Markov chains and applications

Dr. András Pongrácz

Week 5, University of Debrecen

Finite Markov chains

S is a finite set, $|S|=n$
S is a finite set, $|S|=n$ (states)

as digraphs

S is a finite set, $|S|=n$ (states)
A weighted digraph with set of vertices S is a Markov chain if all weights are non-negative and the sum of weights on all outgoing edges from any given vertex is 1 .
S is a finite set, $|S|=n$ (states)
A weighted digraph with set of vertices S is a Markov chain if all weights are non-negative and the sum of weights on all outgoing edges from any given vertex is 1 .
The weights are the transition probabilities.
S is a finite set, $|S|=n$ (states)
A weighted digraph with set of vertices S is a Markov chain if all weights are non-negative and the sum of weights on all outgoing edges from any given vertex is 1 .
The weights are the transition probabilities.
The idea is that we walk on the states, and at every step we decide where to move according to the probability distribution on the outgoing edges.

Too complicated, intransparent.

Too complicated, intransparent.
Better representation: transition matrix P.

Too complicated, intransparent.
Better representation: transition matrix P.
$P[i, j]$ is the transition probability from s_{i} to s_{j}.

Too complicated, intransparent.
Better representation: transition matrix P.
$P[i, j]$ is the transition probability from s_{i} to s_{j}. I.e., it is the probability of moving to s_{j} in one step, provided we are in s_{i}.

Too complicated, intransparent.
Better representation: transition matrix P.
$P[i, j]$ is the transition probability from s_{i} to s_{j}. I.e., it is the probability of moving to s_{j} in one step, provided we are in s_{i}. Note that this really depends only on i, j (it is irrelevant how we arrived at s_{i}).

Too complicated, intransparent.
Better representation: transition matrix P.
$P[i, j]$ is the transition probability from s_{i} to s_{j}. I.e., it is the probability of moving to s_{j} in one step, provided we are in s_{i}. Note that this really depends only on i, j (it is irrelevant how we arrived at s_{i}). Basic properties:

$$
\begin{aligned}
& P[i, j] \geq 0 \\
& \sum_{j=1}^{n} P[i, j]=1 \text { for all } 1 \leq i \leq n .
\end{aligned}
$$

Too complicated, intransparent.
Better representation: transition matrix P.
$P[i, j]$ is the transition probability from s_{i} to s_{j}. I.e., it is the probability of moving to s_{j} in one step, provided we are in s_{j}. Note that this really depends only on i, j (it is irrelevant how we arrived at s_{i}). Basic properties:

$$
P[i, j] \geq 0
$$

$\sum_{j=1}^{n} P[i, j]=1$ for all $1 \leq i \leq n$. Equivalently $P 1=1$, so the all- 1 vector is an eigenvector of P with eigenvalue 1.

$$
P=\left(\begin{array}{ccccccc}
0.2 & 0.3 & 0.1 & 0 & 0.4 & 0 & 0 \\
0.2 & 0.1 & 0.3 & 0.1 & 0.3 & 0 & 0 \\
0 & 0.3 & 0.5 & 0.2 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0.3 & 0.4 & 0.1 & 0.2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0.7 & 0.3
\end{array}\right)
$$

Powers of the transition matrix

How do we get from s_{i} to s_{j} in 2 steps?

Powers of the transition matrix

How do we get from s_{i} to s_{j} in 2 steps? Via a third state s_{k}.

How do we get from s_{i} to s_{j} in 2 steps? Via a third state s_{k}. So the probability is

$$
\sum_{k=1}^{n} P[i, k] P[k, j]=\left(P^{2}\right)[i, j]
$$

How do we get from s_{i} to s_{j} in 2 steps? Via a third state s_{k}. So the probability is

$$
\sum_{k=1}^{n} P[i, k] P[k, j]=\left(P^{2}\right)[i, j]
$$

A similar formula holds in general.

Powers of the transition matrix

How do we get from s_{i} to s_{j} in 2 steps? Via a third state s_{k}. So the probability is

$$
\sum_{k=1}^{n} P[i, k] P[k, j]=\left(P^{2}\right)[i, j]
$$

A similar formula holds in general.

