3
−6 6

)
and D2 = D ·D =

(
0 0
0 0

)
An important note is that if we interchange the factors in the multiplication

of matrices, then the product may be undefined (see A ·B and B ·A, or A ·C
and C · A above), but even if both products are defined it may happen that
they don’t equal (see B · C and C · B, or A · D and D · A). In fact if we
randomly take two square matrices of size n×n, A and B (this ensures, that
both A ·B and B ·A are defined and have the same size), then it’s very likely
that A ·B 6= B ·A.
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Another interesting property of the multiplication of matrices is that it
may happen that none of the matrices A and B is the zero matrix, but their
product is the zero matrix (see A · D above). Note that this is a property
which is not valid for the multiplication of real numbers, since if a, b ∈ R and
a · b = 0, then a = 0 or b = 0 (this is called the zero-product property). We
can go even further as there exist a nonzero matrix whose square (i.e. the
product with itself) is the zero matrix (see D2 above).

2.1.3 Matrices of special shape

We already introduced square matrices (i.e. matrices with the same number
of rows and columns) in the above sections. Now we define further matrices
of special shape. First of all lets mention that a single column matrix (which
has only one column) with n rows, or a single row matrix (which has only
one row) with n columns can be identified as an element of the n-dimensional
coordinate space Rn, whose elements are often called vectors. Thus a single
column matrix is called a column vector, while a single row matrix is called
a row vector. Note that the transpose of a column vector is a row vector
and the transpose of a row vector is a column vector. In the rest of the text
we apply the convention that if nothing else said then by a vector we always
mean a column vector. Now let’s see further matrices of special shape.

Definition 5 Let A ∈ Mn×n (R), A = (aij) be a matrix of size n. The
diagonal of A is the sequence of its elements with equal row and column
indices, i.e. a11, a22, a33, . . . , ann. The matrix A is called diagonal matrix
if all elements of A not contained in the diagonal equal to zero, i.e. aij = 0 if
i 6= j. The matrix A is called upper triangular matrix if all elements of A
below the diagonal equal to zero, i.e. aij = 0 if i > j. The matrix A is called
lower triangular matrix if all elements of A above the diagonal equal to
zero, i.e. aij = 0 if i < j.

We note that a diagonal matrix may contain zeros in the diagonal too. Sim-
ilarly an upper triangular matrix may have zeros in and above the diagonal,
just as a lower triangular matrix may have zeros in and below the diagonal.
As examples the zero matrix and the identity matrix can be considered as
diagonal, upper triangular or lower triangular matrix. Further instances are
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the following.

A =

2 0 0
0 −1 0
0 0 0

 B =

1 2 −2
0 0 −1
0 0 3

 C =

−1 0 0
4 0 0
0 3 2


Above the matrix A is diagonal (and also upper and lower triangular), B is
upper triangular, C is lower triangular.

Definition 6 Let A ∈ Mm×n (R), A = (aij) be a matrix. If the i-th row of
A contains at least one nonzero element, then the leftmost nonzero element
is called the pivot element of the i-th row. We say that the matrix is A in a
row echelon form if all rows consisting of only zeros are at the bottom and
the pivot element of any row (except the first) is strictly to the right from the
pivot element of the previous row. In other words A in a row echelon form if
considering the pivot elements from the top to the bottom, the column indices
of the pivot elements form a strictly increasing sequence. Furthermore we say
A is in reduced row echelon form if it’s in row echelon form, all pivot
elements equal to 1, and each column containing a pivot element has zeros in
all other entries.

Consider the following matrices.

A =

1 0 −2 3
0 0 3 5
0 2 −4 0

 B =


0 3 4 0
0 0 1 −2
0 0 2 5
0 0 0 0



C =

−1 1 0 0
0 3 4 −1
0 0 0 2

 D =


1 0 4 0
0 1 −1 0
0 0 0 1
0 0 0 0


Here A in not in row echelon form since the pivot element of the second row
has column index 3, but the pivot element of the third row has column index
2. B in not in row echelon form also, since the column indices of the pivot
elements in the second and third rows equal. C is in row echelon form, but
not reduced echelon form, since none of the pivot elements equal to 1, and
furthermore the second column and fourth column contain nonzero entries
besides the pivot element. The matrix D is in reduced row echelon form.
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2.1.4 Elementary row operations

We will see in the later chapters that matrices of reduced row echelon form
have an important role in the solution of systems of linear equations. Thus
now we introduce elementary row operations that can be applied to transform
a matrix into reduced row echelon form.

