University POLITEHNICA of Bucharest

Applied Mathematics in Optimization Problems

Applications

Assignment Problem

© Assoc. Prof. PhD. eng. math. Ovidiu Blăjină

1. Network Modeling module. Assignment Problem type 2. Problems

1. Network Modeling module. Assignment Problem type

The Network Modeling module, Assignment Problem type, from the product software WinQSB, is used to solve, in a conversational system, the assignment problems. Its main features are the following:

- It accepts the problem data in tabular form with a predefined structure or in graphical form.
- It displays iteration results in tabular or graphical form.
- It displays the solution of the problem in tabular or graphical form.
- It performs what ... if ... analysis and parametric
solution analysis.
- The file with the data problem is saved with the .net extension.
Running the Network Modeling module displays the main window of the module:

Fig.1. The main window of the Network Modeling module
The New Problem command from the File menu or a mouse click on the button 国 displays the Net Problem

Specification dialog box (Fig.2). It contains fields to be filled in/selected by the user.

Fig.2. Net Problem Specification dialog box
A click on the command button $\mathbf{O K}$ in the dialog box
displays the working window, presented in Fig.3:

Fig.3. The working window of the module, Assignment type
At the top of the working window are: $>$ Menu bar, which contains the menus: File, Edit,

Format, Solve and Analyze, Results, Utilities, Window, WinQSB, Help.

$>$ Toolbars for certain submenus.
$>B a r$ with the name of the problem.
$>B a r$ indicating the current box.
The menus Files and Edit are illustrated in Fig.4-5.

Fig.4. File menu

Fig.5. Edit menu
With the command Switch to Graphic Model from the menu Format, it switches from the matrix (tabular) form to the graphic form of the problem. With the command Switch to Matrix Form, which appears in the menu Format, it returns from the graphic form to the
matrix form.
The first three commands from the menu Solve and Analyze (Fig.6) are dedicated for solving an assignment problem.

Fig.6. Solve and Analyze menu
The menu Results, which is displayed after solving the problem, contains the commands presented in Fig.7.

Fig.7. Results menu
To solve an assignment problem using the Network Modeling module, Assignment problem type, the following steps must be completed:

1. Identifying the type of problem.
2. Select the command New Problem and complete the fields in the NET Problem Specification dialog box.
3. Entering the data of the problem.
4. Save the data with the command Save Problem As.
5. Solve the problem with a command from the menu Solve and Analyze.
6. Display the obtained results with a command from the menu Results.

2. Problems

Problem 1.

$\&$ The pieces P_{1}, \ldots, P_{5}, whose execution is urgent, can be machined on any of the five machines U_{1}, \ldots, U_{5}. The unit times required for execution (in min.) are presented in the Table 1.
a) Determine the optimal distribution of the pieces on machines so that the total execution time is minimal.
b) Calculate the intervals in which the execution times from the Table 1 may vary so that the previous optimal distribution does not change.

Table 1

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
U_{1}	5	9	11	8	4
U_{2}	9	6	7	6	10
U_{3}	7	10	6	13	8
U_{4}	4	6	12	8	5
U_{5}	8	5	8	7	4

\square a) The above problem is a minimization assignment problem.
The Network Modeling module is called for its solving. It selects the command New Problem and it completes the NET Problem Specification dialog box as in the Fig.8. Then click the command button OK.

Fig.8. NET Problem Specification dialog box
The model of the problem in tabular form is presented in the Fig.9.

The command Solve the Problem from the Solve and Analyze menu returns the solution of the problem (opti-
mal distribution) in tabular form (Fig.10).

