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Infinite vectors, matrices

Markov chains Pongrácz




a1,1 a1,2 a1,3 · · ·
a2,1 a2,2 a2,3 · · ·
a3,1 a3,2 a3,3 · · ·
...

...
...

. . .



Stochastic: the (infinite) sum of elements in each row is 1, and all
elements are non-negative.

We can multiply infinite row and column vectors (indexed by N or
N ∪ {0}) in the logical way, by computing an infinite sum.
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Perron-Frobenius theorem

Essentially nothing survives.

Right-shift :

0 1 2 3 4
1 1 1 11

P =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .


The only left eigenvector is the all-zero vector (with eigenvalue 0).

Every number c ∈ C is a right eigenvalue: putting uc = (1, c, c2, . . .)∗,
we have Puc = cuc .

lim
k→∞

Pk = 0 (the walk fades away at infinity)
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An absorbing example (infinite fair gambler’s ruin):

0 1 2 3 41

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5

The irreducible version (period is 2):

0 1 2 3 4
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5

1
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Classification of states
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Recall that mi is the mean recurrence time, that is, the expected value
of the random variable τii .

In general,
τij = inf{n ∈ N | Xn = j provided X0 = i}, where Xn is the index of state
after n steps.

The state with index i is
• recurrent if P(τii <∞) = 1; more precisely, it is
• positive recurrent if mi = E(τii) <∞ (which clearly implies

that it is recurrent), and
• null recurrent if it is recurrent but not positive recurrent.

• transient otherwise, that is, if P(τii <∞) < 1.
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In a finite irreducible Markov chain, every state is positive recurrent.

In
fact, we have shown that mi = 1/wi .

In a finite absorbing Markov chain, we called non-absorbing states
transient. This is justified: there is a finite walk from any non-absorbing
state to an absorbing one, using only directed edges with positive
transition probability. Hence, such a walk occurs with positive
probability p. Thus P(τii <∞) ≤ 1− p < 1.

What about countably infinite chains?
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Theorem
Given a countable Markov chain with two states i and j in the same
strong connected component of the corresponding graph. Then i is
transient iff j is.

Proof: Assume indirectly that P(τii <∞) = 1 and P(τjj <∞) < 1.

According to P(τii <∞) = 1, a walk starting from i hits i infinitely often
with probability 1. (It is the intersection of countably infinitely many
events each having probability 1.)
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Moreover, P(τii <∞) = 1 implies that P(τij <∞) = 1.

(In the infinitely
many loops, we hit j with probability 1.)

So a walk starting from i hits j with probability 1, and then with a
positive probability, it never returns to i , otherwise it would return to j
from there almost surely, making P(τjj <∞) = 1.

Thus with positive probability, a walk starting from i returns to i only
finitely many times, a contradiction.
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Proposition
Given a countable Markov chain with two recurrent states i and j in the
same strong connected component of the corresponding graph. Then i
is positive recurrent iff j is.

Proof: Simple calculation (cf. the exercises).

Theorem
Given a countable Markov chain with two states i and j in the same
strong connected component of the corresponding graph. Then the
type of i (positive recurrent, null recurrent, transient) and the type of j
coincide.
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In the right shift, all states are transient:

0 1 2 3 4
1 1 1 11

In the infinite fair gambler’s ruin, 0 is absorbing, the rest are transient:

0 1 2 3 41

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5

In the irreducible version, all states are null recurrent (cf. the
exercises):

0 1 2 3 4
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5

1
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Exercises
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Exercises

1. We put a knight in a corner of a chessboard, and make random
knight moves. What is the expected time of returning to the same
corner square?

2. Show that the cover time of the complete graph of n vertices is
asymptotically n log n.

3. The n-lollipop graph consists of a complete graph of n/2 vertices
with a path of length n/2 glued to a vertex. Show that the mean
hitting time from any vertex u of the complete graph to the base of
the lollipop is at least cubic. Conclude a cubic lower bound for the
cover time.

4. Prove that a connected graph is a two-sided expander iff it is not
bipartite. (Hint : recall Hoffman’s theorem.)
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Exercises

5. Let N ∪ {0} be equipped with the irreducible fair walk structure
(third slide): from every positive integer we move to each neighbor
with equal probability 1/2. Show that 0 is a null-recurrent state.
(Hint : show that hitting n from 0 has probability 1/n.)

6. Classify all states in the previous example, and also in the unfair
versions. That is, stepping to the right has probability p. What if
p > 1/2? And if p < 1/2?

7. Prove the proposition about communicating recurrent states.
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