Markov chains and applications

Dr. András Pongrácz

Week 12, University of Debrecen

Evolutionary processes

Involves partial differential equations, game theory, etc.

Involves partial differential equations, game theory, etc. However, a simplified discrete model can often be considered as an approximation.

Involves partial differential equations, game theory, etc. However, a simplified discrete model can often be considered as an approximation.

Typically, the set of states is large, but each state has a low out-degree.

Involves partial differential equations, game theory, etc. However, a simplified discrete model can often be considered as an approximation.

Typically, the set of states is large, but each state has a low out-degree. Imagine the N-dimensional cube $\{0,1\}^{N}$, where in one step we change a coordinate, uniformly at random:

Involves partial differential equations, game theory, etc. However, a simplified discrete model can often be considered as an approximation.

Typically, the set of states is large, but each state has a low out-degree. Imagine the N-dimensional cube $\{0,1\}^{N}$, where in one step we change a coordinate, uniformly at random: 2^{N} states, each with out-degree N.

Involves partial differential equations, game theory, etc. However, a simplified discrete model can often be considered as an approximation.

Typically, the set of states is large, but each state has a low out-degree. Imagine the N-dimensional cube $\{0,1\}^{N}$, where in one step we change a coordinate, uniformly at random: 2^{N} states, each with out-degree N. If an objective function is given, then the task is to find its maximum.

Involves partial differential equations, game theory, etc. However, a simplified discrete model can often be considered as an approximation.

Typically, the set of states is large, but each state has a low out-degree. Imagine the N-dimensional cube $\{0,1\}^{N}$, where in one step we change a coordinate, uniformly at random: 2^{N} states, each with out-degree N. If an objective function is given, then the task is to find its maximum. A good idea is to make short random walks, looking for local improvement.

Applications

In game theory: mathematical models of economics.

Applications

In game theory: mathematical models of economics.
In biology: modeling actual evolution.

Applications

In game theory: mathematical models of economics.
In biology: modeling actual evolution.
In programming: evolutionary programs, improving themselves gradually (with or without human engineering).

In game theory: mathematical models of economics.
In biology: modeling actual evolution.
In programming: evolutionary programs, improving themselves gradually (with or without human engineering). Used to develop chess programs, antivirus softwares, etc.

In game theory: mathematical models of economics.
In biology: modeling actual evolution.
In programming: evolutionary programs, improving themselves gradually (with or without human engineering). Used to develop chess programs, antivirus softwares, etc. Often there are two competing programs evolving in parallel, enhancing each other (cop and robber).

Voting protocols

Background and motivation

modeling (computer or real) viruses or gossip: Hedetniemi et al. (1988), Karp et al. (2000), Acan et al. (2014), etc.

Background and motivation

modeling (computer or real) viruses or gossip: Hedetniemi et al. (1988), Karp et al. (2000), Acan et al. (2014), etc.
synchronizing computers

Background and motivation

modeling (computer or real) viruses or gossip: Hedetniemi et al. (1988), Karp et al. (2000), Acan et al. (2014), etc.
synchronizing computers
data sharing: Tran et al. (2004), Locher et al. (2007), Cigno et al. (2008), Russo (2009), etc.
modeling (computer or real) viruses or gossip: Hedetniemi et al. (1988), Karp et al. (2000), Acan et al. (2014), etc.
synchronizing computers
data sharing: Tran et al. (2004), Locher et al. (2007), Cigno et al. (2008), Russo (2009), etc.
simulating the behavior of voters
modeling (computer or real) viruses or gossip: Hedetniemi et al. (1988), Karp et al. (2000), Acan et al. (2014), etc.
synchronizing computers
data sharing: Tran et al. (2004), Locher et al. (2007), Cigno et al. (2008), Russo (2009), etc.
simulating the behavior of voters
social models: Holme, Newman (2006), Durrett et al. (2012), Basu, Sly (2015)