From \ To	P 1	P 2	P 3	P 4	P 5
U1	5	9	11	8	4
U 2	9	6	7	6	10
U 3	7	10	6	13	8
U4	4	6	12	8	5
U 5	8	5	8	7	4

Fig.9. The model of the problem in tabular form

05-06-2013	From	To	Assignment	Unit Cost	Total Cost	Reduced Cost
$\mathbf{1}$	U 1	P 5	1	4	4	0
2	U 2	P 4	1	6	6	0
3	U 3	P 3	1	6	6	0
4	U 4	P1	1	4	4	0
5	U 5	P 2	1	5	5	0
	Total	Objective	Function	Value $=$	25	

Fig.10. The optimal solution in tabular form
The optimal distribution of the pieces on machines is as follows: $U_{1}-P_{5} ; U_{2}-P_{4} ; U_{3}-P_{3} ; U_{4}-P_{1} ; U_{5}-P_{2}$. The corresponding total execution time is equal to 25 min .
b) With the command Range of Optimality from the menu Results, it obtains a table (Fig.11) which contains the sensitivity analysis of the optimal solution. So the columns Allowable Min. Cost and Allowable Max. Cost contain the extremities of some open intervals in which the execution times of the pieces may vary so that the previous solution does not change. Thus $t_{11} \in(3,6)$, $t_{12} \in(7, \infty), t_{13} \in(4, \infty)$ and so on.

$\begin{array}{\|c\|} \hline 05-06-2013 \\ 11: 42: 43 \end{array}$	From	To	Unit Cost	Reduced Cost	Basis Status	Allowable Min. Cost	Allowable Max. Cost
1	U1	P1	5	0	basic	3	6
2	U1	P 2	9	2	at bound	7	M
3	U 1	P 3	11	7	at bound	4	H
4	U 1	P 4	8	1	at bound	7	M
5	U 1	P 5	4	0	basic	-2	6
6	U 2	P1	9	5	at bound	4	M
7	U 2	P 2	6	0	basic	5	9
8	U 2	P3	7	4	at bound	3	M
9	U 2	P 4	6	0	basic	-3	7
10	U 2	P 5	10	7	at bound	3	M
11	U3	P1	7	0	basic	5	8
12	U3	P 2	10	1	at bound	9	H
13	U3	P 3	6	0	basic	0	10
14	U3	P 4	13	4	at bound	9	M
15	U 3	P 5	8	2	at bound	6	M
16	U 4	P1	4	0	basic	3	6
17	U 4	P 2	6	0	basic	4	7
18	U 4	P 3	12	9	at bound	3	M
19	U 4	P 4	8	2	at bound	6	M
20	U 4	P 5	5	2	at bound	3	M
21	U 5	P1	8	5	at bound	3	M
22	U5	P 2	5	0	basic	- H	7
23	U 5	P 3	8	6	at bound	2	M
24	U 5	P 4	7	2	at bound	5	M
25	U 5	P 5	4	2	at bound	2	M

Fig.11. The table with sensitivity analysis of the solution

Problem 2

L An express courier company has four means of transport M_{1}, \ldots, M_{4}, which must go to one of the four customers A, B, C, D of the company, located in different areas. The distances (in km.) to be covered to the clients are presented in the Table 2, in which the symbol "-" indicates the impossibility of moving of M_{3} towards the client C.
a) Determine the distribution of the means of transport to the four customers so that the total distance traveled to them is minimal.
b) What will be the distribution if customer B gives up the services of the courier company?

Table 2

	A	B	C	D
M_{1}	30	25	20	35
M_{2}	20	15	17	20
M_{3}	45	22	-	25
M_{4}	40	35	20	50

\square
a) The above problem is a minimization assignment problem.
The table with the input data is presented in Fig.12.
With the command Switch to Graphic Model from the menu Format, the graphic model of the problem is obtained, in the form of a bipartite graph (Fig.13).

The command Solve and Display Steps - Tableau from the menu Solve and Analyze displays the table of

From \To	A	B	C	D
M1	30	25	20	35
M2	20	15	17	20
M3	45	22	M	25
M4	40	35	20	50

Fig.12. Data of the problem (case a) in tabular form

Fig.13. Model of the problem (case a) in graphic form the first iteration of the solving algorithm (Fig.14).

	A	B	C	D
M1	5	5		12
M1	0	0		2
M3	10	0		2
M4	15	15		0

Fig.14. Table of the first iteration
of the solving algorithm
The command Next Iteration from the menu Iteration displays the table of the second (last) iteration of the algorithm (Fig.15).

A new command Next Iteration returns the solution of the problem in tabular form (Fig.16).

