Markov Chains and Their Applications

Dr. András Pongrácz

Week 3, University of Debrecen

Graphs, adjacency matrices, spectra

Markov chains

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.

If |V| = n is finite, we can enumerate the vertices $V = \{v_1, ..., v_n\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.

If |V| = n is finite, we can enumerate the vertices $V = \{v_1, ..., v_n\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:

$$m{A}[i,j] = egin{cases} 1 & ext{if } (m{v}_i,m{v}_j) \in m{E}, \ 0 & ext{otherwise}. \end{cases}$$

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.

If |V| = n is finite, we can enumerate the vertices $V = \{v_1, ..., v_n\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:

$$A[i, j] = \begin{cases} 1 \text{ if } (v_i, v_j) \in E, \\ 0 \text{ otherwise.} \end{cases}$$
 This matrix A is the adjacency matrix.

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.

If |V| = n is finite, we can enumerate the vertices $V = \{v_1, ..., v_n\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:

$$A[i, j] = \begin{cases} 1 \text{ if } (v_i, v_j) \in E, \\ 0 \text{ otherwise.} \end{cases}$$
 This matrix A is the adjacency matrix.

Weighted digraphs: $w : E \to \mathbb{R}$.

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.

If |V| = n is finite, we can enumerate the vertices $V = \{v_1, ..., v_n\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:

$$A[i, j] = \begin{cases} 1 \text{ if } (v_i, v_j) \in E, \\ 0 \text{ otherwise.} \end{cases}$$
 This matrix A is the adjacency matrix.

Weighted digraphs: $w : E \to \mathbb{R}$. Then we put $A[i, j] = w(v_i, v_j)$ if $(v_i, v_j) \in E$.

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.

If |V| = n is finite, we can enumerate the vertices $V = \{v_1, ..., v_n\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:

$$A[i, j] = \begin{cases} 1 \text{ if } (v_i, v_j) \in E, \\ 0 \text{ otherwise.} \end{cases}$$
 This matrix A is the adjacency matrix.

Weighted digraphs: $w : E \to \mathbb{R}$. Then we put $A[i, j] = w(v_i, v_j)$ if $(v_i, v_j) \in E$.

If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

The spectrum is real.

- If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.
- The spectrum is real. Eigenvalues λ and eigenvectors \underline{u} can be thought of as follows:

If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

The spectrum is real. Eigenvalues λ and eigenvectors \underline{u} can be thought of as follows: by writing the entries of \underline{u} on the corresponding vertices, the sum of the entries on all neighbors of a vertex v is the entry on v multiplied by λ .

$$L = D - A$$
,

Markov chains

Pongrácz

L = D - A, where *D* is the diagonal matrix with the degrees of vertices in the main diagonal and *A* is the adjacency matrix of a simple undirected graph.

L = D - A, where D is the diagonal matrix with the degrees of vertices in the main diagonal and A is the adjacency matrix of a simple undirected graph.

Clearly, 0 is an eigenvalue (cf. the exercises).

L = D - A, where D is the diagonal matrix with the degrees of vertices in the main diagonal and A is the adjacency matrix of a simple undirected graph.

Clearly, 0 is an eigenvalue (cf. the exercises).

Kirchhoff's theorem

If *G* is a connected graph with nonzero eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ of the Laplacian *L*, then $\frac{1}{n}\lambda_1 \cdots \lambda_{n-1}$ is the number of spanning trees in *G*.

L = D - A, where D is the diagonal matrix with the degrees of vertices in the main diagonal and A is the adjacency matrix of a simple undirected graph.

Clearly, 0 is an eigenvalue (cf. the exercises).

Kirchhoff's theorem

If *G* is a connected graph with nonzero eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ of the Laplacian *L*, then $\frac{1}{n}\lambda_1 \cdots \lambda_{n-1}$ is the number of spanning trees in *G*.

Corollary: Cayley's theorem follows immediately, i.e., the number of spanning trees of the complete graph K_n is n^{n-2} (cf. the exercises).