Background and motivation

Donnelly, Welsh (1983) : continuous push and pull protocols

Background and motivation

Donnelly, Welsh (1983): continuous push and pull protocols
Nakata (1999), Hassin, Peleg (2001): discrete protocols

Background and motivation

Donnelly, Welsh (1983): continuous push and pull protocols
Nakata (1999), Hassin, Peleg (2001): discrete protocols
Oliveira (2012), Cooper et al. (2013): connection with coalescence

Background and motivation

Donnelly, Welsh (1983): continuous push and pull protocols
Nakata (1999), Hassin, Peleg (2001): discrete protocols
Oliveira (2012), Cooper et al. (2013): connection with coalescence

Cooper, Rivera (2015): introduction of linear protocols

Donnelly, Welsh (1983): continuous push and pull protocols
Nakata (1999), Hassin, Peleg (2001): discrete protocols
Oliveira (2012), Cooper et al. (2013): connection with coalescence

Cooper, Rivera (2015): introduction of linear protocols
Cooper et al. (2015): introduction of discordant protocols

Linear voting protocols

Given a finite, simple, connected graph $G=(V, E)$.

Linear voting protocols

Given a finite, simple, connected graph $G=(V, E)$.
„Push protocol": randomly chosen vertex convinces a randomly chosen neighbor.

Given a finite, simple, connected graph $G=(V, E)$.
„Push protocol": randomly chosen vertex convinces a randomly chosen neighbor.
„Pull protocol": randomly chosen vertex is convinced by a randomly chosen neighbor.

Given a finite, simple, connected graph $G=(V, E)$.
„Push protocol": randomly chosen vertex convinces a randomly chosen neighbor.
„Pull protocol": randomly chosen vertex is convinced by a randomly chosen neighbor.
"Oblivious protocol": randomly chosen edge, flip a coin whose opinion is accepted by both.

Given a finite, simple, connected graph $G=(V, E)$.
„Push protocol": randomly chosen vertex convinces a randomly chosen neighbor.
„Pull protocol": randomly chosen vertex is convinced by a randomly chosen neighbor.
"Oblivious protocol": randomly chosen edge, flip a coin whose opinion is accepted by both.
There are also synchronous protocols at use, where multiple vertices change their opinion at one turn.

Given a finite, simple, connected graph $G=(V, E)$.
„Push protocol": randomly chosen vertex convinces a randomly chosen neighbor.
„Pull protocol": randomly chosen vertex is convinced by a randomly chosen neighbor.
"Oblivious protocol": randomly chosen edge, flip a coin whose opinion is accepted by both.
There are also synchronous protocols at use, where multiple vertices change their opinion at one turn.

Common generalization: linear voting model.

Sates: column vectors of length n (2^{n} of them), two absorbing states: constant vectors.

Sates: column vectors of length n (2^{n} of them), two absorbing states: constant vectors.
M_{1}, \ldots, M_{k} : stochastic 0-1 matrices

Sates: column vectors of length n (2^{n} of them), two absorbing states: constant vectors.
M_{1}, \ldots, M_{k} : stochastic 0-1 matrices
p_{1}, \ldots, p_{k} : a probability distribution

Sates: column vectors of length n (2^{n} of them), two absorbing states: constant vectors.
M_{1}, \ldots, M_{k} : stochastic 0-1 matrices
p_{1}, \ldots, p_{k} : a probability distribution
In each round, we sample a matrix and multiply the vector of opinions from the left.

Sates: column vectors of length n (2^{n} of them), two absorbing states: constant vectors.
M_{1}, \ldots, M_{k} : stochastic 0-1 matrices
p_{1}, \ldots, p_{k} : a probability distribution
In each round, we sample a matrix and multiply the vector of opinions from the left.

Average matrix: $M=p_{1} M_{1}+\cdots+p_{k} M_{k}$

Winning probabilities

Theorem

If M is ergodic, then the probability that the process ends in the consensus $\underline{1}$ provided that the initial state is $\underline{\xi}$ is $\underline{\mu}^{*} \underline{\xi}$, where μ^{*} is the (unique) stationary distribution of M.

