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Terminology

Reminder: irreducibility means that the associated graph is strongly
connected.

A finite Markov chain is regular if it has a primitive transition matrix,
that is, one with a positive power. It could be called primitive, but
regular is a more popular word for this property. Also note that
sometimes irreducible Markov chains are called ergodic.

To complicate matters, sometimes irreducible aperiodic Markov chains
are called ergodic. These two conditions together turn out to be
equivalent to primitivity, that is, regularity.
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Period

Definition
Given a non-negative matrix A ∈ Mn(R), the period at index i is
gcd{k ∈ N | Mk [i , i] > 0}.

Proposition
If A is irreducible, then it has the same period at all indices.

The proof is an exercise.

This common period at all indices is called the period p of A. If p = 1,

we say that A is aperiodic. E.g., A =

0 1 0
0 0 1
1 0 0

 has period p = 3.
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Primitive matrices
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Period

Theorem
A non-negative matrix A is primitive (i.e., regular) iff it is irreducible and
aperiodic.

We first prove a technical number theoretic lemma.

Lemma
Given positive integers x1, x2, . . . , xk with gcd(x1, x2, . . . , xk ) = 1, there
exists an N ∈ N such that all positive integers M ≥ N can be
expressed as a linear combination M = α1x1 + α2x2 + · · ·+ αkxk with
coefficients αi ∈ N.
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Proof

Proof of Lemma: By induction on k .

The initial case k = 1 is clear, as
then x1 = 1.

Assume that k > 1 and the assertion holds for smaller k . Let
d = gcd(x1, . . . , xk−1). Then by the induction hypothesis, there is an
L ≥ d such that for any S ≥ L, the number Sd can be expressed as a
positive integer linear combination of x1, . . . , xk−1.

If d = 1, then N = L + xk is clearly appropriate. Let d ≥ 2. As
gcd(x1, . . . , xk−1, xk ) = gcd(d , xk ) = 1, there exist integers a,b such
that ad + bxk = 1, with 0 ≤ a < xk (note that b < 0). We show that
N = Ldxk is a proper choice.

Markov chains Pongrácz



Proof

Proof of Lemma: By induction on k . The initial case k = 1 is clear, as
then x1 = 1.

Assume that k > 1 and the assertion holds for smaller k . Let
d = gcd(x1, . . . , xk−1). Then by the induction hypothesis, there is an
L ≥ d such that for any S ≥ L, the number Sd can be expressed as a
positive integer linear combination of x1, . . . , xk−1.

If d = 1, then N = L + xk is clearly appropriate. Let d ≥ 2. As
gcd(x1, . . . , xk−1, xk ) = gcd(d , xk ) = 1, there exist integers a,b such
that ad + bxk = 1, with 0 ≤ a < xk (note that b < 0). We show that
N = Ldxk is a proper choice.

Markov chains Pongrácz



Proof

Proof of Lemma: By induction on k . The initial case k = 1 is clear, as
then x1 = 1.

Assume that k > 1 and the assertion holds for smaller k . Let
d = gcd(x1, . . . , xk−1).

Then by the induction hypothesis, there is an
L ≥ d such that for any S ≥ L, the number Sd can be expressed as a
positive integer linear combination of x1, . . . , xk−1.

If d = 1, then N = L + xk is clearly appropriate. Let d ≥ 2. As
gcd(x1, . . . , xk−1, xk ) = gcd(d , xk ) = 1, there exist integers a,b such
that ad + bxk = 1, with 0 ≤ a < xk (note that b < 0). We show that
N = Ldxk is a proper choice.

Markov chains Pongrácz



Proof

Proof of Lemma: By induction on k . The initial case k = 1 is clear, as
then x1 = 1.

Assume that k > 1 and the assertion holds for smaller k . Let
d = gcd(x1, . . . , xk−1). Then by the induction hypothesis, there is an
L ≥ d such that for any S ≥ L, the number Sd can be expressed as a
positive integer linear combination of x1, . . . , xk−1.

