Markov Chains and Their Applications

Dr. András Pongrácz

Week 3, University of Debrecen

Graphs, adjacency matrices, spectra

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.
If $|V|=n$ is finite, we can enumerate the vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.
If $|V|=n$ is finite, we can enumerate the vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:
$A[i, j]=\left\{\begin{array}{l}1 \text { if }\left(v_{i}, v_{j}\right) \in E, \\ 0 \text { otherwise } .\end{array}\right.$

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.
If $|V|=n$ is finite, we can enumerate the vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:
$A[i, j]=\left\{\begin{array}{l}1 \text { if }\left(v_{i}, v_{j}\right) \in E, \\ 0 \text { otherwise } .\end{array}\right.$
This matrix A is the adjacency matrix.

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.
If $|V|=n$ is finite, we can enumerate the vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:
$A[i, j]=\left\{\begin{array}{l}1 \text { if }\left(v_{i}, v_{j}\right) \in E, \\ 0 \text { otherwise. }\end{array} \quad\right.$ This matrix A is the adjacency matrix.
Weighted digraphs: $w: E \rightarrow \mathbb{R}$.

Digraphs

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.
If $|V|=n$ is finite, we can enumerate the vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:
$A[i, j]=\left\{\begin{array}{l}1 \text { if }\left(v_{i}, v_{j}\right) \in E, \\ 0 \text { otherwise. }\end{array} \quad\right.$ This matrix A is the adjacency matrix.
Weighted digraphs: $w: E \rightarrow \mathbb{R}$. Then we put $A[i, j]=w\left(v_{i}, v_{j}\right)$ if $\left(v_{i}, v_{j}\right) \in E$.

A digraph is a set with a binary relation: $(V, E), E \subseteq V \times V$.
If $|V|=n$ is finite, we can enumerate the vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and assign an $A \in \mathbb{R}^{n \times n}$ matrix to the digraph that perfectly describes it:
$A[i, j]=\left\{\begin{array}{l}1 \text { if }\left(v_{i}, v_{j}\right) \in E, \\ 0 \text { otherwise. }\end{array} \quad\right.$ This matrix A is the adjacency matrix.
Weighted digraphs: $w: E \rightarrow \mathbb{R}$. Then we put $A[i, j]=w\left(v_{i}, v_{j}\right)$ if $\left(v_{i}, v_{j}\right) \in E$.
If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

Simple undirected graphs

If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

Simple undirected graphs

If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

The spectrum is real.

Simple undirected graphs

If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

The spectrum is real. Eigenvalues λ and eigenvectors \underline{u} can be thought of as follows:

If (V, E) is a simple graph, i.e., no loops and E is symmetric, then A is a symmetric real square matrix with an all-zero main diagonal.

The spectrum is real. Eigenvalues λ and eigenvectors \underline{u} can be thought of as follows: by writing the entries of \underline{u} on the corresponding vertices, the sum of the entries on all neighbors of a vertex v is the entry on v multiplied by λ.

Laplacian

$L=D-A$,
$L=D-A$, where D is the diagonal matrix with the degrees of vertices in the main diagonal and A is the adjacency matrix of a simple undirected graph.
$L=D-A$, where D is the diagonal matrix with the degrees of vertices in the main diagonal and A is the adjacency matrix of a simple undirected graph.

Clearly, 0 is an eigenvalue (cf. the exercises).

Laplacian

$L=D-A$, where D is the diagonal matrix with the degrees of vertices in the main diagonal and A is the adjacency matrix of a simple undirected graph.
Clearly, 0 is an eigenvalue (cf. the exercises).

Kirchhoff's theorem

If G is a connected graph with nonzero eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$ of the Laplacian L, then $\frac{1}{n} \lambda_{1} \cdots \lambda_{n-1}$ is the number of spanning trees in G.
$L=D-A$, where D is the diagonal matrix with the degrees of vertices in the main diagonal and A is the adjacency matrix of a simple undirected graph.
Clearly, 0 is an eigenvalue (cf. the exercises).

Kirchhoff's theorem

If G is a connected graph with nonzero eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$ of the Laplacian L, then $\frac{1}{n} \lambda_{1} \cdots \lambda_{n-1}$ is the number of spanning trees in G.

Corollary: Cayley's theorem follows immediately, i.e., the number of spanning trees of the complete graph K_{n} is n^{n-2} (cf. the exercises).

