
PERRON-FROBENIUS THEOREM

Definition 0.1. A matrix or vector is non-negative (positive) if all of its entries are non-negative
(positive). A non-negative square matrix A such that Ak > 0 for some k ∈ N is called a primitive
matrix (also known as regular matrix). The directed graph DA corresponding to a non-negative
square matrix A is the digraph whose vertices are the coordinates, and (i, j) is a directed edge iff
A[i, j]> 0. We say that the square matrix A≥ 0 is irreducible if the corresponding digraph DA is
strongly connected.

Recall a standard fact from linear algebra (or in fact more generally from functional analysis).

Proposition 0.2 (Gelfand). Let ρ be the spectral radius of the square matrix A. Then

ρ = lim
m→∞
||Am||1/m

We need the following elementary lemma.

Lemma 0.3. Let A > 0 be a square matrix, and u,v with u− v ≥ 0 but not equal to the zero
vector. Then for some C > 1 we have Au >CAv.

Proof. Clearly A(u− v)> 0, thus Au > Av, and the assertion follows trivially. �

Theorem 0.4 (Perron-Frobenius, primitive case). Let A be an n×n primitive matrix with spectral
radius ρ . Then

(1) ρ is an eigenvalue with associated eigenvector v > 0 (Perron root, Perron vector);
(2) for all other eigenvalues λ ∈ Spec(A) we have |λ |< ρ;
(3) ρ has algebraic multiplicity 1.
(4) If w is the Perron vector for A∗, that is, w∗ is the left Perron vector for A, such that w∗

and v are normalized to satisfy the identity w∗v = 1, then lim
m→∞

(
1
ρ

A
)m

= vw∗.

Proof. We prove the first three items for positive matrices first: so let us assume that A > 0.
Let λ ∈ Spec(A) be an eigenvalue with |λ | = ρ and eigenvector u. Let v = |u| be the vector
obtained by taking the absolute value of u coordinate-wise. The triangle inequality implies Av≥
|Au|= |λu|= ρv. Assume indirectly that equality does not hold. Then by Lemma 0.3 there is a
C > 1 such that A2v > (Cρ)Av. A standard induction yields Am(Av) = Am+1v > (Cρ)mAv. By
Gelfand’s formula we obtain ρ ≥Cρ , a contradiction.

Hence, Av = ρv. To finish the proof of item (1), we need to show that v > 0: by definition, it is
non-negative and not the zero vector, but in principle, it could have some zero entries. However,
the left-hand side Av is positive, so the right-hand side ρv must be positive, too.

For item (2), assume that there is a ρ 6= λ ∈ Spec(A) with |λ | = ρ; let u be an associated
eigenvector. The above calculation shows that A|u|= |Au|. Thus in every coordinate, the absolute
value of a positive linear combination of complex numbers equals to the linear combination of
absolute values. It is an easy exercise to show that this is only possible if the complex numbers
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are all non-negative multiples of the same number z ∈ C. Hence, u = zu′ for some u′ ≥ 0. Then
we may assume that u = u′, as u′ is also an eigenvector with eigenvalue λ . As Au = λu, and the
left-hand side is positive, we obtain λ > 0. As |λ |= ρ and λ > 0, we have λ = ρ .

In order to show item (3), we first prove the formally weaker statement that the geometric
multiplicity of ρ is 1. To this end, assume that there is an eigenvector u associated to ρ such
that u and v are linearly independent. The coordinate-wise real and imaginary part of u are also
eigenvectors associated to the real eigenvalue ρ . If both were a multiple of v, then u and v would
not be independent. Thus we can switch u to one of these real vectors, and assume that u ∈ Rn.
We may also assume that at least one entry of u is positive. Then a standard continuity argument
yields a c > 0 such that v− cu≥ 0 with at least one zero entry. By the independence of u and v,
the vector v− cu 6= 0. However, ρ(v− cu) = A(v− cu)> 0, a contradiction.

Let w∗ be the left Perron vector for A. Let U ≤Rn be the perpendicular subspace to w, that is,
U = {x ∈ Rn | w∗x = 0}. As w,v > 0, we have v /∈U . Moreover, U is an (n− 1)-dimensional
A-invariant subspace: if x ∈U , then w∗(Ax) = (w∗A)x = ρw∗x = 0.

Let us pick a new basis of Rn: the first basis vector is v, and the remaining (n−1) forms a basis
of U . The transition matrix is denoted by S. Then the matrix after the base transition is S−1AS.
As 〈v〉 and U are A-invariant subspaces, we have that S−1〈v〉 and S−1U are S−1AS-invariant
subspaces. So over the new basis, the matrix S−1AS is block diagonal, with a one-by-one block
containing ρ . Hence, if the algebraic multiplicity of ρ is greater than 1, then an eigenvector in U
would be associated to ρ , making its geometric multiplicity greater than 1.

Now that items (1,2,3) are proven for positive matrices, we reduce the general statements for
primitive matrices to this special case. Assuming that Ak > 0, let ρk be the Perron root (spectral
radius) of Ak, and let v be the associated positive eigenvector. All other eigenvalues have strictly
smaller modulus, and ρk has algebraic multiplicity 1. Then the eigenvalues of A are k-th roots of
those of Ak with the same associated eigenvectors. Hence, ρε is the spectral radius of A for some
k-th root of unity ε , and it is also an eigenvalue with associated positive eigenvector v, and ρε

has algebraic multiplicity 1. As Av = ρεv, and the left-hand side is positive (real), we conclude
that ε = 1.

