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Total variation distance

A good way to measure mixing in ergodic chains is based on the total
variation distance.

Given two distribution µ, ν on the state space Ω, their total variation
distance is defined as

|µ− ν|TV =
1
2

∑
x∈Ω

|µ(x)− ν(x)| = max
H⊆Ω

(µ(H)− ν(H)).

We can measure that, given any initial distribution represented as a
row vector µ∗, how far are we from the stationary distribution after k
steps:

|µ∗Pk − w∗|TV
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Mixing time

Let P be an ergodic Markov chain with stationary distribution w∗.

The mixing time tmix (ε) is the smallest t such that starting the walk
from any initial state, the distribution of states after k moves is within ε
local variation distance from w∗.

rapid mixing: polynomial in log Ω
slow mixing: exponential in log Ω
phase transition
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Remarks

The parameter ε is not so important, often ε = 1/4.

This makes little
difference, as tmix (ε) ≤ dlog2 ε

−1etmix (1/4). Sometimes tmix (1/4) is
denoted by tmix , and it is called the mixing time.

Furthermore, in the definition, we start from a Dirac distribution
(concentrated on one state). We could start from any initial distribution,
it would not affect the notion. See the exercises.
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Shuffling cards

There are 52! orders of a deck of cards.

These are the sates of an
ergodic Markov chain.

From each state, we move to one that can be reached by riffle shuffle
uniformly at random. There are 252 − 52 such states; see the
exercises. How many shuffles are needed for the deck to be mixed
sufficiently arbitrarily? If certain orders of cards occur with significantly
larger probability than others, a professional gambler can turn it
against us. ("ace tracking")

According to a famous result, tmix = tmix (1/4) = 7. If the 25% error rate
is not good enough, ask for 12 shuffles.
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Walks on graphs

Markov chains Pongrácz



Given a connected graph G with m edges.

In the random walk on G,
we choose the next vertex uniformly at random from the neighbors: if
the current vertex v has degree d(v), then each neighbor follows by
probability 1/d(v).

This is an irreducible Markov chain.

Unless the graph is bipartite, the chain is aperiodic. If G is bipartite,
then the period is 2.
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Reversibility

The distribution assigning d(v)/(2m) to each vertex v satisfies the
detailed balance equations.

Indeed, if uv is an edge, then
d(u)
2m ·

1
d(u) = 1

2m = d(v)
2m ·

1
d(v) , and if uv is a non-edge, then both sides

are zero.

So by Kelly’s lemma, the chain is reversible with (unique) stationary
distribution assigning d(v)/(2m) to each vertex v .

The frequency of being at a given vertex v is proportionate to the
degree d(v) of v . The mean recurrence time to v is 2m/d(v).
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Mixing time, cover time

If the graph is not bipartite, then there is a number 0 < c < 1 such that
the convergence of Pn to W has exponential speed with rate at most
µ.

Small mixing time (at most O(log n)).

Cover time: how long do we have to wait before all nodes are visited?

Theorem (Feige)

The cover time from any starting node in a graph with n nodes is at
least (1 + o(1))n log n and at most (4/27 + o(1))n3. The cover time of
a regular graph on n nodes is at most 2n2.
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Expanders
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Given ε > 0, k ∈ N.

A finite k -regular graph G with spectrum of the
associated random walk 1 = λ1 > λ2 > · · · > λn is a one-sided
expander if λ2 < 1− ε, and two sided if furthermore λn ≥ −(1− ε).

A sequence Gi = (Vi ,Ei) of finite k -regular graphs is a one-sided
(resp. two-sided) expander family if there is an ε > 0 such that Gi is a
one-sided (resp. two-sided) ε-expander for all sufficiently large i .
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According to the Perron-Frobenius theorem, every connected graph is
a one-sided expander with some ε.

Furthermore, if the graph is connected and not bipartite, then it is
two-sided. (See the Perron-Frobenius and Hoffman theorems.)

These are used in computer science for generating random numbers,
de-randomizing non-deterministic algorithms, and constructing good
error-correcting codes.
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Exercises
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Exercises

1. Show that the total variation distance from any distribution w∗

attains its maximum on a Dirac measure.

2. Prove that the number of (p,q) riffle shuffles (when the deck of N
cards is cut into piles of size p and q) is

(p+q
q

)
.

3. Using the result of Problem 2, show that the total number of riffle
shuffles is 2N − N. (Watch out for the identity permutation!)

4. Prove that the transition matrix of a random walk on a simple,
connected undirected graph is symmetrical iff the graph is regular.

5. Prove that the stationary distribution of the transition matrix of a
random walk on a simple, connected undirected graph is 1∗ iff the
graph is regular.
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