Markov Chains and Their Applications

Dr. András Pongrácz

Week 4, University of Debrecen

Perron-Frobenius theorem

 The spectral radius *r* = max{|λ| | λ ∈ Spec(*P*)} is an eigenvalue with multiplicity 1 (Perron root), and the corresponding eigenvector <u>*u*</u> (Perron vector) is a positive real vector.

- The spectral radius *r* = max{|λ| | λ ∈ Spec(*P*)} is an eigenvalue with multiplicity 1 (Perron root), and the corresponding eigenvector <u>*u*</u> (Perron vector) is a positive real vector.
- 2. There is no other positive eigenvector of *P* than the positive multiples of the Perron vector.

- The spectral radius *r* = max{|λ| | λ ∈ Spec(*P*)} is an eigenvalue with multiplicity 1 (Perron root), and the corresponding eigenvector <u>*u*</u> (Perron vector) is a positive real vector.
- 2. There is no other positive eigenvector of *P* than the positive multiples of the Perron vector.
- 3. By normalizing \underline{u} , that is, picking the constant multiple so that the sum of entries is 1, and similarly picking a normalized Perron vector \underline{w} for P^* , we have $\lim_{k\to\infty} \frac{1}{r^k}P^k = \underline{w}^*\underline{u}$.

A non-negative matrix $P \in M_n(\mathbb{R})$ is primitive if there is a $k \in \mathbb{N}$ such that P^k is positive.

A non-negative matrix $P \in M_n(\mathbb{R})$ is primitive if there is a $k \in \mathbb{N}$ such that P^k is positive.

A non-negative matrix $P \in M_n(\mathbb{R})$ is primitive if there is a $k \in \mathbb{N}$ such that P^k is positive.

Example:
$$P = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 is primitive (and not positive).

A non-negative matrix $P \in M_n(\mathbb{R})$ is primitive if there is a $k \in \mathbb{N}$ such that P^k is positive.

Example:
$$P = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 is primitive (and not positive).
 $\chi_P(x) = x^2 - x - 1$ with roots $\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}$, so the Perron root is $r = \frac{1+\sqrt{5}}{2}$.

A non-negative matrix $P \in M_n(\mathbb{R})$ is primitive if there is a $k \in \mathbb{N}$ such that P^k is positive.

Example:
$$P = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 is primitive (and not positive).
 $\chi_P(x) = x^2 - x - 1$ with roots $\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}$, so the Perron root is $r = \frac{1+\sqrt{5}}{2}$. The corresponding (right) eigenvector is $\underline{u} = (1, \frac{1+\sqrt{5}}{2})^*$.

Given a non-negative matrix $A \in M_n(\mathbb{R})$, the associated digraph is $G_A = (V, D)$, where V is an *n*-element set identified by the rows and columns, and $(v_i, v_i) \in D$ iff A[i, j] > 0.

Given a non-negative matrix $A \in M_n(\mathbb{R})$, the associated digraph is $G_A = (V, D)$, where V is an *n*-element set identified by the rows and columns, and $(v_i, v_j) \in D$ iff A[i, j] > 0. Then A is irreducible if the associated matrix is strongly connected.

Given a non-negative matrix $A \in M_n(\mathbb{R})$, the associated digraph is $G_A = (V, D)$, where V is an *n*-element set identified by the rows and columns, and $(v_i, v_j) \in D$ iff A[i, j] > 0. Then A is irreducible if the associated matrix is strongly connected.

A reducible matrix thus must have a proper subset of vertices $U \subseteq V$ such that there is no edge (u, v) with $u \in U$ and $v \notin U$.

Given a non-negative matrix $A \in M_n(\mathbb{R})$, the associated digraph is $G_A = (V, D)$, where V is an *n*-element set identified by the rows and columns, and $(v_i, v_j) \in D$ iff A[i, j] > 0. Then A is irreducible if the associated matrix is strongly connected.

A reducible matrix thus must have a proper subset of vertices $U \subseteq V$ such that there is no edge (u, v) with $u \in U$ and $v \notin U$. By rearranging the identification of vertices with rows and columns so that vertices in U come first, we obtain a matrix similar to A (by conjugation with a permutation matrix) of the form $\begin{pmatrix} E & F \\ 0 & G \end{pmatrix}$

Equivalent definitions of irreducible matrices:

Equivalent definitions of irreducible matrices :

1. A non-negative matrix with no proper invariant coordinate subspace, i.e., a subspace spanned by a proper subset of standard basis vectors.

Equivalent definitions of irreducible matrices:

- 1. A non-negative matrix with no proper invariant coordinate subspace, i.e., a subspace spanned by a proper subset of standard basis vectors.
- 2. A non-negative matrix *A* such that there is no permutation matrix *P* with PAP^{-1} of the form $\begin{pmatrix} E & F \\ 0 & G \end{pmatrix}$.