Winning probabilities

Theorem

If M is ergodic, then the probability that the process ends in the consensus $\underline{1}$ provided that the initial state is $\underline{\xi}$ is $\underline{\mu}^{*} \underline{\xi}$, where μ^{*} is the (unique) stationary distribution of M.

Boundary conditions: $\underline{\mu}^{*} \underline{0}=0, \underline{\mu}^{*} \underline{1}=1$.

Theorem

If M is ergodic, then the probability that the process ends in the consensus $\underline{1}$ provided that the initial state is $\underline{\xi}$ is $\underline{\mu}^{*} \underline{\xi}$, where μ^{*} is the (unique) stationary distribution of M.

Boundary conditions: $\underline{\mu}^{*} \underline{0}=0, \underline{\mu}^{*} \underline{1}=1$.
By the law of total probability:

Theorem

If M is ergodic, then the probability that the process ends in the consensus $\underline{1}$ provided that the initial state is $\underline{\xi}$ is $\underline{\mu}^{*} \underline{\xi}$, where $\underline{\mu}^{*}$ is the (unique) stationary distribution of M.

Boundary conditions: $\underline{\mu}^{*} \underline{0}=0, \underline{\mu}^{*} \underline{1}=1$.
By the law of total probability:

$$
\sum p_{i} \underline{\mu}^{*} M_{i} \underline{\xi}=\underline{\mu}^{*}\left(\sum p_{i} M_{i}\right) \underline{\xi}=\underline{\mu}^{*} M \underline{\xi}=\underline{\mu}^{*} \underline{\xi}
$$

Theorem

If M is ergodic, then the probability that the process ends in the consensus $\underline{1}$ provided that the initial state is $\underline{\xi}$ is $\underline{\mu}^{*} \underline{\xi}$, where $\underline{\mu}^{*}$ is the (unique) stationary distribution of M.

Boundary conditions: $\underline{\mu}^{*} \underline{0}=0, \underline{\mu}^{*} \underline{1}=1$.
By the law of total probability:
$\sum p_{i} \underline{\mu}^{*} M_{i} \underline{\xi}=\underline{\mu}^{*}\left(\sum p_{i} M_{i}\right) \underline{\xi}=\underline{\mu}^{*} M \underline{\xi}=\underline{\mu}^{*} \underline{\xi}$.
The runtime can be estimated too, e.g., by the conductance of the graph or the coalescence time, providing polynomial upper bounds.

Gambler's ruin

Gambler's ruin (a.k.a. drunkard's walk)

Gambler's ruin (a.k.a. drunkard's walk)

$$
\begin{aligned}
& { }^{1} \mathrm{C}_{0}^{0.5} \\
& Q=\left(\begin{array}{cccc}
0 & 0.5 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 \\
0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0.5 & 0
\end{array}\right) \Rightarrow N R=\left(\begin{array}{ll}
4 / 5 & 1 / 5 \\
3 / 5 & 2 / 5 \\
2 / 5 & 3 / 5 \\
1 / 5 & 4 / 5
\end{array}\right) \quad N \mathbf{1}=\left(\begin{array}{l}
4 \\
6 \\
6 \\
4
\end{array}\right)
\end{aligned}
$$

Gambler's ruin (a.k.a. drunkard's walk)

$$
\begin{aligned}
& { }^{1} C_{0}^{0.5} \\
& Q=\left(\begin{array}{cccc}
0 & 0.5 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 \\
0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0.5 & 0
\end{array}\right) \Rightarrow N R=\left(\begin{array}{ll}
4 / 5 & 1 / 5 \\
3 / 5 & 2 / 5 \\
2 / 5 & 3 / 5 \\
1 / 5 & 4 / 5
\end{array}\right) \quad N \mathbf{1}=\left(\begin{array}{l}
4 \\
6 \\
6 \\
4
\end{array}\right)
\end{aligned}
$$

In general: probability to be absorbed at the right-most state is k / n, and the expected runtime is $k(n-k)$.

