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Fundamental matrix

Let P be a regular Markov chain.

Then lim
k→∞

Pk = W = 1 · w∗, and the convergence has exponential

speed.

It is easy to see that P and W commute: PW = WP = W , and then
(P −W )n = Pn −W (cf. the exercises).

Thus
∞∑

k=0
(P −W )k exists, and then it has to be (I − (P −W ))−1.
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Fundamental matrix

Definition
Given a regular Markov chain P with stationary distribution w∗ and
W = 1 · w∗, the fundamental matrix of P is defined as

Z = (I − P + W )−1 =
∞∑

k=0
(P −W )k .

Lemma: Z1 = 1, w∗Z = w∗, and Z (I − P) = I −W .

Proof: Exercise.
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Mean first passage times

Let M be the mean first passage matrix with entries M[i , j] being the
mean first passage time from the i-th state to the j-th state.

Then by the previous lemma, we can show the following theorem.

Theorem

M[i , j] =
Z [j , j]− Z [i , j]

wj

Note that this returns M[i , i] = 0, which is the logical convention. For
the more meaningful mean recurrence time, see the previous class:
the i-th mean recurrence time is 1/wi .
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Law of Large Numbers
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Classical formulation

Weak form
Let X1,X2, . . . be i.i.d. random variables with E(X1) = µ ∈ R. Then for
all ε > 0 we have

lim
k→∞

Pr
(∣∣∣∣X1 + · · ·+ Xk

k
− µ

∣∣∣∣ > ε

)
= 0

Strong form: In fact, the random variable
∣∣∣X1+···+Xk

k − µ
∣∣∣ converges to 0

with probability 1.
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Irreducible Markov chains

Let I(i)k be the indicator that the walk is in state i after k steps.

Of course, these are not independent (although identically distributed if
the first state is sampled from the stationary distribution).

The average
k∑

m=1
I(i)m /k tends to wi , as we have seen before.

Markov chains Pongrácz



Irreducible Markov chains

Let I(i)k be the indicator that the walk is in state i after k steps.

Of course, these are not independent (although identically distributed if
the first state is sampled from the stationary distribution).

The average
k∑

m=1
I(i)m /k tends to wi , as we have seen before.

Markov chains Pongrácz



Irreducible Markov chains

Let I(i)k be the indicator that the walk is in state i after k steps.

Of course, these are not independent (although identically distributed if
the first state is sampled from the stationary distribution).

The average
k∑

m=1
I(i)m /k tends to wi , as we have seen before.

Markov chains Pongrácz



Irreducible Markov chains

Weak form

Given an irreducible (ergodic) chain, let I(i)k be the indicator that the
walk is in state i after k steps. Then for all ε > 0 we have

lim
k→∞

Pr

(∣∣∣∣∣
k∑

m=1

I(i)m /k − wi

∣∣∣∣∣ > ε

)
= 0
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Central Limit Theorem
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Classical formulation

Theorem
Let X1,X2, . . . be i.i.d. random variables with E(X1) = µ ∈ R and
Var(E1) = σ2 ∈ R. Then

√
k
(

X1 + · · ·+ Xk

k
− µ

)
converges in distribution to N(0, σ2).
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Irreducible Markov chains

Let I(i)k be the indicator that the walk is in state i after k steps.

Of course, these are not independent (although identically distributed if
the first state is sampled from the stationary distribution).

The average
k∑

m=1
I(i)m /k tends to wi , as we have seen before.

The logical way to define σ2
i is 2wiZ [i , i]− wi − w2

i .
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Irreducible Markov chains

CLT

Given an irreducible (ergodic) chain, let I(i)k be the indicator that the
walk is in state i after k steps. Define σ2

i = 2wiZ [i , i]− wi − w2
i . Then

√
k

(
k∑

m=1

I(i)m /k − wi

)

converges in distribution to N(0, σ2
i ).
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Exercises
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Exercises

1. By using the Jordan normal form, prove that if Ak converges for a
real matrix A, then the convergence must have exponential speed.

2. Conclude from Problem 1 that Pn converges to W with
exponential speed if P is a regular Markov chain.

3. Show that PW = WP = W , and (P −W )n = Pn −W .
4. Prove that Z1 = 1, w∗Z = w∗, and Z (I − P) = I −W .
5. Compute the fundamental matrix for the regular chains seen

before during the course.
6. Compute the mean recurrence times, mean passage times and

the σi as a continuation of Problem 5.
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