Markov chains and applications

Dr. András Pongrácz

Week 13, University of Debrecen

Infinite vectors, matrices

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots \\
a_{3,1} & a_{3,2} & a_{3,3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots \\
a_{3,1} & a_{3,2} & a_{3,3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Stochastic: the (infinite) sum of elements in each row is 1 , and all elements are non-negative.
$\left(\begin{array}{cccc}a_{1,1} & a_{1,2} & a_{1,3} & \cdots \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$
Stochastic: the (infinite) sum of elements in each row is 1 , and all elements are non-negative.
We can multiply infinite row and column vectors (indexed by \mathbb{N} or $\mathbb{N} \cup\{0\}$) in the logical way, by computing an infinite sum.

Perron-Frobenius theorem

Essentially nothing survives.

Perron-Frobenius theorem

Essentially nothing survives. Right-shift:

Perron-Frobenius theorem

Essentially nothing survives. Right-shift:

$$
P=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Perron-Frobenius theorem

Essentially nothing survives. Right-shift:

$P=\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$
The only left eigenvector is the all-zero vector (with eigenvalue 0).

Perron-Frobenius theorem

Essentially nothing survives. Right-shift:

$P=\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$
The only left eigenvector is the all-zero vector (with eigenvalue 0). Every number $c \in \mathbb{C}$ is a right eigenvalue:

Perron-Frobenius theorem

Essentially nothing survives. Right-shift:

$P=\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$
The only left eigenvector is the all-zero vector (with eigenvalue 0). Every number $c \in \mathbb{C}$ is a right eigenvalue : putting $\underline{u}_{c}=\left(1, c, c^{2}, \ldots\right)^{*}$, we have $P \underline{u}_{c}=c \underline{u}_{c}$.

Perron-Frobenius theorem

Essentially nothing survives. Right-shift:

The only left eigenvector is the all-zero vector (with eigenvalue 0). Every number $c \in \mathbb{C}$ is a right eigenvalue : putting $\underline{u}_{c}=\left(1, c, c^{2}, \ldots\right)^{*}$, we have $P \underline{u}_{c}=c \underline{u}_{c}$.
$\lim _{k \rightarrow \infty} P^{k}=0$ (the walk fades away at infinity)

An absorbing example (infinite fair gambler's ruin):

An absorbing example (infinite fair gambler's ruin):

The irreducible version (period is 2):

Classification of states

Recall that m_{i} is the mean recurrence time, that is, the expected value of the random variable $\tau_{i i}$.

Recall that m_{j} is the mean recurrence time, that is, the expected value of the random variable $\tau_{i j}$. In general, $\tau_{i j}=\inf \left\{n \in \mathbb{N} \mid X_{n}=j\right.$ provided $\left.X_{0}=i\right\}$, where X_{n} is the index of state after n steps.

Recall that m_{i} is the mean recurrence time, that is, the expected value of the random variable $\tau_{i j}$. In general, $\tau_{i j}=\inf \left\{n \in \mathbb{N} \mid X_{n}=j\right.$ provided $\left.X_{0}=i\right\}$, where X_{n} is the index of state after n steps.

The state with index i is

- recurrent if $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$; more precisely, it is

Recall that m_{i} is the mean recurrence time, that is, the expected value of the random variable $\tau_{i j}$. In general, $\tau_{i j}=\inf \left\{n \in \mathbb{N} \mid X_{n}=j\right.$ provided $\left.X_{0}=i\right\}$, where X_{n} is the index of state after n steps.

The state with index i is

- recurrent if $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$; more precisely, it is
- positive recurrent if $m_{i}=E\left(\tau_{i i}\right)<\infty$ (which clearly implies that it is recurrent), and

Recall that m_{i} is the mean recurrence time, that is, the expected value of the random variable $\tau_{i j}$. In general, $\tau_{i j}=\inf \left\{n \in \mathbb{N} \mid X_{n}=j\right.$ provided $\left.X_{0}=i\right\}$, where X_{n} is the index of state after n steps.

The state with index i is

- recurrent if $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$; more precisely, it is
- positive recurrent if $m_{i}=E\left(\tau_{i i}\right)<\infty$ (which clearly implies that it is recurrent), and
- null recurrent if it is recurrent but not positive recurrent.