Cauchy interlace theorem

Markov chains

Pongrácz

Given $f(x), g(x) \in \mathbb{R}[x]$, all roots are real, deg $f = n = \deg g + 1$. Roots of f are $\alpha_1 \leq \cdots \leq \alpha_n$, roots of g are $\beta_1 \leq \cdots \leq \beta_{n-1}$. Then f and g interlace if

 $\alpha_1 \leq \beta_1 \leq \alpha_2 \leq \beta_2 \leq \cdots \leq \alpha_n.$

Given $f(x), g(x) \in \mathbb{R}[x]$, all roots are real, deg $f = n = \deg g + 1$. Roots of f are $\alpha_1 \leq \cdots \leq \alpha_n$, roots of g are $\beta_1 \leq \cdots \leq \beta_{n-1}$. Then f and g interlace if

 $\alpha_1 \leq \beta_1 \leq \alpha_2 \leq \beta_2 \leq \cdots \leq \alpha_n.$

Theorem (Rahman and Schmeisser)

The polynomials $f(x), g(x) \in \mathbb{R}[x]$ with all real roots and deg $f = n = \deg g + 1$ interlace if and only if for all $\lambda \in \mathbb{R}$ the polynomial $f + \lambda g$ has all real roots.

Given $A \in \mathbb{R}^{n \times n}$ and $1 \le i \le n$, the *i*-th principal submatrix of A is the square matrix obtained by deleting the *i*-th row and *i*-th column of A.

Given $A \in \mathbb{R}^{n \times n}$ and $1 \le i \le n$, the *i*-th principal submatrix of A is the square matrix obtained by deleting the *i*-th row and *i*-th column of A.

If P_i is the projection $\mathbb{R}^n \to \mathbb{R}^n$ defined by the annulation of the *i*-th coordinate, then the *i*-th minor is the restriction of $P_i^*AP_i$ to the image of P_i .

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then the characteristic polynomials of *A* and that of any principal submatrix *A_i* of *A* interlace.

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then the characteristic polynomials of *A* and that of any principal submatrix *A_i* of *A* interlace.

Proof (By Steve Fisk).

```
Without loss of generality, i = n.
```


Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then the characteristic polynomials of A and that of any principal submatrix A_i of A interlace.

Proof (By Steve Fisk).

Without loss of generality, i = n. Let $A = \begin{pmatrix} A_n & \underline{c} \\ \underline{c}^* & d \end{pmatrix}$ and let f, g be the characteristic polynomial of A and A_n , respectively.

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then the characteristic polynomials of A and that of any principal submatrix A_i of A interlace.

Proof (By Steve Fisk).

Without loss of generality, i = n. Let $A = \begin{pmatrix} A_n & \underline{c} \\ \underline{c}^* & d \end{pmatrix}$ and let f, g be the characteristic polynomial of A and A_n , respectively. Given a $\lambda \in \mathbb{R}$, all roots of the following polynomial are real:

$$\det \begin{pmatrix} A_n - xI_{n-1} & \underline{c} \\ \underline{c}^* & d + \lambda - x \end{pmatrix} = \\ \det \begin{pmatrix} A_n - xI_{n-1} & \underline{c} \\ \underline{c}^* & d - x \end{pmatrix} + \det \begin{pmatrix} A_n - xI_{n-1} & \underline{c} \\ \underline{0}^* & \lambda \end{pmatrix} = f(x) + \lambda g(x).$$

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix.

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix. Let P be a projection $\mathbb{C}^n \to \mathbb{C}^n$, and let B be the restriction of P^*AP to the image of P.

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix. Let P be a projection $\mathbb{C}^n \to \mathbb{C}^n$, and let B be the restriction of P^*AP to the image of P. Let f, g be the characteristic polynomial of A and B, respectively.

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix. Let *P* be a projection $\mathbb{C}^n \to \mathbb{C}^n$, and let *B* be the restriction of P^*AP to the image of *P*. Let *f*, *g* be the characteristic polynomial of *A* and *B*, respectively.

Denote the roots of *f* by $\alpha_1 \leq \cdots \leq \alpha_n$, the roots of *g* by $\beta_1 \leq \cdots \leq \beta_m$; $m \leq n$.

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix. Let *P* be a projection $\mathbb{C}^n \to \mathbb{C}^n$, and let *B* be the restriction of P^*AP to the image of *P*. Let *f*, *g* be the characteristic polynomial of *A* and *B*, respectively.