Definition 7 The elementary row operations are the following.

1. Interchange two rows of a matrix.

2. Multiply each element of a row in a matrix with a nonzero scalar λ ∈ R.

3. Add each element of a row of a matrix to the corresponding elements
of another row.

4. As a combination of the above two we can add each element of a row
multiplied by λ ∈ R to the corresponding elements of another row.

Note that during the last operation if we add λ-times the i-th row the
j-th row, then only the entries of the j-th row are modified, while the i-t row
remain unchanged. Note also that if we multiply a row with the multiplicative
inverse nonzero scalar λ ∈ R, then it has the same result as if we divide with
λ ∈ R. Thus the second elementary row operation means that we can also
divide each element of a row in a matrix with a nonzero scalar λ ∈ R.

Theorem 4 We can transform any matrix A ∈ Mm×n (R) into a matrix
of reduced row echelon form with the help of finitely many elementary row
operations.

Now we give a sketch of the proof of the above theorem by telling what
steps are required to achieve the reduced row echelon form. The procedure,
that transforms an arbitrary matrix to a matrix in reduced row echelon from
with the help of elementary row operations, is called Gaussian elimination.

First let A ∈ Mm×n (R) be an arbitrary matrix. Let k be the counter of
how many pivot elements we found. Set the initial value of k to zero. Let Bk

denote the part of A below the k-th row. At the beginning, when k = 0 let
B0 = A. Now follow the steps below to transform A into a matrix of reduced
row echelon form.
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1. If Bk is the zero matrix, then A is in reduced row echelon form and the
procedure terminates.

2. Otherwise let j be the column index of the leftmost nonzero column of
Bk.

3. If the first element of the j-th column of Bk is zero, then look for a
row in Bk which contains a nonzero element in the j-th column and
interchange it with the first row of Bk (i.e. with the k+ 1-th row of A).

4. Divide each element of the k + 1-th row of A with ak+1,j .

5. Add −aij-times the k + 1-th row to the i-th row of A for all i ∈
{1, 2, . . . ,m}, i 6= k + 1.

6. Increase the value of the counter k by 1.

7. Repeat steps (1)-(6) until the procedure terminates in step (1) or k is
increased to n.

The above procedure transforms any matrix A ∈Mm×n (R) into a matrix
of reduced row echelon form. Let’s illustrate the procedure on the following
matrix.

A =


0 0 3 9 1 −1
0 3 2 3 0 4
0 −2 1 5 1 −3
0 1 0 −1 0 2
0 0 −1 −3 1 3


First k = 0 and B0 = A is not the zero matrix. The leftmost nonzero column
is the second column. The first element of the second column is zero, thus
we need to choose a row whose entry in the second column is nonzero. Let’s
choose the second row. Now we interchange the first and second row of A.
This step is denoted as follows.

A =


0 0 3 9 1 −1
0 3 2 3 0 4
0 −2 1 5 1 −3
0 1 0 −1 0 2
0 0 −1 −3 1 3

 R1↔R2−−−−−→


0 3 2 3 0 4
0 0 3 9 1 −1
0 −2 1 5 1 −3
0 1 0 −1 0 2
0 0 −1 −3 1 3
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Note that we don’t write equality between the above matrices, because they
are not the same, but they are similar in some sense. In the above procedure
we refer to this new matrix as A, since we assume that the new matrix
overwrites A. Now we apply the same notation, i.e. when we refer to an
element of A, then we always mean the latest version of the matrix. The next
step is to divide each element of the first row of A with a12 = 3. This step is
denoted as follows.