The command Graphic Solution from the menu Results displays the solution in graphic form (Fig.17).

	A	B	C	D
M1	ϕ	0	4	$?$
M2	4	0		2
M3	18	4	4	4
M4	10	10	4	20

Fig.15. Table of the last iteration
of the solving algorithm

05-06-2013	From	To	Assignment	Unit Cost	Total Cost	Reduced Cost
1	H1	B	1	25	25	0
2	H2	A	1	20	20	0
3	M3	D	1	25	25	0
4	H4	C	1	20	20	0
	Total	Objective	Function	Value =	90	

Fig.16. The solution of the problem (case a) in tabular form
The optimal assignment (distribution) of the means of transport to the four customers is: $M_{1}-B ; M_{2}-A ; M_{3}-D$; $M_{4}-C$. The total distance to be covered is equal to 90 km .

Fig.17. The solution of the problem (case a) in graphic form
b) It deletes the node B with the command Delete a Node from the menu Edit. The graphic model of the problem becomes:

Fig.18. Model of the problem (case b) in graphic form
The solution of the problem in tabular form is obtained with the command Solve the Problem. The command Graphic Solution displays the solution in graphic form (Fig.19). It is found that the means of transport M_{4} is not

Fig.19. The solution of the problem (case b) in graphic form distributed. The total distance traveled to the three remaining customers is equal to 65 km .

Problem 3

\sum Four banks B_{1}, \ldots, B_{4} participate in the financing of four P_{1}, \ldots, P_{4} projects of a company. Each project is financed by only one bank. The profits of the financing of each project by each bank (in thousands of m.u.) are specified in the Table 3.

	Table 3			
	P_{1}	P_{2}	P_{3}	P_{4}
B_{1}	12	3	18	4
B_{2}	16	10	14	9
B_{3}	21	16	25	13
B_{4}	23	14	21	7

a) Determine an assignment of projects on banks that maximizes the total profit obtained by the company.
b) Analyze how the total profit varies if the profit of the project P_{2} financed by the bank B_{2} varies in the range $[10,14]$ thousands of m.u.

ص a) The above problem is a maximization assignment problem.
The module Network Modeling is called for solving. When it completes the NET Problem Specification dialog box, it selects the Maximization option in the Objective Criterion box.

The data of the problem are entered in tabular form in the initial working window (Fig.20).

The command Solve the Problem returns the solution of the problem, in tabular form (Fig.21).

From \ To	P1	P2	P3	P4	
B1		12	3	18	4
B2		16	10	14	9
B3	21	16	25	13	
B4	23	14	21	7	
		23	14		

Fig.20. Data of the problem in tabular form

05-06-2013	From	To	Assignment	Unit Profit	Total Profit	Reduced Cost
1	B1	P3	1	18	18	0
2	B2	P4	1	9	9	0
3	B3	P2	1	16	16	0
4	B4	P1	1	23	23	0
	Total	Objective	Function	Value $=$	66	

Fig.21. The solution of the problem in tabular form
The optimal solution of this assignment problem is the maximum coupling: $B_{1}-P_{3} ; B_{2}-P_{4} ; B_{3}-P_{2} ; B_{4}-P_{1}$. The maximum value of the total profit of the company is equal to 66 thousands m.u.
b) It calls the command Perform Parametric Analysis,
which opens the Parametric Analysis dialog box, in which the connection $B_{2}-P_{2}$ is selected and the boxes are filled in with values as in the Fig.22.

Fig.22. Parametric Analysis dialog box

Click on the OK command button and it obtains the result of the parametric analysis, in tabular form (Fig.23):

05-06-2013	B2 to P2 Connection Cost/Distance	OBJ Value
1	10	66
2	10.5	66
3	11	66
4	11.5	66
5	12	66
6	12.5	66.5
7	13	67
8	13.5	67.5
9	14	68

Fig.23. The result of the parametric analysis in tabular form
Therefore the total profit varies in the range [66, 68] thousands m.u.

The command Show Parametric Analysis-Graphic from the menu Results returns the graph of the variation of the total profit value depending on the values of the

considered parameter (Fig.24).

Fig.24. The result of the parametric analysis in graphic form

