Markov chains and applications

Dr. András Pongrácz

Week 10, University of Debrecen

Reversible chains

Definition

Given an irreducible Markov chain with transition matrix P and stationary distribution $\underline{w}^{*}=\left(w_{1}, \ldots, w_{n}\right)$.

Definition

Given an irreducible Markov chain with transition matrix P and stationary distribution $\underline{w}^{*}=\left(w_{1}, \ldots, w_{n}\right)$. The reversed chain is defined by the transition matrix \widehat{P} with transition probabilities

$$
\widehat{P}[i, k]:=\frac{w_{k}}{w_{i}} P[k, i]
$$

Definition

Given an irreducible Markov chain with transition matrix P and stationary distribution $\underline{w}^{*}=\left(w_{1}, \ldots, w_{n}\right)$. The reversed chain is defined by the transition matrix \widehat{P} with transition probabilities

$$
\widehat{P}[i, k]:=\frac{w_{k}}{w_{i}} P[k, i]
$$

Then \widehat{P} is also irreducible, and $\widehat{\widehat{P}}=P$; cf. the exercises.

In what sense does \widehat{P} reverse P ?

In what sense does \widehat{P} reverse P ?
An N-step walk on the states of P is a process $\left(X_{1}, \ldots, X_{N}\right)$.

In what sense does \widehat{P} reverse P ?
An N-step walk on the states of P is a process $\left(X_{1}, \ldots, X_{N}\right)$. Assume that X_{1} is sampled from the stationary distribution \underline{w}^{*};

In what sense does \widehat{P} reverse P ?
An N-step walk on the states of P is a process $\left(X_{1}, \ldots, X_{N}\right)$. Assume that X_{1} is sampled from the stationary distribution \underline{w}^{*}; then so are all the X_{j}.

In what sense does \widehat{P} reverse P ?
An N-step walk on the states of P is a process $\left(X_{1}, \ldots, X_{N}\right)$. Assume that X_{1} is sampled from the stationary distribution \underline{w}^{*}; then so are all the X_{j}. What is the probability that we started from the state s_{k} under the condition that we ended up at state s_{i} in one move?

In what sense does \widehat{P} reverse P ?
An N-step walk on the states of P is a process $\left(X_{1}, \ldots, X_{N}\right)$. Assume that X_{1} is sampled from the stationary distribution \underline{w}^{*}; then so are all the X_{j}. What is the probability that we started from the state s_{k} under the condition that we ended up at state s_{i} in one move? In one step:

$$
\mathbb{P}\left(X_{j}=s_{k} \mid X_{j+1}=s_{i}\right)=\frac{\mathbb{P}\left(X_{j}=s_{k} \wedge X_{j+1}=s_{i}\right)}{\mathbb{P}\left(X_{j+1}=s_{i}\right)}=\frac{w_{k} P[k, i]}{w_{i}}=\widehat{P}[i, k]
$$

In what sense does \widehat{P} reverse P ?
An N-step walk on the states of P is a process $\left(X_{1}, \ldots, X_{N}\right)$. Assume that X_{1} is sampled from the stationary distribution \underline{w}^{*}; then so are all the X_{j}. What is the probability that we started from the state s_{k} under the condition that we ended up at state s_{i} in one move? In one step:

$$
\mathbb{P}\left(X_{j}=s_{k} \mid X_{j+1}=s_{i}\right)=\frac{\mathbb{P}\left(X_{j}=s_{k} \wedge X_{j+1}=s_{i}\right)}{\mathbb{P}\left(X_{j+1}=s_{i}\right)}=\frac{w_{k} P[k, i]}{w_{i}}=\widehat{P}[i, k]
$$

Clearly $\sum_{k=1}^{n} \widehat{P}[i, k]=\sum_{k=1}^{n} \mathbb{P}\left(X_{1}=s_{k} \mid X_{2}=s_{i}\right)=1$, and all the $\widehat{P}[i, k]$ are non-negative, thus \widehat{P} is the transition matrix of some Markov chain.

Reversibility and balance

Definition

An irreducible Markov chain with transition matrix P is reversible if $P=\widehat{P}$.

Reversibility and balance

Definition

An irreducible Markov chain with transition matrix P is reversible if $P=\widehat{P}$.

Definition

An irreducible Markov chain with transition matrix P on n states satisfies the detailed balance equations for a nonzero row vector $\underline{\mu}^{*}$ if for all pairs $1 \leq i, k \leq n$ we have $\mu_{i} P[i, k]=\mu_{k} P[k, i]$.

Reversibility and balance

Definition

An irreducible Markov chain with transition matrix P is reversible if $P=\widehat{P}$.

