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Finite Markov chains
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... as digraphs

S is a finite set, |S| = n

(states)

A weighted digraph with set of vertices S is a Markov chain if all
weights are non-negative and the sum of weights on all outgoing
edges from any given vertex is 1.

The weights are the transition probabilities.

The idea is that we walk on the states, and at every step we decide
where to move according to the probability distribution on the outgoing
edges.
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Too complicated, intransparent.

Better representation: transition matrix P.

P[i , j] is the transition probability from si to sj . I.e., it is the probability of
moving to sj in one step, provided we are in si . Note that this really
depends only on i , j (it is irrelevant how we arrived at si ).
Basic properties:

P[i , j] ≥ 0
n∑

j=1
P[i , j] = 1 for all 1 ≤ i ≤ n. Equivalently P1 = 1, so the all-1

vector is an eigenvector of P with eigenvalue 1.
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P =



0.2 0.3 0.1 0 0.4 0 0
0.2 0.1 0.3 0.1 0.3 0 0
0 0.3 0.5 0.2 0 0 0
0 0 0.6 0 0.4 0 0
0 0 0 0.3 0.4 0.1 0.2
0 0 0 0 0 0 1
0 0 0 0 0 0.7 0.3
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Powers of the transition matrix

How do we get from si to sj in 2 steps?

Via a third state sk . So the

probability is
n∑

k=1

P[i , k ]P[k , j] = (P2)[i , j]

A similar formula holds in general.

Proposition
The probability of being at sj after m steps starting from si is

(Pm)[i , j]
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Induced digraph on strong components

Given the strong components C1, . . . ,Ck of a digraph, we define a
digraph on them:

∃ edge between Ci and Cj iff there is at least one such edge in the
original digraph.

This yields an acyclic digraph (no directed cycle).

We can deconstruct the walk into two walks: first on this acyclic graph,
until we reach a sink, and then a walk on the sink. (Cf. topological
sorting of an acyclic digraph.)
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Absorbing chains

Collapsing the sinks to one vertex leads to a very special type of
chains.

Absorption
A state in a Markov chain is absorbing if it has only one outgoing edge,
and the edge points to the state (and then the transition probability
assigned to it is necessarily 1). A finite Markov chain is absorbing if (it
has at least one absorbing state and) from any state, we can reach an
absorbing state with positive probability in a finite number of steps.
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So every finite Markov chain is the composition of an absorbing chain
and an irreducible one.

These two notions are very much on opposite ends of a spectrum.

The natural problems to study on them are completely different, so
they are investigated separately on the next classes.
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Exercises
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Exercises

1. Show that if P is the transition matrix of a Markov chain, then all
Gershgorin discs of P have a common point.

2. Prove the proposition about Pm[i , j].
3. Show that a Markov chain is absorbing iff all sinks of the induced

digraph on its strong components are singletons.
4. Show that a matrix P is a transition matrix (of some Markov chain)

iff P is non-negative and P1 = 1.
5. What is the difference between acyclic graphs and partial orders?
6. Prove that if P is absorbing, then so is Pm for any m. What does

an absorbing, primitive chain look like?
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