Denote the roots of *f* by $\alpha_1 \leq \cdots \leq \alpha_n$, the roots of *g* by $\beta_1 \leq \cdots \leq \beta_m$; $m \leq n$.

Then for all $1 \le j \le m$ we have $\alpha_j \le b_j \le \alpha_{n-m+j}$.

Let *A* be the adjacency matrix of a graph *G* with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Then the chromatic number of *G* is $\chi(G) \ge 1 - \frac{\lambda_1}{\lambda_n}$.

Let *A* be the adjacency matrix of a graph *G* with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Then the chromatic number of *G* is $\chi(G) \ge 1 - \frac{\lambda_1}{\lambda_n}$.

Next class: $\lambda_n < 0 < \lambda_1$ and $|\lambda_n| \le \lambda_1$.

Let *A* be the adjacency matrix of a graph *G* with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Then the chromatic number of *G* is $\chi(G) \ge 1 - \frac{\lambda_1}{\lambda_n}$.

Next class: $\lambda_n < 0 < \lambda_1$ and $|\lambda_n| \le \lambda_1$.

Corollary: The following are equivalent for a graph G.

- 1. G is bipartite
- 2. $\lambda_1 = -\lambda_n$
- 3. The spectrum of the adjacency matrix *A* of *G* is symmetrical to the origin.

Let *A* be the adjacency matrix of a graph *G* with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Then the chromatic number of *G* is $\chi(G) \ge 1 - \frac{\lambda_1}{\lambda_n}$.

Next class: $\lambda_n < 0 < \lambda_1$ and $|\lambda_n| \le \lambda_1$.

Corollary: The following are equivalent for a graph G.

- 1. G is bipartite
- 2. $\lambda_1 = -\lambda_n$
- 3. The spectrum of the adjacency matrix *A* of *G* is symmetrical to the origin.

Proof (sketch): $(1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (3) \Rightarrow (2)$ is easy by using Hoffman's theorem. See more details on the next class.

Markov chains

Pongrácz

Let *G* be a graph with eigenvalues of the adjacency matrix $\lambda_1, \ldots, \lambda_n$.

1. Show that $(\lambda_1^3 + \cdots + \lambda_n^3)/6$ is the number of triangles in *G*.

- 1. Show that $(\lambda_1^3 + \cdots + \lambda_n^3)/6$ is the number of triangles in *G*.
- 2. Prove that all the $|\lambda_i|$ are at most the maximum degree in *G*.

- 1. Show that $(\lambda_1^3 + \cdots + \lambda_n^3)/6$ is the number of triangles in *G*.
- 2. Prove that all the $|\lambda_i|$ are at most the maximum degree in *G*.
- 3. If there is equality in Problem 2, then *G* is regular.

- 1. Show that $(\lambda_1^3 + \cdots + \lambda_n^3)/6$ is the number of triangles in *G*.
- 2. Prove that all the $|\lambda_i|$ are at most the maximum degree in *G*.
- 3. If there is equality in Problem 2, then *G* is regular.
- 4. Prove that the Laplacian *L* of *G* is singular.

- 1. Show that $(\lambda_1^3 + \cdots + \lambda_n^3)/6$ is the number of triangles in *G*.
- 2. Prove that all the $|\lambda_i|$ are at most the maximum degree in *G*.
- 3. If there is equality in Problem 2, then *G* is regular.
- 4. Prove that the Laplacian *L* of *G* is singular.
- 5. Show that dim ker(L) is the number of connected components in G. In particular, 0 is an eigenvalue with multiplicity 1 if G is connected. What is the trace of the Laplacian?

- 1. Show that $(\lambda_1^3 + \cdots + \lambda_n^3)/6$ is the number of triangles in *G*.
- 2. Prove that all the $|\lambda_i|$ are at most the maximum degree in *G*.
- 3. If there is equality in Problem 2, then *G* is regular.
- 4. Prove that the Laplacian *L* of *G* is singular.
- 5. Show that dim ker(L) is the number of connected components in G. In particular, 0 is an eigenvalue with multiplicity 1 if G is connected. What is the trace of the Laplacian?
- 6. Prove Cayley's theorem on the number of labelled trees on *n* vertices.