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Definition
Given an irreducible Markov chain with transition matrix P and
stationary distribution w∗ = (w1, . . . ,wn).

The reversed chain is defined
by the transition matrix P̂ with transition probabilities

P̂[i , k ] :=
wk

wi
P[k , i]

.

Then P̂ is also irreducible, and ̂̂P = P ; cf. the exercises.
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In what sense does P̂ reverse P ?

An N-step walk on the states of P is a process (X1, . . . ,XN). Assume
that X1 is sampled from the stationary distribution w∗ ; then so are all
the Xj . What is the probability that we started from the state sk under
the condition that we ended up at state si in one move? In one step:

P(Xj = sk | Xj+1 = si) =
P(Xj = sk ∧ Xj+1 = si)

P(Xj+1 = si)
=

wkP[k , i]
wi

= P̂[i , k ]

Clearly
n∑

k=1
P̂[i , k ] =

n∑
k=1

P(X1 = sk | X2 = si) = 1, and all the P̂[i , k ] are

non-negative, thus P̂ is the transition matrix of some Markov chain.
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Reversibility and balance

Definition
An irreducible Markov chain with transition matrix P is reversible if
P = P̂.

Definition
An irreducible Markov chain with transition matrix P on n states
satisfies the detailed balance equations for a nonzero row vector µ∗ if
for all pairs 1 ≤ i , k ≤ n we have µiP[i , k ] = µkP[k , i]. More generally,
P satisfies the detailed balance equation for µ∗ and n × n square
matrix Q if µiQ[i , k ] = µkP[k , i].
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Reversibility and balance

Clearly, if P is reversible, then the detailed balance equations hold for
the stationary distribution µ∗ = w∗ and Q = P̂.

The converse is Kelly’s
lemma.

Kelly’s lemma

Let P,Q ∈ Mn(R) be stochastic matrices and let µ∗ be a probability
distribution such that the detailed balance equations hold. Then
µ∗ = w∗ is the stationary distribution of P and Q = P̂.
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Proof

For any i we have

n∑
k=1

µkP[k , i] =
n∑

k=1

µiQ[i , k ] = µi

n∑
k=1

Q[i , k ] = µi .

Thus µ∗ = w∗.

Then by definition Q = P̂.
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Kelly’s lemma

Corollary

The stationary distribution of the reversed chain P̂ is the same w∗ as
that of the Markov chain P.

Corollary
Given an irreducible Markov chain P and a probability distribution µ∗

such that for all pairs 1 ≤ i , k ≤ n we have µiP[i , k ] = µkP[k , i]. Then P
is reversible, and µ∗ = w∗ is the stationary distribution of P.
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Kolmogorov criterion
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Kolmogorov criterion

Theorem
An irreducible Markov chain with transition matrix P on n states is
reversible iff for all i1, . . . , im we have

P[i1, i2]P[i2i3] · · ·P[ini1] = P[i1, in]P[inin−1] · · ·P[i2i1].

Markov chains Pongrácz



Kolmogorov criterion

By irreducibility, it clearly follows from the criterion that for all
1 ≤ i , k ≤ n we have P[i , j] = 0⇔ P[j , i] = 0.

Hence, it is equivalent to require the criterion to all minimal loops in the
digraph corresponding to the Markov chain (whose edges are the pairs
with positive transition probability).

(That weaker requirement also implies that for all 1 ≤ i , k ≤ n we have
P[i , j] = 0⇔ P[j , i] = 0.)
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Proof

Let w∗ be the stationary distribution of P.

NECESSITY OF THE CRITERION

If the chain is reversible, then wiP[i , k ] = wkP[k , i]. Thus

µi1 · · ·µinP[i1, i2]P[i2i3] · · ·P[ini1] =
= µi2 · · ·µinµi1P[i1, in]P[inin−1] · · ·P[i2i1].

Dividing both sides by µi1 · · ·µin yields the criterion.
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Proof

SUFFICIENCY OF THE CRITERION

Given an m ∈ N, pair up lists of m + 1 indices of states starting with i
and ending with k , i .

Then the criterion yields Pm[i , k ]P[k , i] = P[i , k ]Pm[k , i] for all m ∈ N.

As m→∞, we obtain wkP[k , i] = P[i , k ]wi , which is equivalent to
reversibility.
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Algorithms, numerical
methods
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Checking reversibility

Input: the transition matrix P of an irreducible chain.

(If we do not know
that it is irreducible, it can be checked in O(n2) time.)

Question: is the chain reversible?

Naive approach: compute w∗, and check the detailed balance
equations.

This requires the solution of a system of linear equations, hence Θ(n3)
time with Gaussian elimination, and ≈ Θ(n2.373) time with more
advanced methods. There are also Θ(n2) detailed balance equations.
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Checking reversibility

Input: the transition matrix P of an irreducible chain. (If we do not know
that it is irreducible, it can be checked in O(n2) time.)

Question: is the chain reversible?

More naive approach:

check the Kolmogorov criterion for all minimal
loops in the digraph corresponding to the chain.

That is potentially exponential : there can be an exponential number (in
n) of minimal loops; see the exercises.
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Checking reversibility

Better approach:

Guess w1, e.g., w1 = 1, and run a breadth first search to walk through
all states.

Whenever we visit a new state i , we can compute the guesstimate for
wi .

Normalize the vector obtained to have
∑

wi = 1.

Check the detailed balance equations with this vector w∗ : if any of
them fails, the chain must be irreversible, if all of them holds, then the
chain is reversible with stationary distribution vector w∗.
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Checking reversibility

The runtime is Θ(n2).

Recently, Brill, Cheung, Hlynka and Jiang provided a more elegant
quadratic algorithm that transforms the transition matrix by operations
reminiscent to Gaussian elimination.

The steps preserve reversibility : the end result is symmetric iff the
original chain is reversible.
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Exercises
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Exercises

1. Prove that if P is irreducible, then so is P̂.

2. Show that ̂̂P = P.
3. Prove that if P = P∗ then P is reversible. (What is w∗?)
4. Construct a reversible P that is not symmetric with the smallest n

possible.
5. Let V = {x1, . . . , xn, y1, . . . , yn} be the vertices of a graph with

edges xixi+1, xiyi+1, yixi+1, yiyi+1 (put xn+1 = x1 and yn+1 = y1).
Show that there are at least 1.414n minimal cycles in this graph.
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