Cauchy interlace theorem

Interlacing polynomials

Definition

Given $f(x), g(x) \in \mathbb{R}[x]$, all roots are real, $\operatorname{deg} f=n=\operatorname{deg} g+1$. Roots of f are $\alpha_{1} \leq \cdots \leq \alpha_{n}$, roots of g are $\beta_{1} \leq \cdots \leq \beta_{n-1}$. Then f and g interlace if

$$
\alpha_{1} \leq \beta_{1} \leq \alpha_{2} \leq \beta_{2} \leq \cdots \leq \alpha_{n} .
$$

Interlacing polynomials

Definition

Given $f(x), g(x) \in \mathbb{R}[x]$, all roots are real, $\operatorname{deg} f=n=\operatorname{deg} g+1$. Roots of f are $\alpha_{1} \leq \cdots \leq \alpha_{n}$, roots of g are $\beta_{1} \leq \cdots \leq \beta_{n-1}$. Then f and g interlace if

$$
\alpha_{1} \leq \beta_{1} \leq \alpha_{2} \leq \beta_{2} \leq \cdots \leq \alpha_{n}
$$

Theorem (Rahman and Schmeisser)

The polynomials $f(x), g(x) \in \mathbb{R}[x]$ with all real roots and $\operatorname{deg} f=n=\operatorname{deg} g+1$ interlace if and only if for all $\lambda \in \mathbb{R}$ the polynomial $f+\lambda g$ has all real roots.

Definition

Given $A \in \mathbb{R}^{n \times n}$ and $1 \leq i \leq n$, the i-th principal submatrix of A is the square matrix obtained by deleting the i-th row and i-th column of A.

Definition

Given $A \in \mathbb{R}^{n \times n}$ and $1 \leq i \leq n$, the i-th principal submatrix of A is the square matrix obtained by deleting the i-th row and i-th column of A.

If P_{i} is the projection $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by the annulation of the i-th coordinate, then the i-th minor is the restriction of $P_{i}^{*} A P_{i}$ to the image of P_{i}.

Cauchy interlace theorem

Theorem (Cauchy)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then the characteristic polynomials of A and that of any principal submatrix A_{i} of A interlace.

Cauchy interlace theorem

Theorem (Cauchy)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then the characteristic polynomials of A and that of any principal submatrix A_{i} of A interlace.

Proof (By Steve Fisk).
Without loss of generality, $i=n$.

Cauchy interlace theorem

Theorem (Cauchy)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then the characteristic polynomials of A and that of any principal submatrix A_{i} of A interlace.

Proof (By Steve Fisk).

Without loss of generality, $i=n$. Let $A=\left(\begin{array}{ll}A_{n} & \underline{c} \\ \underline{c}^{*} & d\end{array}\right)$ and let f, g be the characteristic polynomial of A and A_{n}, respectively.

Cauchy interlace theorem

Theorem (Cauchy)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then the characteristic polynomials of A and that of any principal submatrix A_{i} of A interlace.

Proof (By Steve Fisk).

Without loss of generality, $i=n$. Let $A=\left(\begin{array}{ll}A_{n} & \underline{c} \\ \underline{c}^{*} & d\end{array}\right)$ and let f, g be the characteristic polynomial of A and A_{n}, respectively. Given a $\lambda \in \mathbb{R}$, all roots of the following polynomial are real:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
A_{n}-x I_{n-1} & \underline{c} \\
\underline{c}^{*} & d+\lambda-x
\end{array}\right)= \\
& \quad \operatorname{det}\left(\begin{array}{cc}
A_{n}-x I_{n-1} & \underline{c} \\
\underline{c}^{*} & d-x
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
A_{n}-x I_{n-1} & \underline{c} \\
\underline{0}^{*} & \lambda
\end{array}\right)=f(x)+\lambda g(x) .
\end{aligned}
$$

Generalization

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix.

Generalization

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix. Let P be a projection $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, and let B be the restriction of $P^{*} A P$ to the image of P.

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix. Let P be a projection $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, and let B be the restriction of $P^{*} A P$ to the image of P. Let f, g be the characteristic polynomial of A and B, respectively.

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix. Let P be a projection $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, and let B be the restriction of $P^{*} A P$ to the image of P. Let f, g be the characteristic polynomial of A and B, respectively.
Denote the roots of f by $\alpha_{1} \leq \cdots \leq \alpha_{n}$, the roots of g by $\beta_{1} \leq \cdots \leq \beta_{m}$; $m \leq n$.

Let $A \in \mathbb{C}^{n \times n}$ be a self-adjoint matrix. Let P be a projection $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, and let B be the restriction of $P^{*} A P$ to the image of P. Let f, g be the characteristic polynomial of A and B, respectively.
Denote the roots of f by $\alpha_{1} \leq \cdots \leq \alpha_{n}$, the roots of g by $\beta_{1} \leq \cdots \leq \beta_{m}$; $m \leq n$.

Then for all $1 \leq j \leq m$ we have $\alpha_{j} \leq b_{j} \leq \alpha_{n-m+j}$.

Chromatic number

Hoffman's theorem

Let A be the adjacency matrix of a graph G with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then the chromatic number of G is $\chi(G) \geq 1-\frac{\lambda_{1}}{\lambda_{n}}$.

