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Digraphs

A digraph is a set with a binary relation: (V ,E), E ⊆ V × V .

If |V | = n is finite, we can enumerate the vertices V = {v1, . . . , vn} and
assign an A ∈ Rn×n matrix to the digraph that perfectly describes it :

A[i , j] =

{
1 if (vi , vj) ∈ E ,
0 otherwise.

This matrix A is the adjacency matrix.

Weighted digraphs: w : E → R. Then we put A[i , j] = w(vi , vj) if
(vi , vj) ∈ E .

If (V ,E) is a simple graph, i.e., no loops and E is symmetric, then A is
a symmetric real square matrix with an all-zero main diagonal.
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Simple undirected graphs

If (V ,E) is a simple graph, i.e., no loops and E is symmetric, then A is
a symmetric real square matrix with an all-zero main diagonal.

The spectrum is real. Eigenvalues λ and eigenvectors u can be
thought of as follows: by writing the entries of u on the corresponding
vertices, the sum of the entries on all neighbors of a vertex v is the
entry on v multiplied by λ.
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Laplacian

L = D − A,

where D is the diagonal matrix with the degrees of vertices
in the main diagonal and A is the adjacency matrix of a simple
undirected graph.

Clearly, 0 is an eigenvalue (cf. the exercises).

Kirchhoff’s theorem
If G is a connected graph with nonzero eigenvalues λ1, . . . , λn−1 of the
Laplacian L, then 1

nλ1 · · ·λn−1 is the number of spanning trees in G.

Corollary: Cayley’s theorem follows immediately, i.e., the number of
spanning trees of the complete graph Kn is nn−2 (cf. the exercises).
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Cauchy interlace theorem
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Interlacing polynomials

Definition
Given f (x),g(x) ∈ R[x ], all roots are real, deg f = n = deg g + 1. Roots
of f are α1 ≤ · · · ≤ αn, roots of g are β1 ≤ · · · ≤ βn−1. Then f and g
interlace if

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αn.

Theorem (Rahman and Schmeisser)

The polynomials f (x),g(x) ∈ R[x ] with all real roots and
deg f = n = deg g + 1 interlace if and only if for all λ ∈ R the polynomial
f + λg has all real roots.
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Principal submatrix

Definition
Given A ∈ Rn×n and 1 ≤ i ≤ n, the i-th principal submatrix of A is the
square matrix obtained by deleting the i-th row and i-th column of A.

If Pi is the projection Rn → Rn defined by the annulation of the i-th
coordinate, then the i-th minor is the restriction of P∗

i APi to the image
of Pi .
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Cauchy interlace theorem

Theorem (Cauchy)

Let A ∈ Rn×n be a symmetric matrix. Then the characteristic
polynomials of A and that of any principal submatrix Ai of A interlace.

Proof (By Steve Fisk).

Without loss of generality, i = n. Let A =

(
An c
c∗ d

)
and let f ,g be the

characteristic polynomial of A and An, respectively. Given a λ ∈ R, all
roots of the following polynomial are real :

det

(
An − xIn−1 c

c∗ d + λ− x

)
=

det

(
An − xIn−1 c

c∗ d − x

)
+ det

(
An − xIn−1 c

0∗ λ

)
= f (x) + λg(x).
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Generalization

Let A ∈ Cn×n be a self-adjoint matrix.

Let P be a projection Cn → Cn,
and let B be the restriction of P∗AP to the image of P. Let f ,g be the
characteristic polynomial of A and B, respectively.

Denote the roots of f by α1 ≤ · · · ≤ αn, the roots of g by β1 ≤ · · · ≤ βm ;
m ≤ n.

Then for all 1 ≤ j ≤ m we have αj ≤ bj ≤ αn−m+j .
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Chromatic number

Hoffman’s theorem
Let A be the adjacency matrix of a graph G with eigenvalues
λ1 ≥ · · · ≥ λn. Then the chromatic number of G is χ(G) ≥ 1− λ1

λn
.

Next class: λn < 0 < λ1 and |λn| ≤ λ1.

Corollary: The following are equivalent for a graph G.
1. G is bipartite
2. λ1 = −λn

3. The spectrum of the adjacency matrix A of G is symmetrical to the
origin.

Proof (sketch): (1)⇒ (2)⇒ (1)⇒ (3)⇒ (2) is easy by using
Hoffman’s theorem. See more details on the next class.
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Exercises
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Exercises

Let G be a graph with eigenvalues of the adjacency matrix λ1, . . . , λn.

1. Show that (λ3
1 + · · ·+ λ3

n)/6 is the number of triangles in G.
2. Prove that all the |λi | are at most the maximum degree in G.
3. If there is equality in Problem 2, then G is regular.
4. Prove that the Laplacian L of G is singular.
5. Show that dim ker(L) is the number of connected components in

G. In particular, 0 is an eigenvalue with multiplicity 1 if G is
connected. What is the trace of the Laplacian?

6. Prove Cayley’s theorem on the number of labelled trees on n
vertices.
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