Definition

An irreducible Markov chain with transition matrix P on n states satisfies the detailed balance equations for a nonzero row vector $\underline{\mu}^{*}$ if for all pairs $1 \leq i, k \leq n$ we have $\mu_{i} P[i, k]=\mu_{k} P[k, i]$. More generally, P satisfies the detailed balance equation for $\underline{\mu}^{*}$ and $n \times n$ square matrix Q if $\mu_{i} Q[i, k]=\mu_{k} P[k, i]$.

Reversibility and balance

Clearly, if P is reversible, then the detailed balance equations hold for the stationary distribution $\underline{\mu}^{*}=\underline{w}^{*}$ and $Q=\widehat{P}$.

Clearly, if P is reversible, then the detailed balance equations hold for the stationary distribution $\underline{\mu}^{*}=\underline{w}^{*}$ and $Q=\widehat{P}$. The converse is Kelly's lemma.

Kelly's lemma

Let $P, Q \in M_{n}(\mathbb{R})$ be stochastic matrices and let μ^{*} be a probability distribution such that the detailed balance equations hold. Then $\underline{\mu}^{*}=\underline{w}^{*}$ is the stationary distribution of P and $Q=\widehat{P}$.

For any i we have

$$
\sum_{k=1}^{n} \mu_{k} P[k, i]=\sum_{k=1}^{n} \mu_{i} Q[i, k]=\mu_{i} \sum_{k=1}^{n} Q[i, k]=\mu_{i}
$$

For any i we have

$$
\sum_{k=1}^{n} \mu_{k} P[k, i]=\sum_{k=1}^{n} \mu_{i} Q[i, k]=\mu_{i} \sum_{k=1}^{n} Q[i, k]=\mu_{i} .
$$

Thus $\underline{\mu}^{*}=\underline{w}^{*}$.

For any i we have

$$
\sum_{k=1}^{n} \mu_{k} P[k, i]=\sum_{k=1}^{n} \mu_{i} Q[i, k]=\mu_{i} \sum_{k=1}^{n} Q[i, k]=\mu_{i} .
$$

Thus $\underline{\mu}^{*}=\underline{\boldsymbol{W}}^{*}$.
Then by definition $Q=\widehat{P}$.

Kelly's lemma

Corollary

The stationary distribution of the reversed chain \widehat{P} is the same w^{*} as that of the Markov chain P.

Kelly's lemma

Corollary

The stationary distribution of the reversed chain \widehat{P} is the same w^{*} as that of the Markov chain P.

Corollary

Given an irreducible Markov chain P and a probability distribution μ^{*} such that for all pairs $1 \leq i, k \leq n$ we have $\mu_{i} P[i, k]=\mu_{k} P[k, i]$.

Kelly's lemma

Corollary

The stationary distribution of the reversed chain \widehat{P} is the same w^{*} as that of the Markov chain P.

Corollary

Given an irreducible Markov chain P and a probability distribution μ^{*} such that for all pairs $1 \leq i, k \leq n$ we have $\mu_{i} P[i, k]=\mu_{k} P[k, i]$. Then P is reversible, and $\mu^{*}=\underline{w}^{*}$ is the stationary distribution of P.

Kolmogorov criterion

Kolmogorov criterion

Theorem

An irreducible Markov chain with transition matrix P on n states is reversible iff for all i_{1}, \ldots, i_{m} we have

$$
P\left[i_{1}, i_{2}\right] P\left[i_{2} i_{3}\right] \cdots P\left[i_{n} i_{1}\right]=P\left[i_{1}, i_{n}\right] P\left[i_{n} i_{n-1}\right] \cdots P\left[i_{2} i_{1}\right] .
$$

Kolmogorov criterion

By irreducibility, it clearly follows from the criterion that for all $1 \leq i, k \leq n$ we have $P[i, j]=0 \Leftrightarrow P[j, i]=0$.

By irreducibility, it clearly follows from the criterion that for all $1 \leq i, k \leq n$ we have $P[i, j]=0 \Leftrightarrow P[j, i]=0$.
Hence, it is equivalent to require the criterion to all minimal loops in the digraph corresponding to the Markov chain (whose edges are the pairs with positive transition probability).

By irreducibility, it clearly follows from the criterion that for all $1 \leq i, k \leq n$ we have $P[i, j]=0 \Leftrightarrow P[j, i]=0$.
Hence, it is equivalent to require the criterion to all minimal loops in the digraph corresponding to the Markov chain (whose edges are the pairs with positive transition probability).
(That weaker requirement also implies that for all $1 \leq i, k \leq n$ we have $P[i, j]=0 \Leftrightarrow P[j, i]=0$.)

