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Revision

A state is absorbing if we stay in it with probability one in the next
move.

A finite Markov chain is absorbing if, from every initial state, we can
reach an absorbing state with positive probability in finitely many steps.

The non-absorbing states in such chains are called transient; cf. the
last class for a more precise introduction to transient states.
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Markov chains

Transition matrix:

0.2 0.3 0.1 0 0.4
0.2 0.1 0.3 0.1 0.3
0 0.3 0.5 0.2 0
0 0 0 1 0
0 0 0 0 1

Q R

N = (I −Q)−1

fundamental matrix

(Given an initial state) what is the expected time to absorption?

(Given an initial state) what is the probability of absorption at each
absorbing state?
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Markov chains

Transition matrix:

0.2 0.3 0.1 0 0.4
0.2 0.1 0.3 0.1 0.3
0 0.3 0.5 0.2 0
0 0 0 1 0
0 0 0 0 1

Q R

N = (I −Q)−1

fundamental matrix

(Given an initial state) what is the expected time to absorption?
Answer: N1
(Given an initial state) what is the probability of absorption at each
absorbing state? Answer: NR
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Sketch of arguments

Claim

lim
k→∞

Qk = 0

with an exponential convergence speed (at each position, on the
long-run, the moduli of terms are below a given geometric series with
quotient 0 < q < 1).

Proof: By definition of an absorbing chain, for a large enough K we
have that the sum of terms in each row of QK is at most r for some
0 < r < 1. By Gershgorin’s theorem, the spectrum of QK is in [−r , r ]. If
k ≥ mK , the spectrum is in [−rm, rm] ; making any K

√
r < q < 1 a good

choice.
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Corollary I

The fundamental matrix N = (I −Q)−1 exists, and equals to
∞∑

k=0
Qk .

Corollary II
The probability of absorption in a finite number of steps from any initial
state is 1.
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Expected runtime

The entry Qk [i , j] is the probability that, starting from the i-th state, we
are at the j-th state after k steps.

Thus N1 = (I −Q)−11 = (
∞∑

k=0
Qk )1 is the expected number of times

the walk is in a non-absorbing state.

Alternative proof: we can find a system of linear equations
corresponding to the law of total expectation. It is

x = Qx + 1

yielding x = N1.
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Generalization

The same method works in a more general situation.

If v is a vector of numbers assigned to all transient states, then Nv is
the expectation of the sum of all values of entries during a random
walk until absorption.

The proof is based on the law of total probability. (Cf. the exrecizes.)
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Absorption probabilities

Starting from state i , what is the probability of absorption is each
state?

The total for all absorbing states is 1.

Law of total probability : if x is the vector of results for all transient
states, then

x = Qx + R

yielding x = NR.
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Higher moments
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Moment generating funciton

Given a random variable X , its moment generating function is

t 7→ E(etX )

(wherever it is defined).

Theorem
If the moment generating function is defined in a neighborhood of 0,
then (

dn

dtn E(etX )

)
t=0

= E(X n)

is the n-th moment of X .
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In order to use the law of total expectation (similarly as before), it is
better to create a vector of random variables.

X1,X2, . . . ,Xk are the number of steps in the walks starting from each
transient state.

v(t) = (E(etX1),E(etX2), . . . ,E(etXk ))∗

We obtain the system of linear equations

v(t) = et(Qv(t) + (I −Q)1)
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Rearranging:

(I − etQ)v(t) = et(I −Q)1

The matrix (I − etQ) is singular for only a finite number of values of t .

v(t) = (I − etQ)−1et(I −Q)1

yielding

v(t) = et(I + etQ + e2tQ2 + e3tQ3 + · · · )(I −Q)1

The first derivative at zero is
v ′(0) = (I + 2Q + 3Q2 + 4Q3 + · · · )(I −Q)1 = (I −Q)−2(I −Q)1 = N1.

Markov chains Pongrácz



Rearranging:

(I − etQ)v(t) = et(I −Q)1

The matrix (I − etQ) is singular for only a finite number of values of t .

v(t) = (I − etQ)−1et(I −Q)1

yielding

v(t) = et(I + etQ + e2tQ2 + e3tQ3 + · · · )(I −Q)1

The first derivative at zero is
v ′(0) = (I + 2Q + 3Q2 + 4Q3 + · · · )(I −Q)1 = (I −Q)−2(I −Q)1 = N1.

Markov chains Pongrácz



Rearranging:

(I − etQ)v(t) = et(I −Q)1

The matrix (I − etQ) is singular for only a finite number of values of t .

v(t) = (I − etQ)−1et(I −Q)1

yielding

v(t) = et(I + etQ + e2tQ2 + e3tQ3 + · · · )(I −Q)1

The first derivative at zero is
v ′(0) = (I + 2Q + 3Q2 + 4Q3 + · · · )(I −Q)1 = (I −Q)−2(I −Q)1 = N1.

Markov chains Pongrácz



Rearranging:

(I − etQ)v(t) = et(I −Q)1

The matrix (I − etQ) is singular for only a finite number of values of t .

v(t) = (I − etQ)−1et(I −Q)1

yielding

v(t) = et(I + etQ + e2tQ2 + e3tQ3 + · · · )(I −Q)1

The first derivative at zero is
v ′(0) = (I + 2Q + 3Q2 + 4Q3 + · · · )(I −Q)1 = (I −Q)−2(I −Q)1 = N1.

Markov chains Pongrácz



Rearranging:

(I − etQ)v(t) = et(I −Q)1

The matrix (I − etQ) is singular for only a finite number of values of t .

v(t) = (I − etQ)−1et(I −Q)1

yielding

v(t) = et(I + etQ + e2tQ2 + e3tQ3 + · · · )(I −Q)1

The first derivative at zero is
v ′(0) = (I + 2Q + 3Q2 + 4Q3 + · · · )(I −Q)1 = (I −Q)−2(I −Q)1 = N1.

Markov chains Pongrácz



In general

Similar calculation, yielding more complicated power series.

They are
always linear combinations of powers of (I −Q)−m, multiplied by
(I −Q)1.

Lemma 1: ((1− x)−1)(m) = n! · (1− x)−(m+1)

Lemma 2: ((1− x)−1)(m) =
∞∑

j=0
(j + 1) · · · (j + m)x j

Theorem

v (m)(0) = fm(N)1, where fm(N) is a degree m polynomial of N, whose
constant term is 0 and the main coefficient is m!.

f1(N) = N, f2(N) = 2N2 − N, f3(N) = 6N3 − 6N2 + N,
f4(N) = 24N4 − 36N2 + 14N − N can be easily computed from the
above.
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Exercises
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Exercises

1. Show that the fundamental matrix N is non-negative.

2. Compute the fundamental matrix, and answer the basic problems
for the absorbing chain provided in the talk as an example.

3. Compute the first four moments of the same chain with the
general method presented. Compare the first moment with the
result of Problem 1.

4. Prove the general formula about Nv being the expected value of
the sum of entries on v during a walk until absorption.

5. Observe that the hypergeometrical distribution is a special
absorbing Markov chain with 2 states. Deduce the formula 1/p for
the expected value as a special case of the expected runtime of
an absorbing Markov chain.
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