Recall that m_{i} is the mean recurrence time, that is, the expected value of the random variable $\tau_{i j}$. In general, $\tau_{i j}=\inf \left\{n \in \mathbb{N} \mid X_{n}=j\right.$ provided $\left.X_{0}=i\right\}$, where X_{n} is the index of state after n steps.

The state with index i is

- recurrent if $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$; more precisely, it is
- positive recurrent if $m_{i}=E\left(\tau_{i i}\right)<\infty$ (which clearly implies that it is recurrent), and
- null recurrent if it is recurrent but not positive recurrent.
- transient otherwise, that is, if $\mathbb{P}\left(\tau_{i i}<\infty\right)<1$.

In a finite irreducible Markov chain, every state is positive recurrent.

In a finite irreducible Markov chain, every state is positive recurrent. In fact, we have shown that $m_{i}=1 / w_{i}$.

In a finite irreducible Markov chain, every state is positive recurrent. In fact, we have shown that $m_{i}=1 / w_{i}$.

In a finite absorbing Markov chain, we called non-absorbing states transient.

In a finite irreducible Markov chain, every state is positive recurrent. In fact, we have shown that $m_{i}=1 / w_{i}$.

In a finite absorbing Markov chain, we called non-absorbing states transient. This is justified: there is a finite walk from any non-absorbing state to an absorbing one, using only directed edges with positive transition probability.

In a finite irreducible Markov chain, every state is positive recurrent. In fact, we have shown that $m_{i}=1 / w_{i}$.

In a finite absorbing Markov chain, we called non-absorbing states transient. This is justified: there is a finite walk from any non-absorbing state to an absorbing one, using only directed edges with positive transition probability. Hence, such a walk occurs with positive probability p.

In a finite irreducible Markov chain, every state is positive recurrent. In fact, we have shown that $m_{i}=1 / w_{i}$.

In a finite absorbing Markov chain, we called non-absorbing states transient. This is justified: there is a finite walk from any non-absorbing state to an absorbing one, using only directed edges with positive transition probability. Hence, such a walk occurs with positive probability p. Thus $\mathbb{P}\left(\tau_{i i}<\infty\right) \leq 1-p<1$.

In a finite irreducible Markov chain, every state is positive recurrent. In fact, we have shown that $m_{i}=1 / w_{i}$.

In a finite absorbing Markov chain, we called non-absorbing states transient. This is justified: there is a finite walk from any non-absorbing state to an absorbing one, using only directed edges with positive transition probability. Hence, such a walk occurs with positive probability p. Thus $\mathbb{P}\left(\tau_{i i}<\infty\right) \leq 1-p<1$.
What about countably infinite chains?

Theorem

Given a countable Markov chain with two states i and j in the same strong connected component of the corresponding graph. Then i is transient iff j is.

Theorem

Given a countable Markov chain with two states i and j in the same strong connected component of the corresponding graph. Then i is transient iff j is.

Proof: Assume indirectly that $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$ and $\mathbb{P}\left(\tau_{j j}<\infty\right)<1$.

Theorem

Given a countable Markov chain with two states i and j in the same strong connected component of the corresponding graph. Then i is transient iff j is.

Proof: Assume indirectly that $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$ and $\mathbb{P}\left(\tau_{j j}<\infty\right)<1$.
According to $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$, a walk starting from i hits i infinitely often with probability 1.

Theorem

Given a countable Markov chain with two states i and j in the same strong connected component of the corresponding graph. Then i is transient iff j is.

Proof: Assume indirectly that $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$ and $\mathbb{P}\left(\tau_{j j}<\infty\right)<1$.
According to $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$, a walk starting from i hits i infinitely often with probability 1 . (It is the intersection of countably infinitely many events each having probability 1.)

Moreover, $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$ implies that $\mathbb{P}\left(\tau_{i j}<\infty\right)=1$.

Moreover, $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$ implies that $\mathbb{P}\left(\tau_{i j}<\infty\right)=1$. (In the infinitely many loops, we hit j with probability 1.)

Moreover, $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$ implies that $\mathbb{P}\left(\tau_{i j}<\infty\right)=1$. (In the infinitely many loops, we hit j with probability 1.)
So a walk starting from i hits j with probability 1 , and then with a positive probability, it never returns to i, otherwise it would return to j from there almost surely, making $\mathbb{P}\left(\tau_{j j}<\infty\right)=1$.