0 3 2 3 0 4

0 0 3 9 1 −1

0 −2 1 5 1 −3

0 1 0 −1 0 2

0 0 −1 −3 1 3


1
3
·R1
−−−→


0 1 2

3 1 0 4
3

0 0 3 9 1 −1

0 −2 1 5 1 −3

0 1 0 −1 0 2

0 0 −1 −3 1 3


Now we add −a22 = 0-times the first row to the second row, −a32 = 2-times
the first row to the third row, −a42 = −1-times the first row to the fourth
row, and −a52 = 0-times the first row to the fifth row. However note that if
we add 0-times a row to another row, then nothing changes, thus it’s enough
to work with those rows, which contain a nonzero element in the second
column. Considering this we only add 2-times the first row to the third row,
and (−1)-times the first row to the fourth row. This step is denoted as follows.

0 1 2
3 1 0 4

3

0 0 3 9 1 −1

0 −2 1 5 1 −3

0 1 0 −1 0 2

0 0 −1 −3 1 3


R3+2·R1−−−−−→
R4−1·R1


0 1 2

3 1 0 4
3

0 0 3 9 1 −1

0 0 7
3 7 1 −1

3

0 0 −2
3 −2 0 2

3

0 0 −1 −3 1 3


Then we set k = 1. Here B1 is not the zero matrix and its leftmost nonzero
column is the third column. The first element of the third column in B1 is
nonzero, thus we divide the second row by a23 = 3.

0 1 2
3 1 0 4

3

0 0 3 9 1 −1

0 0 7
3 7 1 −1

3

0 0 −2
3 −2 0 2

3

0 0 −1 −3 1 3


1
3
·R2
−−−→


0 1 2

3 1 0 4
3

0 0 1 3 1
3

−1
3

0 0 7
3 7 1 −1

3

0 0 −2
3 −2 0 2

3

0 0 −1 −3 1 3
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Then we add −a13 = −2
3 -times the second row to the first row, −a33 = −7

3 -
times the second row to the third row, −a43 = 2

3 -times the second row to the
fourth row, and −a53 = 1-times the second row to the fifth row (the later
means only that we add the second row to the fifth row).

0 1 2
3 1 0 4

3

0 0 1 3 1
3

−1
3

0 0 7
3 7 1 −1

3

0 0 −2
3 −2 0 2

3

0 0 −1 −3 1 3


R1− 2

3
·R2

R3− 7
3
·R2

−−−−−−→
R4+ 2

3
·R2

R5+R2


0 1 0 −1 −2

9
14
9

0 0 1 3 1
3

−1
3

0 0 0 0 2
9

4
9

0 0 0 0 2
9

4
9

0 0 0 0 4
3

8
3


Now set k = 2. Here B2 is not the zero matrix and its leftmost nonzero
column is the fifth column. The first element of the fifth column in B2 is
nonzero, thus we divide the third row by a35 = 2

9 .
0 1 0 −1 −2

9
14
9

0 0 1 3 1
3

−1
3

0 0 0 0 2
9

4
9

0 0 0 0 2
9

4
9

0 0 0 0 4
3

8
3


9
2
·R3
−−−→


0 1 0 −1 −2

9
14
9

0 0 1 3 1
3

−1
3

0 0 0 0 1 2

0 0 0 0 2
9

4
9

0 0 0 0 4
3

8
3


Then we add −a15 = 2

9 -times the third row to the first row, −a25 = −1
3 -times

the third row to the second row, −a45 = −2
9 -times the third row to the fourth

row, and −a55 = −4
3 -times the third row to the fifth row.

