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7. Synchronization in coupled systems

7.1. Graph representation

• Recall that a mathematical model to study synchronization in networks is given by

ẋi = fi (xi) + ↵
NX

j=1

AijHi (xj � xi) , 8i 2 {1, . . . , N}, (7.1)

where xi 2 Rn (n � 1), Aij � 0 are real constants, and fi, Hi 2 C2 (Rn).

7.1.1 Adjacency matrix

• We can associate a (directed weighted) graph to system (7.1) as follows:

– The graph has N nodes, and node number i corresponds to the variable xi.

– There exists an edge starting from node j and ending at node i if and only if Aij > 0. We can also think of Aij

as the weight of this edge.

• The matrix A defined by A := (Aij) is called the adjacency matrix of the graph.
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Example 7.1. For given functions fi and Hi (i = 1, . . . , 5), consider the system

ẋ1 = f1 (x1) + ↵ [H1 (x2 � x1) + 2H1 (x4 � x1)] ,

ẋ2 = f2 (x2) + ↵ [H2 (x3 � x2)] ,

ẋ3 = f3 (x3) + ↵ [7H3 (x4 � x3)] ,

ẋ4 = f4 (x4) + ↵ [3H4 (x5 � x4)] ,

ẋ5 = f5 (x5) + ↵ [H5 (x1 � x5) + 3H5 (x2 � x5)] .

(7.2)

The corresponding graph is shown in Figure 45. The adjacency matrix is

A =

0

BBBB@

0 1 0 2 0
0 0 1 0 0
0 0 0 7 0
0 0 0 0 1
1 3 0 0 0

1

CCCCA
. (7.3)

Figure 45: The graph corresponding to system (7.2).
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7.1.2 Laplacian matrix

• Consider again the system

ẋi = fi (xi) + ↵
NX

j=1

AijHi (xj � xi) , 8i 2 {1, . . . , N}. (7.4)

• Suppose that the couplings are identical, i.e. Hi = Hj for all i and j, and there exists H such that Hi (xj � xi) =
H (xj)�H (xi)20. Then, (7.4) is written as

ẋi = fi (xi) + ↵
NX

j=1

Aij [H (xj)�H (xi)] . (7.5)

• Note that
NX

j=1

Aij [H (xj)�H (xi)] =

2

4
NX

j=1, j 6=i

AijH (xj)

3

5�H (xi)
NX

j=1, j 6=i

Aij. (7.6)

• Define the N ⇥N matrix L := (Lij) by

Lij :=

⇢
�Aij if i 6= j,PN

j=1, j 6=iAij if i = j.
(7.7)

• The matrix L is called the Laplacian matrix.

• Using the Laplacian, we can write (7.5) as

ẋi = fi (xi)� ↵
NX

j=1

LijH (xj) . (7.8)

20Such a function H naturally appears when we linearize the system at the synchronization subspace M := {(x1, . . . , xN ) 2 RnN : x1 = x2 = · · · = xN}.
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Remark 7.2. It follows from (7.7) that the sum of all the entries of each arbitrary row of the Laplacian matrix is
zero.

A =

✓
0 1
1 0

◆
L =

✓
1 �1
�1 1

◆

A =

0

@
0 1 1
0 0 0
1 1 0

1

A L =

0

@
2 �1 �1
0 0 0
�1 �1 2

1

A

A =

0

BB@

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1

CCA L =

0

BB@

3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

1

CCA

A =

0

BBBB@

0 1 0 2 0
0 0 1 0 0
0 0 0 7 0
0 0 0 0 1
1 3 0 0 0

1

CCCCA
L =

0

BBBB@

3 �1 0 �2 0
0 1 �1 0 0
0 0 7 �7 0
0 0 0 1 �1
�1 �3 0 0 4

1

CCCCA

Figure 46: A few examples of (directed and undirected) graphs and their associated adjacency and Laplacian matrices.
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7.1.3 Spectral properties of the Laplacian matrix

Theorem 7.3. For a given arbitrary graph, the laplacian matrix L has a zero eigenvalue.