Moreover, $\mathbb{P}\left(\tau_{i i}<\infty\right)=1$ implies that $\mathbb{P}\left(\tau_{i j}<\infty\right)=1$. (In the infinitely many loops, we hit j with probability 1.)
So a walk starting from i hits j with probability 1 , and then with a positive probability, it never returns to i, otherwise it would return to j from there almost surely, making $\mathbb{P}\left(\tau_{j j}<\infty\right)=1$.

Thus with positive probability, a walk starting from i returns to i only finitely many times, a contradiction.

Proposition

Given a countable Markov chain with two recurrent states i and j in the same strong connected component of the corresponding graph. Then i is positive recurrent iff j is.

Proposition

Given a countable Markov chain with two recurrent states i and j in the same strong connected component of the corresponding graph. Then i is positive recurrent iff j is.

Proof: Simple calculation (cf. the exercises).

Proposition

Given a countable Markov chain with two recurrent states i and j in the same strong connected component of the corresponding graph. Then i is positive recurrent iff j is.

Proof: Simple calculation (cf. the exercises).

Theorem

Given a countable Markov chain with two states i and j in the same strong connected component of the corresponding graph. Then the type of i (positive recurrent, null recurrent, transient) and the type of j coincide.

In the right shift, all states are transient:

In the right shift, all states are transient:

In the infinite fair gambler's ruin, 0 is absorbing, the rest are transient:

In the right shift, all states are transient:

In the infinite fair gambler's ruin, 0 is absorbing, the rest are transient:

In the irreducible version, all states are null recurrent (cf. the exercises):

Exercises

Exercises

1. We put a knight in a corner of a chessboard, and make random knight moves. What is the expected time of returning to the same corner square?
2. We put a knight in a corner of a chessboard, and make random knight moves. What is the expected time of returning to the same corner square?
3. Show that the cover time of the complete graph of n vertices is asymptotically $n \log n$.
4. We put a knight in a corner of a chessboard, and make random knight moves. What is the expected time of returning to the same corner square?
5. Show that the cover time of the complete graph of n vertices is asymptotically $n \log n$.
6. The n-lollipop graph consists of a complete graph of $n / 2$ vertices with a path of length $n / 2$ glued to a vertex. Show that the mean hitting time from any vertex u of the complete graph to the base of the lollipop is at least cubic. Conclude a cubic lower bound for the cover time.
7. We put a knight in a corner of a chessboard, and make random knight moves. What is the expected time of returning to the same corner square?
8. Show that the cover time of the complete graph of n vertices is asymptotically $n \log n$.
9. The n-lollipop graph consists of a complete graph of $n / 2$ vertices with a path of length $n / 2$ glued to a vertex. Show that the mean hitting time from any vertex u of the complete graph to the base of the lollipop is at least cubic. Conclude a cubic lower bound for the cover time.
10. Prove that a connected graph is a two-sided expander iff it is not bipartite. (Hint: recall Hoffman's theorem.)
11. Let $\mathbb{N} \cup\{0\}$ be equipped with the irreducible fair walk structure (third slide): from every positive integer we move to each neighbor with equal probability $1 / 2$. Show that 0 is a null-recurrent state. (Hint: show that hitting n from 0 has probability $1 / n$.)
12. Let $\mathbb{N} \cup\{0\}$ be equipped with the irreducible fair walk structure (third slide): from every positive integer we move to each neighbor with equal probability $1 / 2$. Show that 0 is a null-recurrent state. (Hint: show that hitting n from 0 has probability $1 / n$.)
13. Classify all states in the previous example, and also in the unfair versions. That is, stepping to the right has probability p. What if $p>1 / 2$? And if $p<1 / 2$?
14. Let $\mathbb{N} \cup\{0\}$ be equipped with the irreducible fair walk structure (third slide): from every positive integer we move to each neighbor with equal probability $1 / 2$. Show that 0 is a null-recurrent state. (Hint: show that hitting n from 0 has probability $1 / n$.)
15. Classify all states in the previous example, and also in the unfair versions. That is, stepping to the right has probability p. What if $p>1 / 2$? And if $p<1 / 2$?
16. Prove the proposition about communicating recurrent states.