Equivalent definitions of irreducible matrices :

- 1. A non-negative matrix with no proper invariant coordinate subspace, i.e., a subspace spanned by a proper subset of standard basis vectors.
- 2. A non-negative matrix *A* such that there is no permutation matrix *P* with PAP^{-1} of the form $\begin{pmatrix} E & F \\ 0 & G \end{pmatrix}$.

Note that in item 1, the condition is about the non-existence of invariant coordinate subspaces, not invariant subspaces in general.

Equivalent definitions of irreducible matrices :

- 1. A non-negative matrix with no proper invariant coordinate subspace, i.e., a subspace spanned by a proper subset of standard basis vectors.
- 2. A non-negative matrix *A* such that there is no permutation matrix *P* with PAP^{-1} of the form $\begin{pmatrix} E & F \\ 0 & G \end{pmatrix}$.

Note that in item 1, the condition is about the non-existence of invariant coordinate subspaces, not invariant subspaces in general. The latter would be impossible for $n \ge 3$, as every real matrix with $n \ge 3$ has an at most 2-dimensional proper invariant subspace.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 is irreducible, but imprimitive.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 is irreducible, but imprimitive.

Imprimitivity is witnessed by the fact that powers of *A* form a periodic sequence with period 3, and all matrices in the period have some zero entries.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 is irreducible, but imprimitive.

Imprimitivity is witnessed by the fact that powers of *A* form a periodic sequence with period 3, and all matrices in the period have some zero entries. And indeed, the Perron-Frobenius theorem no longer holds: the eigenvalues are the third roots of unity, all having the same modulus 1.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 is irreducible, but imprimitive.

Imprimitivity is witnessed by the fact that powers of *A* form a periodic sequence with period 3, and all matrices in the period have some zero entries. And indeed, the Perron-Frobenius theorem no longer holds: the eigenvalues are the third roots of unity, all having the same modulus 1.

This observation leads to the extra property that together with irreducibility guarantees a slightly weaker version of the Perron-Frobenius theorem: see Class 6 for further details.

Gershgorin circles

Markov chains

Pongrácz

Let $A = (a_{i,j}) \in M_n(\mathbb{C})$ be a matrix. Then the *n* closed discs on the complex plane for all $1 \le i \le n$ with center $a_{i,i}$ and radius $\sum_{j \ne i} |a_{i,j}|$ are collect Complexing discs.

called Gershgorin discs.

Let $A = (a_{i,j}) \in M_n(\mathbb{C})$ be a matrix. Then the *n* closed discs on the complex plane for all $1 \le i \le n$ with center $a_{i,i}$ and radius $\sum_{i \ne i} |a_{i,j}|$ are

called Gershgorin discs.

It was observed by Semyon Aronovich Gershgorin that the union of these discs contain the spectrum of the matrix.

$$A = \begin{pmatrix} 7 & 0 & -1.1 & 2.6 \\ 2 & -11 & 0.7 & 1.4 \\ -0.9 & 1.1 & i & 1 \\ 0.7 & -0.3 & 1.6 & i \end{pmatrix}$$

Markov chains

Pongrácz

Spectrum: -11.0402 + 0.0024i, 7.3047+0.0325i, -1.6376 + 0.9662i, 1.3731+0.9988i

Spectrum: -11.0402 + 0.0024i, 7.3047+0.0325i, -1.6376 + 0.9662i, 1.3731+0.9988i

Note that the union of circles can be divided into three connected components, consisting of (from left to right) one, two and one discs, respectively.

Markov chains	Pongrácz

Every eigenvalue is contained in at least one Gershgorin disc.

Every eigenvalue is contained in at least one Gershgorin disc.

Proof: Let \underline{u} be an eigenvector corresponding to the eigenvalue λ .

Every eigenvalue is contained in at least one Gershgorin disc.

Proof: Let \underline{u} be an eigenvector corresponding to the eigenvalue λ . Let $1 \le i \le n$ be an index where the modulus of the coordinate |u[i]| is maximal.

Every eigenvalue is contained in at least one Gershgorin disc.

Proof: Let \underline{u} be an eigenvector corresponding to the eigenvalue λ . Let $1 \leq i \leq n$ be an index where the modulus of the coordinate |u[i]| is maximal. As $A\underline{u} = \lambda \underline{u}$, at the *i*-th coordinate, we obtain $a_{i,i}u[i] + \sum_{j \neq i} a_{i,j}u[j] = \lambda u[i]$, that is, $\sum_{j \neq i} a_{i,j}u[j] = (\lambda - a_{i,i})u[i]$.

Every eigenvalue is contained in at least one Gershgorin disc.

