7. Synchronization in coupled systems

7.1. Graph representation

- Recall that a mathematical model to study synchronization in networks is given by
where $x_{i} \in \mathbb{R}^{n}(n \geq 1), A_{i j} \geq 0$ are real constants, and $f_{i}, H_{i} \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$.

$$
A_{i j}>^{0}
$$

 N nodes

7.1.1 Adjacency matrix

- We can associate a (directed weighted) graph to system (7.1) as follows:
- The graph has N nodes, and node number i corresponds to the variable x_{i}.
- There exists an edge starting from node j and ending at node i if and only if $A_{i j}>0$. We can also think of $A_{i j}$ as the weight of this edge.
- The matrix A defined by $A:=\left(A_{i j}\right)$ is called the adjacency matrix of the graph.

$$
\left(\begin{array}{ccc}
A_{11} & A_{12} & A_{13}-A_{1 N} \\
1 & & \\
1 & & \\
A_{N_{1}} & \cdots & -A_{N N}
\end{array}\right)_{N \times N}
$$

Example 7.1. For given functions f_{i} and $H_{i}(i=1, \ldots, 5)$, consider the system

$$
\begin{align*}
& \dot{x}_{1}=f_{1}\left(x_{1}\right)+\alpha\left[H_{1}\left(x_{2}-x_{1}\right)+2 H_{1}\left(x_{4}-x_{1}\right)\right], \tag{7.2}\\
& \dot{x}_{2}=f_{2}\left(x_{2}\right)-\alpha\left[H_{2}\left(x_{3}-x_{2}\right)\right], \\
& \left.\dot{x}_{3}=f_{3}\left(x_{3}\right)+\alpha(\overline{7}) H_{3}\left(x_{4}-x_{3}\right)\right], \\
& \dot{x}_{4}=f_{4}\left(x_{4}\right)+\alpha\left[3 H_{4}\left(x_{5}-x_{4}\right)\right], \\
& \dot{x}_{5}=f_{5}\left(x_{5}\right)-\alpha\left[H_{5}\left(x_{1}-x_{5}\right)+3 H_{5}\left(\underline{x_{2}}-x_{5}\right)\right] .
\end{align*}
$$

The corresponding graph is shown in Figure T3. The adjacency matrix is

$$
A=\left(\begin{array}{lllll}
0 & 1 & 0 & 2 & 0 \tag{7.3}\\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 3 & 0 & 0 & 0
\end{array}\right)
$$

Figure 45: The graph corresponding to system (7.2).

7.1.2 Laplacian matrix

- Consider again the system

$$
\begin{equation*}
\underbrace{\dot{x}_{i}=f_{i}\left(x_{i}\right)+\alpha \sum_{j=1}^{N} A_{i j} H_{i}\left(x_{j}-x_{i}\right),} \forall i \in\{1, \ldots, N\} . \tag{7.4}
\end{equation*}
$$

- Suppose that the couplings are identical, i.e. $H_{i}=H_{j}$ for all i and j, and there exists H such that $H_{i}\left(x_{j}-x_{i}\right)=$ $\underbrace{H\left(x_{j}\right)-H\left(x_{i}\right)^{20}}$. Then, (7.4) is written as

$$
\begin{equation*}
\underbrace{\dot{x}_{i}=f_{i}\left(x_{i}\right)+\alpha \sum_{j=1}^{N} \underbrace{A_{i j}\left[H\left(x_{j}\right)\right.}-H\left(x_{i}\right)] .} \tag{7.5}
\end{equation*}
$$

- Note that

$$
\begin{align*}
& \sum_{j=1}^{N} A_{i j}\left[H\left(x_{j}\right)-H\left(x_{i}\right)\right]=\left[\sum_{j=1, j \neq i}^{N} \widehat{A_{i j}} H\left(x_{j}\right)\right]-\overparen{H\left(x_{i}\right)} \sum_{(j=1, j \neq i}^{N} A_{i j} . \tag{7.6}\\
& \text { :ix } L:=\left(L_{i j}\right) \text { by }
\end{align*}
$$

- Define the $N \times N$ matrix $L:=\left(L_{i j}\right)$ by

$$
L_{i j}:= \begin{cases}-A_{i j} & \text { if } i \neq j, \tag{7.7}\\ \sum_{j=1, j \neq i}^{*} A_{i j} & \text { if } i=j .\end{cases}
$$

