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Evolutionary processes
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Involves partial differential equations, game theory, etc.

However, a
simplified discrete model can often be considered as an
approximation.

Typically, the set of states is large, but each state has a low out-degree.
Imagine the N-dimensional cube {0,1}N , where in one step we change
a coordinate, uniformly at random: 2N states, each with out-degree N.

If an objective function is given, then the task is to find its maximum. A
good idea is to make short random walks, looking for local
improvement.
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Applications

In game theory: mathematical models of economics.

In biology: modeling actual evolution.

In programming: evolutionary programs, improving themselves
gradually (with or without human engineering). Used to develop chess
programs, antivirus softwares, etc. Often there are two competing
programs evolving in parallel, enhancing each other (cop and robber).
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Voting protocols
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Background and motivation

modeling (computer or real) viruses or gossip: Hedetniemi et al.
(1988), Karp et al. (2000), Acan et al. (2014), etc.

synchronizing computers

data sharing: Tran et al. (2004), Locher et al. (2007), Cigno et al.
(2008), Russo (2009), etc.

simulating the behavior of voters

social models: Holme, Newman (2006), Durrett et al. (2012),
Basu, Sly (2015)
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Background and motivation

Donnelly, Welsh (1983): continuous push and pull protocols

Nakata (1999), Hassin, Peleg (2001): discrete protocols

Oliveira (2012), Cooper et al. (2013): connection with coalescence

Cooper, Rivera (2015): introduction of linear protocols

Cooper et al. (2015): introduction of discordant protocols
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Linear voting protocols

Given a finite, simple, connected graph G = (V ,E).

„Push protocol” : randomly chosen vertex convinces a randomly
chosen neighbor.

„Pull protocol” : randomly chosen vertex is convinced by a randomly
chosen neighbor.

„Oblivious protocol” : randomly chosen edge, flip a coin whose opinion
is accepted by both.

There are also synchronous protocols at use, where multiple vertices
change their opinion at one turn.

Common generalization: linear voting model.
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Linear model

Sates: column vectors of length n (2n of them), two absorbing states:
constant vectors.

M1, . . . ,Mk : stochastic 0-1 matrices

p1, . . . ,pk : a probability distribution

In each round, we sample a matrix and multiply the vector of opinions
from the left.

Average matrix: M = p1M1 + · · ·+ pkMk
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Winning probabilities

Theorem
If M is ergodic, then the probability that the process ends in the
consensus 1 provided that the initial state is ξ is µ∗ξ, where µ∗ is the
(unique) stationary distribution of M.

Boundary conditions: µ∗0 = 0, µ∗1 = 1.

By the law of total probability :∑
piµ

∗Miξ = µ∗(
∑

piMi)ξ = µ∗Mξ = µ∗ξ.

The runtime can be estimated too, e.g., by the conductance of the
graph or the coalescence time, providing polynomial upper bounds.
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Gambler’s ruin
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Gambler’s ruin (a.k.a. drunkard’s walk)

0 1 2 3 4 51

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

1

Q =


0 0.5 0 0

0.5 0 0.5 0
0 0.5 0 0.5
0 0 0.5 0

 ⇒ NR =


4/5 1/5
3/5 2/5
2/5 3/5
1/5 4/5

 N1 =


4
6
6
4


In general : probability to be absorbed at the right-most state is k/n,
and the expected runtime is k(n − k). It is possible to compute the
fundamental matrix parametrically in general.
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Discordant protocols

The oblivious protocol is a gambler’s ruin (the number of vertices with
opinion 1).

The others are not: when an opinion spreads, the

probabilities are lopsided.

Discordant versions: we only pick uniformly at random from those who
disagree. (In case of oblivious, we sample from the discordant edges.)

Makes sense in practice: no idle rounds.

On cycle graphs, the three discordant protocols are very similar (all
very close to a gambler’s ruin), so the game is nearly fair and
concludes quickly. The discordant push (or some variant) is often used
in computer science in P2P protocols (data sharing and synchronizing
computers).
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Exercises
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Exercises

1. Compute the fundamental matrix of the drunkard walk (fair
gambler’s ruin).

2. Compute the first four moments of the gambler’s ruin.
3. Find and verify the formulas for the probabilities of absorption and

the expected runtime in the unfair gambler’s ruin problem, when
the probability to move to the left in each transient state is a fixed
p > 1/2. (And understand why it is important to shuffle the deck
properly before a new game of blackjack or poker.)

4. Show that the fair gambler’s ruin is indeed a fair game, i.e., a
martingale, whereas the unfair gambler’s ruin in the previous
problem is a supermartingale.
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