Proof: Let \underline{u} be an eigenvector corresponding to the eigenvalue λ . Let $1 \leq i \leq n$ be an index where the modulus of the coordinate |u[i]| is maximal. As $A\underline{u} = \lambda \underline{u}$, at the *i*-th coordinate, we obtain $a_{i,i}u[i] + \sum_{j \neq i} a_{i,j}u[j] = \lambda u[i]$, that is, $\sum_{j \neq i} a_{i,j}u[j] = (\lambda - a_{i,i})u[i]$.

By taking the modulus of both sides, and using the triangle inequality, we obtain $\sum_{j \neq i} |a_{i,j}| |u[j]| \ge |\lambda - a_{i,i}| |u[i]|$.

Every eigenvalue is contained in at least one Gershgorin disc.

Proof: Let \underline{u} be an eigenvector corresponding to the eigenvalue λ . Let $1 \leq i \leq n$ be an index where the modulus of the coordinate |u[i]| is maximal. As $A\underline{u} = \lambda \underline{u}$, at the *i*-th coordinate, we obtain $a_{i,i}u[i] + \sum_{j \neq i} a_{i,j}u[j] = \lambda u[i]$, that is, $\sum_{j \neq i} a_{i,j}u[j] = (\lambda - a_{i,i})u[i]$.

By taking the modulus of both sides, and using the triangle inequality, we obtain $\sum_{j \neq i} |a_{i,j}| |u[j]| \ge |\lambda - a_{i,i}| |u[i]|$. As $|u[j]| \le |u[i]|$ for all $i \ne j$, we have $\sum_{j \ne i} |a_{i,j}| |u[i]| \ge |\lambda - a_{i,i}| |u[i]|$,

Every eigenvalue is contained in at least one Gershgorin disc.

Proof: Let \underline{u} be an eigenvector corresponding to the eigenvalue λ . Let $1 \leq i \leq n$ be an index where the modulus of the coordinate |u[i]| is maximal. As $A\underline{u} = \lambda \underline{u}$, at the *i*-th coordinate, we obtain $a_{i,i}u[i] + \sum_{j \neq i} a_{i,j}u[j] = \lambda u[i]$, that is, $\sum_{j \neq i} a_{i,j}u[j] = (\lambda - a_{i,i})u[i]$.

By taking the modulus of both sides, and using the triangle inequality, we obtain $\sum_{j \neq i} |a_{i,j}| |u[j]| \ge |\lambda - a_{i,i}| |u[i]|$. As $|u[j]| \le |u[i]|$ for all $i \ne j$, we have $\sum_{j \ne i} |a_{i,j}| |u[i]| \ge |\lambda - a_{i,i}| |u[i]|$, and then after dividing by |u[i]|, the desired inequality $\sum_{j \ne i} |a_{i,j}| \ge |\lambda - a_{i,i}|$ follows.

How can λ be on a circle (the border of a disc)?

How can λ be on a circle (the border of a disc)? Then in the previous proof, we must have equality in every estimation.

How can λ be on a circle (the border of a disc)? Then in the previous proof, we must have equality in every estimation. Hence, for all *j* where $a_{i,j}$ and u[j] are both nonzero, the product $a_{i,j}u[j]$ is r_jz for some complex number *z* and positive real r_i , and |u[j]| = |u[i]|.

How can λ be on a circle (the border of a disc)? Then in the previous proof, we must have equality in every estimation. Hence, for all *j* where $a_{i,j}$ and u[j] are both nonzero, the product $a_{i,j}u[j]$ is r_jz for some complex number *z* and positive real r_j , and |u[j]| = |u[i]|.

Theorem

If a connected region of the union of discs is the union of k discs, then it contains exactly k eigenvalues with multiplicity (cf. the example).

Let D be the diagonal matrix obtained by changing all non-diagonal entries of A to 0.

- Let D be the diagonal matrix obtained by changing all non-diagonal entries of A to 0.
- Define M(t) = (1 t)D + tA; informally, we are moving on a straight line from *D* to *A* with constant speed.

- Let D be the diagonal matrix obtained by changing all non-diagonal entries of A to 0.
- Define M(t) = (1 t)D + tA; informally, we are moving on a straight line from *D* to *A* with constant speed. Indeed, M(0) = D and M(1) = A.

- Let D be the diagonal matrix obtained by changing all non-diagonal entries of A to 0.
- Define M(t) = (1 t)D + tA; informally, we are moving on a straight line from *D* to *A* with constant speed. Indeed, M(0) = D and M(1) = A.
- Let $(\lambda_1(t), \ldots, \lambda_n(t))$ be the labelled spectrum:

- Let D be the diagonal matrix obtained by changing all non-diagonal entries of A to 0.
- Define M(t) = (1 t)D + tA; informally, we are moving on a straight line from *D* to *A* with constant speed. Indeed, M(0) = D and M(1) = A.
- Let $(\lambda_1(t), \ldots, \lambda_n(t))$ be the labelled spectrum: at time t = 0, this is the *n*-tuple of diagonal entries $(a_{1,1}, \ldots, a_{n,n})$ of *A* (or equivalently, of *D*).