- The matrix L is called the Laplacian matrix.
- Using the Laplacian, we can write (7.5) as

$$
L=\left(\begin{array}{cc}
L_{11} & - \tag{7.8}\\
L_{1 N} \\
L_{N} & L_{N N}
\end{array}\right)
$$

[^0]Remark 7.2. It follows from (7.7) that the sum of all the entries of each arbitrary row of the Laplacian matrix is zero.

$$
\begin{gathered}
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
\end{gathered}
$$

$$
L=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

$$
L=\left(\begin{array}{ccc}
(2) & -1 & -1 \\
0 & 0 & 0 \\
-1 & -1 & 2
\end{array}\right)
$$

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right)
$$

$L=\left(\begin{array}{ccccc}3 & -1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 7 & -7 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ -1 & -3 & 0 & 0 & 4\end{array}\right)$

Figure 46: A few examples of (directed and undirected) graphs and their associated adjacency and Laplacian matrices.

7.1.3 Spectral properties of the Laplacian matrix

Theorem 7.3. For a given arbitrary graph, the laplacian matrix L has a zero eigenvalue. Proof. Let

$$
L=\left(\begin{array}{ccc}
l_{11} & \cdots & l_{1 n} \tag{7.9}\\
\vdots & \ddots & \vdots \\
l_{n 1} & \cdots & l_{n n}
\end{array}\right)
$$

be the Laplacian matrix, and consider the vector $\mathbf{1}=\left(\begin{array}{c}1 \\ \vdots \\ i\end{array}\right)$ (the n-dimensional vector whose entries are all one). Then,

$$
L \mathbf{1}=\left(\begin{array}{ccc}
l_{11} & \cdots & l_{1 n} \tag{7.10}\\
\vdots & \ddots & \vdots \\
l_{n 1} & \cdots & l_{n n}
\end{array}\right)\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
l_{11}+l_{12}+\cdots+l_{1 n} \\
\vdots \\
l_{n 1}+l_{n 2}+\cdots+l_{n n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

This means that the i-th entry of the vector $L 1$ is the row-sum of the i-th row of the Laplacian L. However, the row-sum of each row of L is zero. Thus, $L \mathbf{1}=0$. This implies that 0 is an eigenvalue of L, and $\mathbf{1}$ is an associated eigenvector.

$$
L 1=0 \times 1
$$

Theorem 7.4. All the eigenvalues of the Laplacian matrix L of a given graph have non-negative real parts.

2 7.2. Synchronization

- Defind $M:=\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{n} \mathcal{U}: x_{1}=x_{2}=\cdots=x_{N}\right\}$.
- We call M the synchronization subspace.
- Suppose a solution $\left(x_{1}(t), \ldots, x_{N}(t)\right)$ of system (7.1) entirely lies in M (for instance, this can happen when M is invariant). In this case, we hay $x_{1}(t)=\cdots=x_{N}(t)$. Such a solution is called a synchronized solution.
- We say system (7.1) gets into (complete) synchrony if M attracts nearby orbits.
- More precisely, if there exists an open neighborhoo Uof M such that for any initial condition $\left(x_{1}(0), \ldots, x_{N}(0)\right) \in$ U, and any $1 \leq i, j \leq N$, we have
, $\quad \lim _{t \rightarrow \infty}\left\|x_{i}(t)-x_{j}(t)\right\|=0$.

7.3. An example of synchronization between two coupled nonlinear systems

We now discuss model (7.1) for two coupled identical systems with identity coupling. Consider the system

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}\right)+\alpha\left(x_{2}-x_{1}\right), \\
& \dot{x}_{2}=f\left(x_{2}\right)+\alpha\left(x_{1}-x_{2}\right),
\end{aligned}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and α is the coupling strength.

Figure 47: Two coupled systems.

- The synchronization subspace is $M=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2 n}: x_{1}=x_{2}\right\}$.