For item (4), let T be the transition matrix such that T−1( 1
ρ

A)T = J is the Jordan normal form
of 1

ρ
A. Then ( 1

ρ
A)m = (T JT−1)m = T JmT−1→ T MT−1, where M is the square matrix whose

upper left element is 1 and all other elements are 0. The first column of T is a scalar multiple of
v. The first row of T−1 is a scalar multiple of w∗: indeed, the same argument can be applied to
A∗, and then the transition matrix is (T−1)∗. Thus we may assume that these scalar multiplies
are v and w∗ themselves, provided that w∗v = 1. Thus T MT−1 = vw∗. �

Remark 0.5. According to the proof, T MT−1 = vw∗, thus vw∗ is a projection matrix with rank
1; that is, its left- and right images are 1-dimensional subspaces. As w∗vw∗ = 1w∗ = w∗ and
vw∗v = v1 = v, the matrix vw∗ projects onto the 1-dimensional subspace(s) spanned by the
Perron vector(s) (the plural being justified by the two actions of the matrix by left- and right
multiplication). These are the Perron projections.

Just as the primitive case was reduced to the positive one, we can reduce the irreducible version
to the primitive one. Recall that the period of a vertex in a digraph is the greatest common
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divisor of all loops (walks with the same start- and endpoint) containing that vertex. In strongly
connected digraphs, all vertices have the same period h, which we call the period of the digraph.
This justifies the notion of a period of a non-negative irreducible matrix A: it is the period of the
strongly connected digraph DA. Note that such a digraph DA (the set of coordinates of A) can be
partitioned into h classes numbered from 0 to h−1, such that directed edges only go from class i
to class i+1 modulo h. That is, A is a block diagonal matrix (after a permutation of coordinates),
and nonzero elements can only be positioned in blocks with row class i and column class i+ 1
modulo h.

Theorem 0.6 (Perron-Frobenius, irreducible case). Let A be an n× n non-negative irreducible
matrix with spectral radius ρ and period h. Then

(1) ρ is an eigenvalue with an associated eigenvector v > 0 (Perron root, Perron vector), and
for any h-th root of unity ε we have ερ is also an eigenvalue;

(2) for all other eigenvalues λ ∈ Spec(A) we have |λ |< ρ;
(3) each ερ has algebraic multiplicity 1.
(4) If w is the Perron vector for A∗, that is, w∗ is the left Perron vector for A, such that w∗

and v are normalized to satisfy the identity w∗v = 1, then lim
m→∞

1
m+1

m
∑
`=0

(
1
ρ

A
)`

= vw∗.

Proof. We use two constructions that make A a primitive matrix (or in fact, in the first case, a
block diagonal matrix all of whose blocks are primitive). So let P = Ah; this is a block diagonal
matrix. As DA is strongly connected, and walks starting and ending in the same class have length
divisible by h, we have that each block of P is primitive, as they correspond to the strongly
connected components of DA. Thus we can apply the previous theorem: all h blocks have a
unique eigenvalue (with algebraic multiplicity 1) that has the largest absolute value (the spectral
radius of the block). At this point, we do not know if the spectral radii of the blocks are equal;
nevertheless, we already learned that there can be at most h eigenvalues of A (counted with
multiplicity) whose absolute value is the spectral radius of A.

The other construction we consider is Q = A+ tIn, where In is the identity matrix and t is
a small positive real number. Then the eigenvectors of A and Q coincide, and the associated
eigenvalues are shifted by t. Clearly, DQ contains all the directed edges of DA, so DQ is strongly
connected. The common period of vertices in DQ is 1, as we put a loop edge on every vertex by
adding the identity matrix. Thus Q is an irreducible aperiodic matrix, hence primitive. In partic-
ular, the spectral radius of Q is a single eigenvalue ρ + t with an associated positive eigenvector.
Thus the slightly smaller value ρ is thus an eigenvalue of A with the same positive eigenvector v.
As this works for all t > 0, we have that ρ is the spectral radius of A, and its algebraic multiplicity
is 1.

Let us partition the set of coordinates of v into the h blocks, creating the vectors v0,v1, . . . ,vh−1.
Let v′ be the vector formed by the parts v0,εv1, . . . ,ε

h−1vh−1 for any h-th root of unity ε . Then
Av = ρv and the sign pattern of blocks of A imply that Ai,i+1vi+1 = ρvi, where the indexation
is to be understood modulo h, and Ai,i+1 is the block of elements in A whose row class is i and
column class is i+1 (once again, modulo h). Thus Ai,i+1ε i+1vi+1 = ρε i+1vi = ερ(ε ivi), showing
that Av′ = ερv′. Hence, ερ is an eigenvalue of A for every h-th root of unity ε . As we observed
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earlier that there can be at most h eigenvalues of A of length ρ , these must be all, finishing the
proof of the first three items.

The fourth item can be shown similarly to item (4) in the primitive case. The difference is
that now the Jordan normal form J of 1

ρ
A has h one-by-one blocks, containing the numbers ε

for every h-th root of unity ε; the remaining blocks still tend to 0 when taking large powers.
The block containing 1 yields the constant 1 sequence when raised to different powers: so we
have convergence there with limit 1. The problem occurs in the remaining blocks with entry
having modulus 1. The powers of those complex h-th roots of unity form a divergent sequence.
However, when averaged out, they tend to 0, as the sum of the first h powers of a complex number
ε 6= 1 with εh = 1 is 0. �


