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Perron-Frobenius theorem

Let P ∈ Mn(R) be a positive matrix, i.e., a matrix with all entries
positive.

1. The spectral radius r = max{|λ| | λ ∈ Spec(P)} is an eigenvalue
with multiplicity 1 (Perron root), and the corresponding eigenvector
u (Perron vector) is a positive real vector.

2. There is no other positive eigenvector of P than the positive
multiples of the Perron vector.

3. By normalizing u, that is, picking the constant multiple so that the
sum of entries is 1, and similarly picking a normalized Perron
vector w for P∗, we have lim

k→∞
1
rk Pk = w∗u.
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Generalizations

Definition
A non-negative matrix P ∈ Mn(R) is primitive if there is a k ∈ N such
that Pk is positive.

The theorem on the previous slide remains true for primitive matrices
without any modification.

Example: P =

(
0 1
1 1

)
is primitive (and not positive).

χP(x) = x2 − x − 1 with roots 1+
√

5
2 , 1−

√
5

2 , so the Perron root is
r = 1+

√
5

2 . The corresponding (right) eigenvector is u = (1, 1+
√

5
2 )∗.
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Irreducible matrices

Definition
Given a non-negative matrix A ∈ Mn(R), the associated digraph is
GA = (V ,D), where V is an n-element set identified by the rows and
columns, and (vi , vj) ∈ D iff A[i , j] > 0.

Then A is irreducible if the
associated matrix is strongly connected.

A reducible matrix thus must have a proper subset of vertices U ⊆ V
such that there is no edge (u, v) with u ∈ U and v /∈ U. By rearranging
the identification of vertices with rows and columns so that vertices in
U come first, we obtain a matrix similar to A (by conjugation with a

permutation matrix) of the form
(

E F
0 G

)
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Irreducible matrices

Equivalent definitions of irreducible matrices:

1. A non-negative matrix with no proper invariant coordinate
subspace, i.e., a subspace spanned by a proper subset of
standard basis vectors.

2. A non-negative matrix A such that there is no permutation matrix

P with PAP−1 of the form
(

E F
0 G

)
.

Note that in item 1, the condition is about the non-existence of invariant
coordinate subspaces, not invariant subspaces in general. The latter
would be impossible for n ≥ 3, as every real matrix with n ≥ 3 has an
at most 2-dimensional proper invariant subspace.
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Irreducible matrices

Example

A =

0 1 0
0 0 1
1 0 0

 is irreducible, but imprimitive.

Imprimitivity is witnessed by the fact that powers of A form a periodic
sequence with period 3, and all matrices in the period have some zero
entries. And indeed, the Perron-Frobenius theorem no longer holds:
the eigenvalues are the third roots of unity, all having the same
modulus 1.

This observation leads to the extra property that together with
irreducibility guarantees a slightly weaker version of the
Perron-Frobenius theorem: see Class 6 for further details.
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Gershgorin circles

Definition
Let A = (ai,j) ∈ Mn(C) be a matrix. Then the n closed discs on the
complex plane for all 1 ≤ i ≤ n with center ai,i and radius

∑
j 6=i
|ai,j | are

called Gershgorin discs.

It was observed by Semyon Aronovich Gershgorin that the union of
these discs contain the spectrum of the matrix.
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Example

A =


7 0 −1.1 2.6
2 −11 0.7 1.4
−0.9 1.1 i 1
0.7 −0.3 1.6 i



Spectrum: -11.0402 + 0.0024i, 7.3047+0.0325i, -1.6376 + 0.9662i, 1.3731+0.9988i

Note that the union of circles can be divided into three connected
components, consisting of (from left to right) one, two and one discs,
respectively.
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Gershgorin circle theorem

Theorem
Every eigenvalue is contained in at least one Gershgorin disc.

Proof: Let u be an eigenvector corresponding to the eigenvalue λ. Let
1 ≤ i ≤ n be an index where the modulus of the coordinate |u[i]| is
maximal. As Au = λu, at the i-th coordinate, we obtain
ai,iu[i] +

∑
j 6=i

ai,ju[j] = λu[i], that is,
∑
j 6=i

ai,ju[j] = (λ− ai,i)u[i].

By taking the modulus of both sides, and using the triangle inequality,
we obtain

∑
j 6=i
|ai,j ||u[j]| ≥ |λ− ai,i ||u[i]|. As |u[j]| ≤ |u[i]| for all i 6= j , we

have
∑
j 6=i
|ai,j ||u[i]| ≥ |λ− ai,i ||u[i]|, and then after dividing by |u[i]|, the

desired inequality
∑
j 6=i
|ai,j | ≥ |λ− ai,i | follows.
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Eigenvalues on the border

Remark
How can λ be on a circle (the border of a disc)?

Then in the previous
proof, we must have equality in every estimation. Hence, for all j where
ai,j and u[j] are both nonzero, the product ai,ju[j] is rjz for some
complex number z and positive real rj , and |u[j]| = |u[i]|.

Theorem
If a connected region of the union of discs is the union of k discs, then
it contains exactly k eigenvalues with multiplicity (cf. the example).
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Proof

Let D be the diagonal matrix obtained by changing all non-diagonal
entries of A to 0.

Define M(t) = (1− t)D + tA ; informally, we are moving on a straight
line from D to A with constant speed. Indeed, M(0) = D and M(1) = A.

Let (λ1(t), . . . , λn(t)) be the labelled spectrum: at time t = 0, this is the
n-tuple of diagonal entries (a1,1, . . . ,an,n) of A (or equivalently, of D).
Clearly, the labelled spectrum is a continuous function C→ Cn.
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Proof

The Gershgorin discs of M(t) have the same centers for all t , and the
radii are linear functions starting from 0 and ending up at the radii of
the Gershgorin circles of A.

Let K be the union of k discs that is disjoint from the union of the other
n − k discs K ′. Then the corresponding k discs for M(t) are contained
in K , and the remaining n − k discs are contained in K ′. For t = 0,
these discs contain exactly k eigenvalues.

By the Gershgorin circle theorem, the spectrum of M(t) is contained in
K ∪ K ′ for all t . As K and K ′ have a positive distance and the labelled
spectrum is a continuous function, there are exactly k entries of the
labelled spectrum of M(t) in K for all t , and then in particular for t = 1.
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Exercises

1. Show that the inverse of a stochastic matrix A is non-negative iff it
is stochastic. Prove that if this is the case, then A is a permutation
matrix.

2. Generalize the previous exercise to non-negative (invertible)
matrices.

3. By using the Jordan normal form of the matrix P =

(
0 1
1 1

)
, find

the formula for the elements of Pn.
4. Observe that the series of vectors un = (Fn,Fn+1)

∗, where Fn is
the n-th Fibonacci number, satisfies the relations u0 = (0,1)∗ and
un = Pun−1, with P as in the previous exercise. Deduce that
un = Pnu0. By the previous exercise, find the exact formula for Fn.

5. Show that the union of the Gershgorin discs coincide with the
spectrum iff the matrix is diagonal.
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