- Observe that M is invariant with respect to the flow of system (7.13).
- System (7.13) gets into synchrony if for any initial condition $\left(x_{1}(0), x_{2}(0)\right)$ close to M, we have

$$
\begin{equation*}
\underbrace{\lim _{t \rightarrow \infty}\left\|x_{1}(t)-x_{2}(t)\right\|=0 .} \tag{7.14}
\end{equation*}
$$

- We show that if the coupling is sufficiently strong, i.e. α is sufficiently large, then system (7.13) synchronizes.
- Define $z(t):=x_{1}(t)-x_{2}(t)$. To detect the synchrony, we need to see if $z(t) \rightarrow 0$ as $t \rightarrow \infty$ when $z(0)$ is small.
- Recall that

$$
\left\{\begin{array}{l}
\dot{x}_{1}=f\left(x_{1}\right)+\alpha\left(x_{2}-x_{1}\right) \\
\dot{x}_{2}=f\left(x_{2}\right)+\alpha\left(x_{1}-x_{2}\right)
\end{array}\right.
$$

Thus

$$
\begin{equation*}
\underbrace{\dot{z}}_{\text {gives }}=\dot{x}_{1}-\dot{x}_{2}=\underbrace{f\left(x_{1}\right)-f\left(x_{2}\right)-2 \alpha z .} \tag{7.15}
\end{equation*}
$$

- Taylor expanding $f\left(x_{1}-z\right)$ at $z=0$ gives

$$
\begin{equation*}
f\left(x_{2}\right)=f\left(x_{1}-z\right)=f\left(x_{1}\right)-D f\left(x_{1}\right) z+O\left(\|z\|^{2}\right) . \tag{7.16}
\end{equation*}
$$

Thus, near $z=0$, we have

- To analyze the stability of the solution $z=0$, we consider the linear part of the system, i.e.

$$
\begin{equation*}
\underbrace{\dot{z}=\left[D f\left(x_{1}(t)\right)-2 \alpha \mathrm{I}\right] z} \tag{7.18}
\end{equation*}
$$

- Define a new variable $\underbrace{w(t)=e^{2 \alpha t} z(t)}$. Then,

$$
\begin{align*}
\dot{w} & =2 \alpha e^{2 \alpha t} z+e^{2 \alpha t} \dot{z}, \\
& =2 \alpha w+e^{2 \alpha t}\left[D f\left(x_{1}(t)\right)-2 \alpha \mathrm{I}\right] z \tag{7.19}\\
& =[\underbrace{\left[D f\left(x_{1}(t)\right)\right] w .}
\end{align*}
$$

- Equation $\dot{w}=\left[D f\left(x_{1}(t)\right)\right] w$ is the variational equation for the system $\dot{x}_{1}=f\left(x_{1}\right)$ along the orbit $x_{1}(t)$.
- Let $\wedge y$ ye the maximal Lyapunov exponent of the orbit $\left\{x_{1}(t)\right\}$. Then,
- Thus, $\|z(t)\| \leq C e^{(\Lambda-2 \alpha) t}$, and therefore $\alpha_{c}=\frac{\Lambda}{2}$.

References

[Arn92] V. Arnold. Ordinary Differential Equations. Springer Verlag Textbook, third edition, 1992.
[ELP17] D. Eroglu, J. S. W. Lamb, and T. Pereira. Synchronisation of chaos and its applications. Contemporary Physics, 58(3):207-243, 2017.
[GH13] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, volume 42. Springer Science \& Business Media, 2013.
[HSD12] M. W. Hirsch, S. Smale, and R. L. Devaney. Differential equations, dynamical systems, and an introduction to chaos. Academic press, 2012.
[Mey00] C. D. Meyer. Matrix analysis and applied linear algebra, volume 71. SIAM, 2000.
[Per01] L. Perko. Differential equations and dynamical systems. Springer-Verlag, third edition, 2001.
[Rob98] C. Robinson. Dynamical systems: stability, symbolic dynamics, and chaos. CRC press, second edition, 1998.
[VS18] S. Van Strien. Lecture notes on ODEs. available at https://www.ma.imperial.ac.uk/ svanstri/Files/de-4th.pdf, Spring 2018.
[Wig03] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos, volume 2. Springer, second edition, 2003.

[^0]: ${ }^{20}$ Such a function H naturally appears when we linearize the system at the synchronization subspace $M:=\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{n N}: x_{1}=x_{2}=\cdots=x_{N}\right\}$.