Let w^{*} be the stationary distribution of P.

Let \underline{w}^{*} be the stationary distribution of P.

Necessity of the criterion

Let \underline{w}^{*} be the stationary distribution of P.

Necessity of the criterion

If the chain is reversible, then $w_{i} P[i, k]=w_{k} P[k, i]$.

Let \underline{w}^{*} be the stationary distribution of P.

Necessity of the Criterion

If the chain is reversible, then $w_{i} P[i, k]=w_{k} P[k, i]$. Thus
$\mu_{i_{1}} \cdots \mu_{i_{n}} P\left[i_{1}, i_{2}\right] P\left[i_{2} i_{3}\right] \cdots P\left[i_{i_{1}}\right]=$
$=\mu_{i_{2}} \cdots \mu_{i_{n}} \mu_{i_{1}} P\left[i_{1}, i_{n}\right] P\left[i_{n} i_{n-1}\right] \cdots P\left[i_{2} i_{1}\right]$.

Let \underline{w}^{*} be the stationary distribution of P.

Necessity of the criterion

If the chain is reversible, then $w_{i} P[i, k]=w_{k} P[k, i]$. Thus
$\mu_{i_{1}} \cdots \mu_{i_{n}} P\left[i_{1}, i_{2}\right] P\left[i_{2} i_{3}\right] \cdots P\left[i_{n} i_{1}\right]=$
$=\mu_{i_{2}} \cdots \mu_{i_{n}} \mu_{i_{1}} P\left[i_{1}, i_{n}\right] P\left[i_{n} i_{n-1}\right] \cdots P\left[i_{2} i_{1}\right]$.
Dividing both sides by $\mu_{i_{1}} \cdots \mu_{i_{n}}$ yields the criterion.

Sufficiency of the criterion

SUFFICIENCY OF THE CRITERION

Given an $m \in \mathbb{N}$, pair up lists of $m+1$ indices of states starting with i and ending with k, i.

Sufficiency of the criterion
Given an $m \in \mathbb{N}$, pair up lists of $m+1$ indices of states starting with i and ending with k, i.

Then the criterion yields $P^{m}[i, k] P[k, i]=P[i, k] P^{m}[k, i]$ for all $m \in \mathbb{N}$.

Sufficiency of the criterion
Given an $m \in \mathbb{N}$, pair up lists of $m+1$ indices of states starting with i and ending with k, i.
Then the criterion yields $P^{m}[i, k] P[k, i]=P[i, k] P^{m}[k, i]$ for all $m \in \mathbb{N}$.
As $m \rightarrow \infty$, we obtain $w_{k} P[k, i]=P[i, k] w_{i}$,

Sufficiency of the criterion
Given an $m \in \mathbb{N}$, pair up lists of $m+1$ indices of states starting with i and ending with k, i.
Then the criterion yields $P^{m}[i, k] P[k, i]=P[i, k] P^{m}[k, i]$ for all $m \in \mathbb{N}$.
As $m \rightarrow \infty$, we obtain $w_{k} P[k, i]=P[i, k] w_{i}$, which is equivalent to reversibility.

Algorithms, numerical methods

Checking reversibility

Input: the transition matrix P of an irreducible chain.

Checking reversibility

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)
Question: is the chain reversible?

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)
Question: is the chain reversible?
Naive approach:

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)
Question: is the chain reversible?
Naive approach: compute \underline{w}^{*}, and check the detailed balance equations.

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)
Question: is the chain reversible?
Naive approach: compute \underline{w}^{*}, and check the detailed balance equations.
This requires the solution of a system of linear equations, hence $\Theta\left(n^{3}\right)$ time with Gaussian elimination, and $\approx \Theta\left(n^{2.373}\right)$ time with more advanced methods.

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)
Question: is the chain reversible?
Naive approach: compute \underline{w}^{*}, and check the detailed balance equations.
This requires the solution of a system of linear equations, hence $\Theta\left(n^{3}\right)$ time with Gaussian elimination, and $\approx \Theta\left(n^{2.373}\right)$ time with more advanced methods. There are also $\Theta\left(n^{2}\right)$ detailed balance equations.

Checking reversibility

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)
Question: is the chain reversible?
More naive approach:

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)
Question: is the chain reversible?
More naive approach: check the Kolmogorov criterion for all minimal loops in the digraph corresponding to the chain.

Input: the transition matrix P of an irreducible chain. (If we do not know that it is irreducible, it can be checked in $O\left(n^{2}\right)$ time.)
Question: is the chain reversible?
More naive approach: check the Kolmogorov criterion for all minimal loops in the digraph corresponding to the chain.