0 1 0 −1 −2
9

14
9

0 0 1 3 1
3 −1

3

0 0 0 0 1 2

0 0 0 0 2
9

4
9

0 0 0 0 4
3

8
3


R1+ 2

9
·R3

R2− 1
3
·R3

−−−−−−→
R4− 2

9
·R3

R5− 4
3
·R3


0 1 0 −1 0 2

0 0 1 3 0 −1

0 0 0 0 1 2

0 0 0 0 0 0

0 0 0 0 0 0


Finally set k = 3. Now B3 is the zero matrix, thus the procedure terminates
and we claim that the resulting matrix is in reduced row echelon form, and
it clearly is.
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2.2 Systems of linear equations

A linear equation for the unknowns (or variables) x1, x2, x3, . . . xn is an equa-
tion of the form where a linear combination of x1, x2, . . . xn equals to a con-
stant. If the coefficients in the linear combination are a1, a2, . . . , an, and the
constant is b, then the linear equation is

a1x1 + a2x2 + a3x3 + . . .+ anxn = b

Sometimes the same unknowns must satisfy not just one, but several linear
equations. Then we talk about a system of linear equations. As the combining
coefficients in different equations vary, it’s better to use double indexing form
these coefficients. For example the coefficient of the unknown xj is the i-th
equation can be denoted by aij . The constants may be different in different
equations, hence these should be also indexed. Let bi denote the constant on
the right in the i-th equation. Then a system of m equations for the unknowns
x1, x2, x3, . . . xn is of the following form.

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

am1x1 + am2x2 + . . .+ amnxn = bm


The coefficients in the above system naturally define a matrix of size m× n,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


which is called the coefficient matrix of the system. The coefficient matrix
together with the multiplication of matrices gives a good opportunity to make
a short notation of systems of linear equalities. If x denotes the column vector
(i.e. single column matrix) containing the unknowns and b denotes the column
vector (i.e. single column matrix) containing the the constants on the right,
then the system can be written as

A · x = b
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which is called the matrix form of the system. Clearly the product on the left
has m rows and only one column (as x has only one column). The column
vector b has the same size as A · x, and the two column vectors equal to
each other if all corresponding components equal to each other, which means
exactly that the unknowns must satisfy the system of linear equalities above.
We note here that the elements of the n-dimensional coordinate space Rn

as vectors are usually denoted by underlined lowercase letters in order to
emphasize that they are vectors and not to confuse them with real numbers,
which are that scalars. Thus the notation x and b of column vectors.

Definition 8 If A ∈Mm×n (R) and b is column vector of m elements, then
the extended coefficient matrix of the system of linear equalities A ·x = b
is the matrix of size m× (n+ 1) whose first n columns are exactly the same
as the columns of A and the last column equals to the column vector b. The
extended coefficient matrix is denoted by (A|b)

The last column of the extended coefficient matrix is often separated by a
vertical line because of it’s special role. Now let’s see the following example
of a system of linear equations.

3x1 − 2x2 + 4x3 − x4 = 8
x1 + x2 − 5x4 = −1

2x1 + 3x3 + x4 = 0
−x1 − x2 + 2x3 − 3x4 = 1

x2 − x3 − 2x4 = 6


The coefficient matrix and the column vector of right-hand-side constants are

A =


3 −2 4 −1
1 1 0 −5
2 0 3 1
−1 −1 2 −3
0 1 −1 −2

 b =


8
−1
0
1
6


and the extended coefficient matrix is

3 −2 4 −1 8
1 1 0 −5 −1
2 0 3 1 0
−1 −1 2 −3 1
0 1 −1 −2 6
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Note that whenever the coefficient of an unknown seems to be missing in
the system (see for example x1 and x2 in the second equation) then it only
means that the coefficient is 1. It’s also possible that some of the unknowns
are missing is some equations (see for example x3 in the second equation or
x2 is the third equation). Then the corresponding coefficient is zero.

Definition 9 Let A ∈Mm×n (R) and let b be a column vector of m elements.
The system of linear equations A · x = b is called underdetermined if the
number of equations is less than the number of unknowns (i.e. m < n), and
called overdetermined if the number of equations is larger than the number
of unknowns (i.e. n < m). We say that the system is solvable if it has at least
one solution, and otherwise we say it’s unsolvable. Furthermore a solvable
system A · x = b is called determined if it has exactly one solution, and
called undetermined if it has more than one solution.

Please note the difference between the properties underdetermined and un-
determined. An underdeterminded system can be unsolvable, while a system
is undetermined if it’s solvable and has several solutions. However a solv-
able underdetermined system is undetermined. An overdetermined system
can be solvable or unsolvable, and can be determined or undetermined when
solvable.