If d = 1, then N = L + xk is clearly appropriate. Let d ≥ 2. As
gcd(x1, . . . , xk−1, xk ) = gcd(d , xk ) = 1, there exist integers a,b such
that ad + bxk = 1, with 0 ≤ a < xk (note that b < 0). We show that
N = Ldxk is a proper choice.

Markov chains Pongrácz



Proof

Proof of Lemma: By induction on k . The initial case k = 1 is clear, as
then x1 = 1.

Assume that k > 1 and the assertion holds for smaller k . Let
d = gcd(x1, . . . , xk−1). Then by the induction hypothesis, there is an
L ≥ d such that for any S ≥ L, the number Sd can be expressed as a
positive integer linear combination of x1, . . . , xk−1.

If d = 1, then N = L + xk is clearly appropriate. Let d ≥ 2.

As
gcd(x1, . . . , xk−1, xk ) = gcd(d , xk ) = 1, there exist integers a,b such
that ad + bxk = 1, with 0 ≤ a < xk (note that b < 0). We show that
N = Ldxk is a proper choice.

Markov chains Pongrácz



Proof

Proof of Lemma: By induction on k . The initial case k = 1 is clear, as
then x1 = 1.

Assume that k > 1 and the assertion holds for smaller k . Let
d = gcd(x1, . . . , xk−1). Then by the induction hypothesis, there is an
L ≥ d such that for any S ≥ L, the number Sd can be expressed as a
positive integer linear combination of x1, . . . , xk−1.

If d = 1, then N = L + xk is clearly appropriate. Let d ≥ 2. As
gcd(x1, . . . , xk−1, xk ) = gcd(d , xk ) = 1, there exist integers a,b such
that ad + bxk = 1,

with 0 ≤ a < xk (note that b < 0). We show that
N = Ldxk is a proper choice.

Markov chains Pongrácz



Proof

Proof of Lemma: By induction on k . The initial case k = 1 is clear, as
then x1 = 1.

Assume that k > 1 and the assertion holds for smaller k . Let
d = gcd(x1, . . . , xk−1). Then by the induction hypothesis, there is an
L ≥ d such that for any S ≥ L, the number Sd can be expressed as a
positive integer linear combination of x1, . . . , xk−1.

If d = 1, then N = L + xk is clearly appropriate. Let d ≥ 2. As
gcd(x1, . . . , xk−1, xk ) = gcd(d , xk ) = 1, there exist integers a,b such
that ad + bxk = 1, with 0 ≤ a < xk (note that b < 0).

We show that
N = Ldxk is a proper choice.

Markov chains Pongrácz



Proof

Proof of Lemma: By induction on k . The initial case k = 1 is clear, as
then x1 = 1.

Assume that k > 1 and the assertion holds for smaller k . Let
d = gcd(x1, . . . , xk−1). Then by the induction hypothesis, there is an
L ≥ d such that for any S ≥ L, the number Sd can be expressed as a
positive integer linear combination of x1, . . . , xk−1.

If d = 1, then N = L + xk is clearly appropriate. Let d ≥ 2. As
gcd(x1, . . . , xk−1, xk ) = gcd(d , xk ) = 1, there exist integers a,b such
that ad + bxk = 1, with 0 ≤ a < xk (note that b < 0). We show that
N = Ldxk is a proper choice.

Markov chains Pongrácz



Proof

So let M ≥ Ldxk . Write M in the form Sd − C with 0 ≤ C < d .

In
particular, S > Lxk > La. Then
M = Sd − C(ad + bxk ) = (S − Ca)d + (−b)xk , where −b > 0 and
S − Ca > (L− C)a > a, since L ≥ d > C.

Proof of Theorem: For all 1 ≤ i ≤ n, let xi1, . . . , xiki be numbers such
that Axij [i , i] > 0 and gcd(xi1, . . . , xiki ) = 1. Let Ni be the positive integer
provided by the Lemma for xi1, . . . , xiki , and let N0 be the largest Ni .