Gambler's ruin (a.k.a. drunkard's walk)

$$
Q=\left(\begin{array}{cccc}
0 & 0.5 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 \\
0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0.5 & 0
\end{array}\right) \Rightarrow N R=\left(\begin{array}{ll}
0.5 \\
3 / 5 & 1 / 5 \\
3 / 5 & 2 / 5 \\
2 / 5 & 3 / 5 \\
1 / 5 & 4 / 5
\end{array}\right) \quad N \underline{0.5}=\left(\begin{array}{l}
4 \\
6 \\
6 \\
4
\end{array}\right)
$$

In general: probability to be absorbed at the right-most state is k / n, and the expected runtime is $k(n-k)$. It is possible to compute the fundamental matrix parametrically in general.

Discordant protocols

The oblivious protocol is a gambler's ruin (the number of vertices with opinion 1).

Discordant protocols

The oblivious protocol is a gambler's ruin (the number of vertices with opinion 1). The others are not: when an opinion spreads, the probabilities are lopsided.

Discordant protocols

The oblivious protocol is a gambler's ruin (the number of vertices with opinion 1). The others are not: when an opinion spreads, the probabilities are lopsided.

Discordant versions: we only pick uniformly at random from those who disagree.

Discordant protocols

The oblivious protocol is a gambler's ruin (the number of vertices with opinion 1). The others are not: when an opinion spreads, the probabilities are lopsided.

Discordant versions: we only pick uniformly at random from those who disagree. (In case of oblivious, we sample from the discordant edges.)

Discordant protocols

The oblivious protocol is a gambler's ruin (the number of vertices with opinion 1). The others are not: when an opinion spreads, the probabilities are lopsided.

Discordant versions: we only pick uniformly at random from those who disagree. (In case of oblivious, we sample from the discordant edges.)

Makes sense in practice: no idle rounds.

The oblivious protocol is a gambler's ruin (the number of vertices with opinion 1). The others are not: when an opinion spreads, the probabilities are lopsided.
Discordant versions: we only pick uniformly at random from those who disagree. (In case of oblivious, we sample from the discordant edges.)
Makes sense in practice: no idle rounds.
On cycle graphs, the three discordant protocols are very similar (all very close to a gambler's ruin), so the game is nearly fair and concludes quickly.

The oblivious protocol is a gambler's ruin (the number of vertices with opinion 1). The others are not: when an opinion spreads, the probabilities are lopsided.

Discordant versions: we only pick uniformly at random from those who disagree. (In case of oblivious, we sample from the discordant edges.)

Makes sense in practice: no idle rounds.
On cycle graphs, the three discordant protocols are very similar (all very close to a gambler's ruin), so the game is nearly fair and concludes quickly. The discordant push (or some variant) is often used in computer science in P2P protocols (data sharing and synchronizing computers).

Exercises

Exercises

1. Compute the fundamental matrix of the drunkard walk (fair gambler's ruin).

Exercises

1. Compute the fundamental matrix of the drunkard walk (fair gambler's ruin).
2. Compute the first four moments of the gambler's ruin.
3. Compute the fundamental matrix of the drunkard walk (fair gambler's ruin).
4. Compute the first four moments of the gambler's ruin.
5. Find and verify the formulas for the probabilities of absorption and the expected runtime in the unfair gambler's ruin problem, when the probability to move to the left in each transient state is a fixed $p>1 / 2$. (And understand why it is important to shuffle the deck properly before a new game of blackjack or poker.)
6. Compute the fundamental matrix of the drunkard walk (fair gambler's ruin).
7. Compute the first four moments of the gambler's ruin.
8. Find and verify the formulas for the probabilities of absorption and the expected runtime in the unfair gambler's ruin problem, when the probability to move to the left in each transient state is a fixed $p>1 / 2$. (And understand why it is important to shuffle the deck properly before a new game of blackjack or poker.)
9. Show that the fair gambler's ruin is indeed a fair game, i.e., a martingale, whereas the unfair gambler's ruin in the previous problem is a supermartingale.