Proof. Let

L =

0

@
l11 · · · l1n
... . . . ...
ln1 · · · lnn

1

A (7.9)

be the Laplacian matrix, and consider the vector 1 =

✓
1
...
1

◆
(the n-dimensional vector whose entries are all one). Then,

L1 =

0

@
l11 · · · l1n
... . . . ...
ln1 · · · lnn

1

A

0

@
1
...
1

1

A =

0

@
l11 + l12 + · · ·+ l1n

...
ln1 + ln2 + · · ·+ lnn

1

A . (7.10)

This means that the i-th entry of the vector L1 is the row-sum of the i-th row of the Laplacian L. However, the row-sum
of each row of L is zero. Thus, L1 = 0. This implies that 0 is an eigenvalue of L, and 1 is an associated eigenvector.
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Theorem 7.4. All the eigenvalues of the Laplacian matrix L of a given graph have non-negative real parts.

Proof. Let

L =

0

@
l11 · · · l1n
... . . . ...
ln1 · · · lnn

1

A (7.11)

be the Laplacian matrix. Since the row-sums of L are zero, for each i, we have lii =
P

j 6=i|lij|. Thus, all the Gershgorin
disks lie in the right side of the imaginary axis in the complex plane, as desired.G
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7.2. Synchronization

• Define M := {(x1, . . . , xN) 2 RnN : x1 = x2 = · · · = xN}.

– M is a vector subspace of RnN .

– We call M the synchronization subspace.

– Suppose a solution (x1 (t) , . . . , xN (t)) of system (7.1) entirely lies in M (for instance, this can happen when M
is invariant). In this case, we have x1 (t) = · · · = xN (t). Such a solution is called a synchronized solution.

• We say system (7.1) gets into (complete) synchrony if M attracts nearby orbits.

– More precisely, if there exists an open neighborhood U ofM such that for any initial condition (x1 (0) , . . . , xN (0)) 2
U , and any 1  i, j  N , we have

lim
t!1

kxi (t)� xj (t) k = 0. (7.12)
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7.3. An example of synchronization between two coupled nonlinear systems

We now discuss model (7.1) for two coupled identical systems with identity coupling. Consider the system

ẋ1 = f (x1) + ↵ (x2 � x1) ,

ẋ2 = f (x2) + ↵ (x1 � x2) ,
(7.13)

where f : Rn ! Rn, and ↵ is the coupling strength.

Figure 47: Two coupled systems.

• The synchronization subspace is M = {(x1, x2) 2 R2n : x1 = x2}.

– Observe that M is invariant with respect to the flow of system (7.13).

• System (7.13) gets into synchrony if for any initial condition (x1 (0) , x2 (0)) close to M , we have

lim
t!1

kx1 (t)� x2 (t) k = 0. (7.14)

;
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• We show that if the coupling is su�ciently strong, i.e. ↵ is su�ciently large, then system (7.13) synchronizes.

• Define z(t) := x1(t)� x2(t). To detect the synchrony, we need to see if z(t) ! 0 as t ! 1 when z (0) is small.

• Recall that
ẋ1 = f (x1) + ↵ (x2 � x1) ,

ẋ2 = f (x2) + ↵ (x1 � x2) .

Thus
ż = ẋ1 � ẋ2 = f (x1)� f (x2)� 2↵z. (7.15)

• Taylor expanding f (x1 � z) at z = 0 gives

f (x2) = f (x1 � z) = f (x1)�Df (x1) z +O
�
kzk2

�
. (7.16)

Thus, near z = 0, we have

ż = [Df (x1 (t))� 2↵I] z +O
�
kzk2

�
, (I = identity matrix) (7.17)
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• To analyze the stability of the solution z = 0, we consider the linear part of the system, i.e.

ż = [Df (x1 (t))� 2↵I] z. (7.18)

• Define a new variable w (t) = e2↵tz (t). Then,

ẇ = 2↵e2↵tz + e2↵tż

= 2↵w + e2↵t [Df (x1 (t))� 2↵I] z

= [Df (x1 (t))]w.

(7.19)

• Equation ẇ = [Df (x1 (t))]w is the variational equation for the system ẋ1 = f (x1) along the orbit x1 (t).

• Let ⇤ be the maximal Lyapunov exponent of the orbit {x1 (t)}. Then,

kw (t) k  Ce⇤t, for some constant C > 0. (7.20)

• Thus, kz (t) k  Ce(⇤�2↵)t, and therefore ↵c =
⇤
2 .
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