Then for all 1 ≤ i ≤ n, any integer M ≥ N0 can be expressed as a
positive integer linear combination of xi1, . . . , xiki . By irreducibility, for all
i , j there is a K (i , j) ≥ 0 such that we can reach the vertex with index
j in GA from the vertex with index i in K (i , j) steps. Let K be the largest
K (i , j). Putting N = N0 + K , we have that AN is a positive matrix.
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Periodic matrices

Markov chains Pongrácz



A =

0 1 0
0 0 1
1 0 0

 has period p = 3.

Its eigenvalues are the third roots of unity 1, ε, ε2 with corresponding
eigenvectors (1,1,1)∗, (1, ε, ε2)∗, (1, ε2, ε)∗.

Note that all three eigenvalues have absolute value 1, which is
impossible in the aperiodic irreducible case.
We need to go through the proof of the Gershgorin theorem to see that
there are always p roots with modulus 1, and all of them are p-th roots
of unity.

Markov chains Pongrácz



A =

0 1 0
0 0 1
1 0 0

 has period p = 3.

Its eigenvalues are the third roots of unity 1, ε, ε2 with corresponding
eigenvectors (1,1,1)∗, (1, ε, ε2)∗, (1, ε2, ε)∗.

Note that all three eigenvalues have absolute value 1, which is
impossible in the aperiodic irreducible case.
We need to go through the proof of the Gershgorin theorem to see that
there are always p roots with modulus 1, and all of them are p-th roots
of unity.

Markov chains Pongrácz



A =

0 1 0
0 0 1
1 0 0

 has period p = 3.

Its eigenvalues are the third roots of unity 1, ε, ε2 with corresponding
eigenvectors (1,1,1)∗, (1, ε, ε2)∗, (1, ε2, ε)∗.

Note that all three eigenvalues have absolute value 1, which is
impossible in the aperiodic irreducible case.

We need to go through the proof of the Gershgorin theorem to see that
there are always p roots with modulus 1, and all of them are p-th roots
of unity.

Markov chains Pongrácz



A =

0 1 0
0 0 1
1 0 0

 has period p = 3.

Its eigenvalues are the third roots of unity 1, ε, ε2 with corresponding
eigenvectors (1,1,1)∗, (1, ε, ε2)∗, (1, ε2, ε)∗.

Note that all three eigenvalues have absolute value 1, which is
impossible in the aperiodic irreducible case.
We need to go through the proof of the Gershgorin theorem to see that
there are always p roots with modulus 1, and all of them are p-th roots
of unity.

Markov chains Pongrácz



Given an eigenvalue λ with |λ| = 1 and corresponding eigenvector v .

Let vi be a coordinate with largest absolute value; WLOG vi = 1.

Then (Apv)[i] = (λpv)[i] = λpvi .

Taking the absolute value (cf. the proof of Gershgorin) shows that for
every index j attainable in p steps from i in the digraph, we have
vj = 1, and then λp = 1. These blocks of states partition the underlying
set of states into p classes.

These observations lead to the generalization of the Perron-Frobenius
theorem; see Class 7.
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set of states into p classes.

These observations lead to the generalization of the Perron-Frobenius
theorem; see Class 7.
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Exercises
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Exercises

1. Prove that given an irreducible matrix A and index i , the numbers
k such that (Ak )[i , i] > 0 form a sequence that is eventually
arithmetic: that is, there is a large enough K and number p, r such
that for m > K , an exponent is good iff it is of the form p`+ r .

2. By using a density argument, prove that p is the same for all
indices i . Conclude that every vertex has the same period.

3. Find an irreducible, aperiodic chain such that the (square)
zero-matrices along the diagonal in the "canonical" form PAP−1

are of different sizes, the non-zero blocks Aj are square, and the
period p does not divide n.
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