Chromatic number

Hoffman's theorem

Let A be the adjacency matrix of a graph G with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then the chromatic number of G is $\chi(G) \geq 1-\frac{\lambda_{1}}{\lambda_{n}}$.

Next class: $\lambda_{n}<0<\lambda_{1}$ and $\left|\lambda_{n}\right| \leq \lambda_{1}$.

Chromatic number

Hoffman's theorem

Let A be the adjacency matrix of a graph G with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then the chromatic number of G is $\chi(G) \geq 1-\frac{\lambda_{1}}{\lambda_{n}}$.

Next class: $\lambda_{n}<0<\lambda_{1}$ and $\left|\lambda_{n}\right| \leq \lambda_{1}$.
Corollary: The following are equivalent for a graph G.

1. G is bipartite
2. $\lambda_{1}=-\lambda_{n}$
3. The spectrum of the adjacency matrix A of G is symmetrical to the origin.

Hoffman's theorem

Let A be the adjacency matrix of a graph G with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then the chromatic number of G is $\chi(G) \geq 1-\frac{\lambda_{1}}{\lambda_{n}}$.

Next class: $\lambda_{n}<0<\lambda_{1}$ and $\left|\lambda_{n}\right| \leq \lambda_{1}$.
Corollary: The following are equivalent for a graph G.

1. G is bipartite
2. $\lambda_{1}=-\lambda_{n}$
3. The spectrum of the adjacency matrix A of G is symmetrical to the origin.
Proof (sketch): $(1) \Rightarrow(2) \Rightarrow(1) \Rightarrow(3) \Rightarrow(2)$ is easy by using Hoffman's theorem. See more details on the next class.

Exercises

Exercises

Let G be a graph with eigenvalues of the adjacency matrix $\lambda_{1}, \ldots, \lambda_{n}$.

Exercises

Let G be a graph with eigenvalues of the adjacency matrix $\lambda_{1}, \ldots, \lambda_{n}$. 1. Show that $\left(\lambda_{1}^{3}+\cdots+\lambda_{n}^{3}\right) / 6$ is the number of triangles in G.

Exercises

Let G be a graph with eigenvalues of the adjacency matrix $\lambda_{1}, \ldots, \lambda_{n}$.

1. Show that $\left(\lambda_{1}^{3}+\cdots+\lambda_{n}^{3}\right) / 6$ is the number of triangles in G.
2. Prove that all the $\left|\lambda_{i}\right|$ are at most the maximum degree in G.

Let G be a graph with eigenvalues of the adjacency matrix $\lambda_{1}, \ldots, \lambda_{n}$.

1. Show that $\left(\lambda_{1}^{3}+\cdots+\lambda_{n}^{3}\right) / 6$ is the number of triangles in G.
2. Prove that all the $\left|\lambda_{i}\right|$ are at most the maximum degree in G.
3. If there is equality in Problem 2, then G is regular.

Let G be a graph with eigenvalues of the adjacency matrix $\lambda_{1}, \ldots, \lambda_{n}$.

1. Show that $\left(\lambda_{1}^{3}+\cdots+\lambda_{n}^{3}\right) / 6$ is the number of triangles in G.
2. Prove that all the $\left|\lambda_{i}\right|$ are at most the maximum degree in G.
3. If there is equality in Problem 2, then G is regular.
4. Prove that the Laplacian L of G is singular.

Let G be a graph with eigenvalues of the adjacency matrix $\lambda_{1}, \ldots, \lambda_{n}$.

1. Show that $\left(\lambda_{1}^{3}+\cdots+\lambda_{n}^{3}\right) / 6$ is the number of triangles in G.
2. Prove that all the $\left|\lambda_{i}\right|$ are at most the maximum degree in G.
3. If there is equality in Problem 2, then G is regular.
4. Prove that the Laplacian L of G is singular.
5. Show that dim $\operatorname{ker}(L)$ is the number of connected components in G. In particular, 0 is an eigenvalue with multiplicity 1 if G is connected. What is the trace of the Laplacian?

Let G be a graph with eigenvalues of the adjacency matrix $\lambda_{1}, \ldots, \lambda_{n}$.

1. Show that $\left(\lambda_{1}^{3}+\cdots+\lambda_{n}^{3}\right) / 6$ is the number of triangles in G.
2. Prove that all the $\left|\lambda_{i}\right|$ are at most the maximum degree in G.
3. If there is equality in Problem 2, then G is regular.
4. Prove that the Laplacian L of G is singular.
5. Show that $\operatorname{dim} \operatorname{ker}(L)$ is the number of connected components in G. In particular, 0 is an eigenvalue with multiplicity 1 if G is connected. What is the trace of the Laplacian?
6. Prove Cayley's theorem on the number of labelled trees on n vertices.