An interesting property of systems of linear equations is that if a system
has at least two solutions, then it has infinitely many solutions. To see this
let A ∈ Mm×n (R) be an aritrary matrix and let b be an arbitrary column
vector of m elements. Assume that two different column vectors u and v of m
elements are solutions of the system A · x = b. This means that A · u = b and
A · v = b. Now choose and arbitrary scalar t ∈ R and construct the column
vector (1− t)u+ tv. Then

A ·
(
(1− t)u+ tv

)
= (1− t)A · u+ t A · v =

(1− t) b+ t b = (1− t+ t) b = 1 · b = b

This means A ·
(
(1 − t)u + tv

)
= b and it implies that (1 − t)u + tv is also

a solution of the system A · x = b. This show the system has infinitely many
solutions because u and v are different and we can choose infinitely many
different scalars t ∈ R.
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Theorem 5 Let A ·x = b be a system of linear equations. If the we apply any
of the elementary row operations to the extended coefficient matrix (A|b), then
the set of solutions of system defined by the new extended coefficient matrix
is exactly the same as the set of solutions of A · x = b.

The consequence of the above theorem is that if the extended coefficient
matrix of the system A · x = b is transformed into reduced row echelon form
with the help of elementary row operations, then the set of solutions remains
the same as for the original system. Since any matrix can be transformed
into reduced row echelon form with the help of elementary row operations, it’s
enough to investigate the set of solutions of systems with extended coefficient
matrix in reduced row echelon form.

Theorem 6 Let A · x = b be a system of linear equations and assume that
the extended coefficient matrix (A|b) is in reduced row echelon form.

1. If (A|b) has a row which contains at least one nonzero element, and
the pivot element in that row is in the last column, then the system is
unsolvable. Otherwise the system is solvable.

2. If A·x = b is solvable and the number of nonzero rows in (A|b) equals to
the number of unknowns, then the system is determined. The only solu-
tion is b̂, which consists of those elements of b, which are not included
in any zero row of (A|b).

3. If A · x = b is solvable and the number of nonzero rows in (A|b) is less
than the number of unknowns, then the system is undetermined.

Note that if a matrix is in reduced row echelon form, then the number of
nonzero rows can’t be larger than the number of columns, since each nonzero
row contains a pivot element, but in reduced row echelon form each column
may contain at most one pivot element. By the above theorem we know what
is the set of solutions if the system is unsolvable, or solvable and the number
of nonzero rows in (A|b) equals to the number of unknowns (in the former
case it’s the empty set). We also know that if a system is undetermined,
then it has infinitely many solutions. Yet, we would like to give a method to
characterize all the solutions in such a situation.

Let A · x = b be a system of linear equations whose extended coefficient
matrix (A|b) is in reduced row echelon form. Assume that the system is
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solvable and the number of nonzero rows in (A|b) is less than the number
of unknowns. Then at least one column of the coefficient matrix A contains
no pivot element. Let x̂ denote the column vector of those unknowns, whose
corresponding columns don’t contain a pivot element. The ordering of the
elements in x̂ is the same as in x. The unknowns in the column vector x̂ are
called the free variables (since soon we will see that their values can be
chosen freely). Let B be a matrix which consists of the nonzero rows of the
coefficient matrix A and the opposites of those columns of A which contain
no pivot element. The opposite of a column means that each element of that
column is multiplied by −1. The ordering of the columns in B is the same as
in A. The matrix B is called the coefficient matrix of the free variables.

Theorem 7 Let A ·x = b be a system of linear equations whose extended co-
efficient matrix (A|b) is in reduced row echelon form. Assume that the system
is solvable and the number of nonzero rows in (A|b) is less than the number
of unknowns. Then the system is undetermined and

v = B · u+ b̂

is a solution of the system, where B is the coefficient matrix of the free vari-
ables, b̂ is the same as in the previous theorem, and u is a column vector of
arbitrary real numbers with appropriate size. Moreover for all solution v of
the system A · x = b there exists a column vector u such that v = B · u+ b̂.

