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As we have seen, the matrix A =

0 1 0
0 0 1
1 0 0

 shows that the

Perron-Frobenius theorem cannot hold for irreducible matrices exactly
in its form for primitive matrices.

This has period 3, and indeed, all three thirds roots of unity are
eigenvalues (each having modulus 1).

Markov chains Pongrácz



As we have seen, the matrix A =

0 1 0
0 0 1
1 0 0

 shows that the

Perron-Frobenius theorem cannot hold for irreducible matrices exactly
in its form for primitive matrices.

This has period 3, and indeed, all three thirds roots of unity are
eigenvalues (each having modulus 1).

Markov chains Pongrácz



Regular case

Let P ∈ Mn(R) be (the transition matrix of) a regular Markov chain, i.e.,
a primitive stochastic matrix.

1. The spectral radius r = max{|λ| | λ ∈ Spec(P)} = 1 is an
eigenvalue with multiplicity 1 (Perron root). The corresponding
normalized right Perron vector is u = 1

n 1, and the corresponding
normalized left Perron vector w∗ is also a positive vector, called
the stationary distribution.

2. There is no other positive (left or right) eigenvector of P than the
positive multiples of the Perron vector.

3. We have lim
k→∞

Pk = 1w∗.
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In particular, starting from any initial probability distribution v , the
probability distribution of the state we are in after k steps v∗Pk tends to
w∗.

The convergence has exponential speed. (See an earlier
exercise.)

This provides a simple numerical method to approximate the stationary
distribution. (Similar idea to Banach’s fixed point theorem on the next
slide.)

For an exact approach, we need to solve the system of linear
equations P∗w = w .
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Banach fixed point theorem

Theorem
Given a complete metric space M and a contraction P : M → M ; that
is, for some 0 ≤ q < 1, we have d(Pu,Pv) ≤ qd(u, v) for ull u, v ∈ M.
Then P has a unique fixed point w .

Note that Rn is a complete metric space: it is an elementary result in
real analysis that every Cauchy sequence is convergent in Rn with
respect to the standard metric d(u, v) = |u − v | =

√
(u − v)2.
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Irreducible case

Let P ∈ Mn(R) be (the transition matrix of) an irreducible Markov chain,
i.e., an irreducible stochastic matrix.

Let h be the period.

1. The spectral radius r = max{|λ| | λ ∈ Spec(P)} = 1 is an
eigenvalue with multiplicity 1 (Perron root). The corresponding
normalized right Perron vector is u = 1

n 1, and the corresponding
normalized left Perron vector w∗ is also a positive vector, called
the stationary distribution.

2. There is no other positive (left or right) eigenvector of P than the
positive multiples of the Perron vector.

3. P has exactly h complex eigenvalues with absolute value 1,
namely the h-th roots of unity, and all of them have algebraic
multiplicity 1. In fact, the spectrum of P is invariant under
multiplication by h-th roots of unity.

4. We have lim
k→∞

1
k

k∑
i=1

P i = 1w∗.
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Perron-Frobenius theorem, Irreducible case

The case h = 1 simplifies to regular matrices.

If h ≥ 2, the transition
matrix has a more transparent "canonical" form. Namely, there is a
permutation matrix S such that

SAS−1 =



0 A1 0 0 · · · 0 0
0 0 A2 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · 0 Ah−1
Ah 0 0 0 · · · 0 0


The zeros along the diagonal are zero square matrices of potentially
different sizes, and the matrices A1, . . . ,Ah are rectangular blocks.
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Mean recurrence time

Using the identities in the Perron-Frobenius theorem, it is not hard to
show the following basic property of irreducible chains.

Theorem
Starting from state si in a finite irreducible Markov chain, the mean
recurrence time to si is 1/wi .

Informally, the identity lim
k→∞

1
k

k∑
i=1

P i = 1w∗ shows that we spend wi

proportion of our time in the i-th state in average. The precise proof is
an exercise.
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Exercises
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Exercises

1. Prove the theorem about the main recurrence time.

2. a) Represent coin-toss as an irreducible Markov-chain with two
states.

b) Find the period.
c) Compute the mean recurrence time and compare it with the

general formula.
d) Compute the second moment of the recurrence time. Make a

general conjecture.
3. Show that if P is irreducible, then 1

2(P + I) is regular with the same
stationary distribution. (The latter one usually has a better rate of
convergence for the iterative method when P has a period greater
than 1.)
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Exercises

4. Solve the following exercises to prove the special case of
Hoffman’s theorem: a graph is bipartite iff its spectrum is
symmetric to the origin. (Note that the only if direction is clear.)

a) Show that an ordered real n-tuple λ1 ≥ · · · ≥ λn is symmetric

to the origin iff for all odd k ∈ N we have
n∑

i=1
λk

i = 0.

b) Observe that if A is the adjacency matrix of a graph G, then
Tr(Ak ) is the number of walks of length k with coinciding first
and last vertex.

c) Prove that Tr(Ak ) = 0 iff the main diagonal in Ak is all zero.
d) Combine these observations to show that the spectrum of A

is symmetric to the origin iff there is no walk of odd length in
G with coinciding first and last vertex.
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