Proposition

The probability of being at s_{j} after m steps starting from s_{i} is

$$
\left(P^{m}\right)[i, j]
$$

Induced digraph on strong components

Given the strong components C_{1}, \ldots, C_{k} of a digraph, we define a digraph on them:

Induced digraph on strong components

Given the strong components C_{1}, \ldots, C_{k} of a digraph, we define a digraph on them:
\exists edge between C_{i} and C_{j} iff there is at least one such edge in the original digraph.

Given the strong components C_{1}, \ldots, C_{k} of a digraph, we define a digraph on them:
\exists edge between C_{i} and C_{j} iff there is at least one such edge in the original digraph.
This yields an acyclic digraph (no directed cycle).

Given the strong components C_{1}, \ldots, C_{k} of a digraph, we define a digraph on them:
\exists edge between C_{i} and C_{j} iff there is at least one such edge in the original digraph.
This yields an acyclic digraph (no directed cycle).
We can deconstruct the walk into two walks: first on this acyclic graph, until we reach a sink, and then a walk on the sink. (Cf. topological sorting of an acyclic digraph.)

Absorbing chains

Collapsing the sinks to one vertex leads to a very special type of chains.

Absorbing chains

Collapsing the sinks to one vertex leads to a very special type of chains.

Absorption

A state in a Markov chain is absorbing if it has only one outgoing edge, and the edge points to the state (and then the transition probability assigned to it is necessarily 1).

Absorbing chains

Collapsing the sinks to one vertex leads to a very special type of chains.

Absorption

A state in a Markov chain is absorbing if it has only one outgoing edge, and the edge points to the state (and then the transition probability assigned to it is necessarily 1). A finite Markov chain is absorbing if (it has at least one absorbing state and) from any state, we can reach an absorbing state with positive probability in a finite number of steps.

So every finite Markov chain is the composition of an absorbing chain and an irreducible one.

So every finite Markov chain is the composition of an absorbing chain and an irreducible one.

These two notions are very much on opposite ends of a spectrum.

So every finite Markov chain is the composition of an absorbing chain and an irreducible one.

These two notions are very much on opposite ends of a spectrum. The natural problems to study on them are completely different,

So every finite Markov chain is the composition of an absorbing chain and an irreducible one.

These two notions are very much on opposite ends of a spectrum. The natural problems to study on them are completely different, so they are investigated separately on the next classes.

Exercises

Exercises

1. Show that if P is the transition matrix of a Markov chain, then all Gershgorin discs of P have a common point.
2. Show that if P is the transition matrix of a Markov chain, then all Gershgorin discs of P have a common point.
3. Prove the proposition about $P^{m}[i, j]$.
4. Show that if P is the transition matrix of a Markov chain, then all Gershgorin discs of P have a common point.
5. Prove the proposition about $P^{m}[i, j]$.
6. Show that a Markov chain is absorbing iff all sinks of the induced digraph on its strong components are singletons.
7. Show that if P is the transition matrix of a Markov chain, then all Gershgorin discs of P have a common point.
8. Prove the proposition about $P^{m}[i, j]$.
9. Show that a Markov chain is absorbing iff all sinks of the induced digraph on its strong components are singletons.
10. Show that a matrix P is a transition matrix (of some Markov chain) iff P is non-negative and $P \underline{1}=1$.
11. Show that if P is the transition matrix of a Markov chain, then all Gershgorin discs of P have a common point.
12. Prove the proposition about $P^{m}[i, j]$.
13. Show that a Markov chain is absorbing iff all sinks of the induced digraph on its strong components are singletons.
14. Show that a matrix P is a transition matrix (of some Markov chain) iff P is non-negative and $P \underline{1}=1$.
15. What is the difference between acyclic graphs and partial orders?
16. Show that if P is the transition matrix of a Markov chain, then all Gershgorin discs of P have a common point.
17. Prove the proposition about $P^{m}[i, j]$.
18. Show that a Markov chain is absorbing iff all sinks of the induced digraph on its strong components are singletons.
19. Show that a matrix P is a transition matrix (of some Markov chain) iff P is non-negative and $P \underline{1}=1$.
20. What is the difference between acyclic graphs and partial orders?
21. Prove that if P is absorbing, then so is P^{m} for any m. What does an absorbing, primitive chain look like?