In the above theorem the column vector u determines the values of the free
variables. The appropriate size means that the number of elements in u is
the same as the number of columns in the matrix B. Then the product B · u
is well defined and its dimension is the same as the dimension of b̂, thus the
sum B · u+ b̂ is also well defined.

Now we are able to determine the set of solutions of any system of linear
equations by transforming its extended coefficient matrix into reduced row
echelon form with the help of elementary row operations, and then applying
one of the above theorems.

Example 1.
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x1 − 3x2 + 2x3 + x4 = 4
5x3 − 2x4 = 12

−x1 + 2x2 + x3 − 4x4 = 5
−2x2 + 4x3 + 3x4 = 5
x1 − x2 − 11x4 = 12


This is an overdetermined system. The extended coefficient matrix of the
above system is

(A|b) =


1 −3 2 1 4
0 0 5 −2 12
−1 2 1 −4 5
0 −2 4 3 5
1 −1 0 −11 12


Transform this into reduced row echelon form.

1 −3 2 1 4
0 0 5 −2 12
−1 2 1 −4 5
0 −2 4 3 5
1 −1 0 −11 12

 R3+1·R1−−−−−→
R5−1·R1


1 −3 2 1 4
0 0 5 −2 12
0 −1 3 −3 9
0 −2 4 3 5
0 2 −2 −12 8

 R2↔R3−−−−−→


1 −3 2 1 4
0 −1 3 −3 9
0 0 5 −2 12
0 −2 4 3 5
0 2 −2 −12 8

 (−1)·R2−−−−−→


1 −3 2 1 4
0 1 −3 3 −9
0 0 5 −2 12
0 −2 4 3 5
0 2 −2 −12 8


R1+3·R2
R4+2·R2−−−−−→
R5−2·R2


1 0 −7 10 −23
0 1 −3 3 −9
0 0 5 −2 12
0 0 −2 9 −13
0 0 4 −18 26


1
5
·R3
−−−→


1 0 −7 10 −23
0 1 −3 3 −9

0 0 1 −2
5

12
5

0 0 −2 9 −13
0 0 4 −18 26


R1+7·R3
R2+3·R3−−−−−→
R4+2·R3
R5−4·R3


1 0 0 36

5 −31
5

0 1 0 9
5 −9

5

0 0 1 −2
5

12
5

0 0 0 41
5 −41

5

0 0 0 −82
5

82
5


5
41
·R4

−−−−→


1 0 0 36

5 −31
5

0 1 0 9
5 −9

5

0 0 1 −2
5

12
5

0 0 0 1 −1

0 0 0 −82
5

82
5


R1− 36

5
·R4

R2− 9
5
·R4

−−−−−−→
R3+ 2

5
·R4

R5+ 82
5
·R4
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1 0 0 0 1
0 1 0 0 0
0 0 1 0 2
0 0 0 1 −1
0 0 0 0 0


Now this is in reduced row echelon form. There’s no row whose pivot element
is in the last column, thus the system is solvable. The number of nonzero
rows is 4 just as the number of unknowns, thus the system is determined and
the only solution is 

x1
x2
x3
x4

 =


1
0
2
−1


Clearly the first row of the above matrix in reduced row echelon form gives
the equation 1 · x1 + 0 · x2 + 0 · x3 + 0 · x4 = 1, that is x1 = 1. The second
row gives the equation 0 · x1 + 1 · x2 + 0 · x3 + 0 · x4 = 0, that is x2 = 0. The
third and fourth rows are similar.

Example 2.

x1 − 2x2 + 4x3 = 10
x1 − x2 + 3x3 + 3x4 = 10

2x2 − x3 − 3x4 = −7
3x1 − 2x2 + 9x3 + 3x4 = 14


This system is neither underdetermined nor overdetermined. The extended
coefficient matrix of the above system is

(A|b) =


1 −2 4 0 10
1 −1 3 3 10
0 2 −1 −3 −7
3 −2 9 3 14


Transform this into reduced row echelon form.