- Let D be the diagonal matrix obtained by changing all non-diagonal entries of A to 0.
- Define M(t) = (1 t)D + tA; informally, we are moving on a straight line from *D* to *A* with constant speed. Indeed, M(0) = D and M(1) = A.
- Let $(\lambda_1(t), \ldots, \lambda_n(t))$ be the labelled spectrum: at time t = 0, this is the *n*-tuple of diagonal entries $(a_{1,1}, \ldots, a_{n,n})$ of *A* (or equivalently, of *D*). Clearly, the labelled spectrum is a continuous function $\mathbb{C} \to \mathbb{C}^n$.

Proof

The Gershgorin discs of M(t) have the same centers for all t, and the radii are linear functions starting from 0 and ending up at the radii of the Gershgorin circles of A.

Let *K* be the union of *k* discs that is disjoint from the union of the other n - k discs *K*'.

Let *K* be the union of *k* discs that is disjoint from the union of the other n - k discs *K'*. Then the corresponding *k* discs for M(t) are contained in *K*, and the remaining n - k discs are contained in *K'*.

Let *K* be the union of *k* discs that is disjoint from the union of the other n - k discs *K'*. Then the corresponding *k* discs for M(t) are contained in *K*, and the remaining n - k discs are contained in *K'*. For t = 0, these discs contain exactly *k* eigenvalues.

Let *K* be the union of *k* discs that is disjoint from the union of the other n - k discs *K'*. Then the corresponding *k* discs for M(t) are contained in *K*, and the remaining n - k discs are contained in *K'*. For t = 0, these discs contain exactly *k* eigenvalues.

By the Gershgorin circle theorem, the spectrum of M(t) is contained in $K \cup K'$ for all *t*.

Let *K* be the union of *k* discs that is disjoint from the union of the other n - k discs *K'*. Then the corresponding *k* discs for M(t) are contained in *K*, and the remaining n - k discs are contained in *K'*. For t = 0, these discs contain exactly *k* eigenvalues.

By the Gershgorin circle theorem, the spectrum of M(t) is contained in $K \cup K'$ for all t. As K and K' have a positive distance and the labelled spectrum is a continuous function, there are exactly k entries of the labelled spectrum of M(t) in K for all t, and then in particular for t = 1.

Exercises

Markov chains

Pongrácz

1. Show that the inverse of a stochastic matrix *A* is non-negative iff it is stochastic. Prove that if this is the case, then *A* is a permutation matrix.

- 1. Show that the inverse of a stochastic matrix *A* is non-negative iff it is stochastic. Prove that if this is the case, then *A* is a permutation matrix.
- 2. Generalize the previous exercise to non-negative (invertible) matrices.

- 1. Show that the inverse of a stochastic matrix *A* is non-negative iff it is stochastic. Prove that if this is the case, then *A* is a permutation matrix.
- 2. Generalize the previous exercise to non-negative (invertible) matrices.
- 3. By using the Jordan normal form of the matrix $P = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, find the formula for the elements of P^n .

- 1. Show that the inverse of a stochastic matrix *A* is non-negative iff it is stochastic. Prove that if this is the case, then *A* is a permutation matrix.
- 2. Generalize the previous exercise to non-negative (invertible) matrices.
- 3. By using the Jordan normal form of the matrix $P = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, find the formula for the elements of P^n .
- 4. Observe that the series of vectors $\underline{u}_n = (F_n, F_{n+1})^*$, where F_n is the *n*-th Fibonacci number, satisfies the relations $\underline{u}_0 = (0,1)^*$ and $\underline{u}_n = P \underline{u}_{n-1}$, with *P* as in the previous exercise. Deduce that $\underline{u}_n = P^n \underline{u}_0$. By the previous exercise, find the exact formula for F_n .

Exercises

- Exercises
 - 1. Show that the inverse of a stochastic matrix *A* is non-negative iff it is stochastic. Prove that if this is the case, then *A* is a permutation matrix.
 - 2. Generalize the previous exercise to non-negative (invertible) matrices.
 - 3. By using the Jordan normal form of the matrix $P = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, find the formula for the elements of P^n .
 - 4. Observe that the series of vectors $\underline{u}_n = (F_n, F_{n+1})^*$, where F_n is the *n*-th Fibonacci number, satisfies the relations $\underline{u}_0 = (0,1)^*$ and $\underline{u}_n = P \underline{u}_{n-1}$, with *P* as in the previous exercise. Deduce that $\underline{u}_n = P^n \underline{u}_0$. By the previous exercise, find the exact formula for F_n .
 - 5. Show that the union of the Gershgorin discs coincide with the spectrum iff the matrix is diagonal.