That is potentially exponential: there can be an exponential number (in n) of minimal loops; see the exercises.

Checking reversibility

Better approach:

Checking reversibility

Better approach:
Guess w_{1}, e.g., $w_{1}=1$, and run a breadth first search to walk through all states.

Checking reversibility

Better approach:
Guess w_{1}, e.g., $w_{1}=1$, and run a breadth first search to walk through all states.

Whenever we visit a new state i, we can compute the guesstimate for w_{i}.

Checking reversibility

Better approach:
Guess w_{1}, e.g., $w_{1}=1$, and run a breadth first search to walk through all states.

Whenever we visit a new state i, we can compute the guesstimate for w_{i}.

Normalize the vector obtained to have $\sum w_{i}=1$.

Checking reversibility

Better approach:
Guess w_{1}, e.g., $w_{1}=1$, and run a breadth first search to walk through all states.

Whenever we visit a new state i, we can compute the guesstimate for w_{i}.

Normalize the vector obtained to have $\sum w_{i}=1$.
Check the detailed balance equations with this vector \underline{w}^{*} :

Checking reversibility

Better approach:
Guess w_{1}, e.g., $w_{1}=1$, and run a breadth first search to walk through all states.

Whenever we visit a new state i, we can compute the guesstimate for w_{i}.

Normalize the vector obtained to have $\sum w_{i}=1$.
Check the detailed balance equations with this vector \underline{w}^{*} : if any of them fails, the chain must be irreversible,

Checking reversibility

Better approach:
Guess w_{1}, e.g., $w_{1}=1$, and run a breadth first search to walk through all states.

Whenever we visit a new state i, we can compute the guesstimate for w_{i}.

Normalize the vector obtained to have $\sum w_{i}=1$.
Check the detailed balance equations with this vector \underline{w}^{*} : if any of them fails, the chain must be irreversible, if all of them holds, then the chain is reversible with stationary distribution vector \underline{w}^{*}.

Checking reversibility

The runtime is $\Theta\left(n^{2}\right)$.

Checking reversibility

The runtime is $\Theta\left(n^{2}\right)$.
Recently, Brill, Cheung, Hlynka and Jiang provided a more elegant quadratic algorithm that transforms the transition matrix by operations reminiscent to Gaussian elimination.

The runtime is $\Theta\left(n^{2}\right)$.
Recently, Brill, Cheung, Hlynka and Jiang provided a more elegant quadratic algorithm that transforms the transition matrix by operations reminiscent to Gaussian elimination.

The steps preserve reversibility: the end result is symmetric iff the original chain is reversible.

Exercises

Exercises

1. Prove that if P is irreducible, then so is \widehat{P}.

Exercises

1. Prove that if P is irreducible, then so is \widehat{P}.
2. Show that $\widehat{\widehat{P}}=P$.

Exercises

1. Prove that if P is irreducible, then so is \widehat{P}.
2. Show that $\widehat{\widehat{P}}=P$.
3. Prove that if $P=P^{*}$ then P is reversible. (What is \underline{w}^{*} ?)
4. Prove that if P is irreducible, then so is \widehat{P}.
5. Show that $\widehat{\widehat{P}}=P$.
6. Prove that if $P=P^{*}$ then P is reversible. (What is \underline{w}^{*} ?)
7. Construct a reversible P that is not symmetric with the smallest n possible.
8. Prove that if P is irreducible, then so is \widehat{P}.
9. Show that $\widehat{\widehat{P}}=P$.
10. Prove that if $P=P^{*}$ then P is reversible. (What is \underline{w}^{*} ?)
11. Construct a reversible P that is not symmetric with the smallest n possible.
12. Let $V=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ be the vertices of a graph with edges $x_{i} x_{i+1}, x_{i} y_{i+1}, y_{i} x_{i+1}, y_{i} y_{i+1}$ (put $x_{n+1}=x_{1}$ and $y_{n+1}=y_{1}$). Show that there are at least 1.414^{n} minimal cycles in this graph.
13. Prove that if P is irreducible, then so is \widehat{P}.
14. Show that $\widehat{\widehat{P}}=P$.
15. Prove that if $P=P^{*}$ then P is reversible. (What is \underline{w}^{*} ?)
16. Construct a reversible P that is not symmetric with the smallest n possible.
17. Let $V=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ be the vertices of a graph with edges $x_{i} x_{i+1}, x_{i} y_{i+1}, y_{i} x_{i+1}, y_{i} y_{i+1}$ (put $x_{n+1}=x_{1}$ and $y_{n+1}=y_{1}$). Show that there are at least 1.414^{n} minimal cycles in this graph.
18. Consruct a graph and improve the lower bound to 1.442^{n}.