1 −2 4 0 10
1 −1 3 3 10
0 2 −1 −3 −7
3 −2 9 3 14

 R4−3·R1−−−−−→
R2−1·R1


1 −2 4 0 10
0 1 −1 3 0
0 2 −1 −3 −7
0 4 −3 3 −16

 R1+2·R2
R3−2·R2−−−−−→
R4−4·R2
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1 0 2 6 10
0 1 −1 3 0
0 0 1 −9 −7
0 0 1 −9 −16

 R1−2·R3
R2+1·R3−−−−−→
R4−1·R3


1 0 0 24 24
0 1 0 −6 −7
0 0 1 −9 −7
0 0 0 0 −9

 − 1
9
·R4

−−−−→


1 0 0 24 24
0 1 0 −6 −7
0 0 1 −9 −7
0 0 0 0 1

 R1−24·R4
R2+7·R4−−−−−−→
R3−7·R4


1 0 0 24 0
0 1 0 −6 0
0 0 1 −9 0
0 0 0 0 1


Now this is in reduced row echelon form. The pivot element in the last row
is in the last column, thus the system is unsolvable. Clearly the last row of
the above matrix in reduced row echelon form gives the equation 0 · x1 + 0 ·
x2 + 0 · x3 + 0 · x4 = 1, that is 0 = 1, which is impossible.

Example 3.

x1 + 2x3 + 3x4 = 0
−x1 + 2x2 + x3 − x4 = 3

2x2 + 3x3 + 2x4 = 3
3x1 − 2x2 + 3x3 + 7x4 = −3
−2x1 + 6x2 + 5x3 = 9


This is an overdetermined system. The extended coefficient matrix of the
above system is

(A|b) =


1 0 2 3 0
−1 2 1 −1 3
0 2 3 2 3
3 −2 3 7 −3
−2 6 5 0 9


Transform this into reduced row echelon form.

1 0 2 3 0
−1 2 1 −1 3
0 2 3 2 3
3 −2 3 7 −3
−2 6 5 0 9


R2+1·R1
R4−3·R1−−−−−→
R5+2·R1


1 0 2 3 0
0 2 3 2 3
0 2 3 2 3
0 −2 −3 −2 −3
0 6 9 6 9


1
2
·R2
−−−→
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1 0 2 3 0

0 1 3
2 1 3

2

0 2 3 2 3
0 −2 −3 −2 −3
0 6 9 6 9


R3−2·R1
R4+2·R1−−−−−→
R5−6·R2


1 0 2 3 0

0 1 3
2 1 3

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Now this is in reduced row echelon form. There’s no row whose pivot element
is in the last column, thus the system is solvable. The number of nonzero rows
is 2, but the number of unknowns is 4, thus the system is undetermined. The
free variables are x3 and x4 as the third and fourth columns of the coefficient
matrix don’t contain any pivot element. This means all unknowns can be
given as a linear combination of the free variables plus and additive constant.
Clearly the first row gives the equation 1 · x1 + 0 · x2 + 2 · x3 + 3 · x4 = 0 and
the second row gives the equation 0 · x1 + 1 · x2 + 3

2 · x3 + 1 · x4 = 3
2 . The

third, fourth and fifth rows give only the identity 0 = 0. Thus we have

x1 + 2x3 + 3x4 = 0
x2 + 3

2x3 + x4 = 3
2

}
which can be rearranged as

x1 = −2x3 − 3x4
x2 = −3

2x3 − x4 + 3
2

}
In matrix form this is(

x1
x2

)
=

(
−2 −3
−3

2 −1

) (
x3
x4

)
+

(
0
3
2

)
Here

B =

(
−2 −3
−3

2 −1

)
is the coefficient matrix of the free variables and

b̂ =

(
0
3
2

)
is just as it’s defined in Theorem 6. Now we can choose arbitrary real values
for x3 and x4 and then computing x1 = −2x3− 3x4 and x2 = −3

2x3− x4 + 3
2

we get a solution of the system. For example x3 = 0 and x4 = 0 gives x1 = 0
and x2 = 3

2 , thus it’s a solution of the system. Another solution is x3 = 1,
x4 = 1 which gives x1 = −5, x2 = −1.
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