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Linear algebra



Matrix multiplication

Input: n x n matrices A, B
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Input: n x n matrices A, B
Find AB

By definition: n® multiplications (and some additions, less importantly).
STRASSEN
For n = 2, possible with 7 multiplications rather than 8.

If 2k=1 < n < 2K, dynamically build up in k iterative steps. E.g., if
n = 4, then apply the 2 x 2 Strassen method to the 2 x 2 blocks.



A1 A 2) (31 1 By 2)
A= (A1 Ah2) g (B B
(AZJ Az Boy Bop

the entries can be square matrices of equal size.
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At A 2) (31 1 B 2)
A= ' ’ B= ’ '
(A2,1 Az Boy Bop
the entries can be square matrices of equal size. Then

AB — X1+ Xg — X5+ X7 X3+ Xs
a Xo + Xy Xi—Xo+ Xs+ Xe
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Air A 2) <B1 1 B 2>
A= ' ’ B= ’ ’
(A2,1 Az Bo1 B
the entries can be square matrices of equal size. Then

Ag— (KT Xa— X5+ X7 X3+ Xs
Xo+ Xy X1 —Xo+ X3+ X

Xi = (A11 + A22)(B11 + Bo); Xo = (Az1+ A22)Bs 1
X3 =A11(Bi2—Bop); X4 =Ar2(Bz1—Bip)

Xs = (A1,1 +A12)Bo2; Xo = (A21 — A1,1)(Big + By 2)
X7 = (A12 — A22)(B21 + Bz2).




Strassen, Coppersmith—Winograd, etc

Runtime (measured in the number of multiplications) is
e(nlog2 7) ~ @(n2'8°7).
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Runtime (measured in the number of multiplications) is
e(nlog2 7) ~ @(I’I2‘807).

Currently best improvement: ~ ©(n?373)

(Coppersmith—Winograd, Stothers, Williams, Le Gall) Similar ideas,
more complex expressions.



24 4

I
0
N

£
3

Runtime (measured in the number of multiplications) is
e(nlog2 7) ~ @(I’I2‘807).

Currently best improvement: ~ ©(n?373)

(Coppersmith—Winograd, Stothers, Williams, Le Gall) Similar ideas,
more complex expressions.

Conjecture: best algorithm has runtime ~ ©(n?).
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Runtime (measured in the number of multiplications) is
e(nlog2 7) ~ @(I’I2‘807).

Currently best improvement: ~ ©(n?373)

(Coppersmith—Winograd, Stothers, Williams, Le Gall) Similar ideas,
more complex expressions.

Conjecture: best algorithm has runtime ~ ©(n?). The lower bound 2n?
is trivial (we have to read the input),
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Runtime (measured in the number of multiplications) is
e(nlog2 7) ~ @(I’I2‘807).

Currently best improvement: ~ ©(n?373)

(Coppersmith—Winograd, Stothers, Williams, Le Gall) Similar ideas,
more complex expressions.

Conjecture: best algorithm has runtime ~ ©(n?). The lower bound 2n?
is trivial (we have to read the input), necessity of Cr? multiplications
with large C can be proven by advanced algebraic methods.
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Definition
Let K be a field, and let X + ap_1x™ 2 +--- + ayx + ag = f(x) € K[x]
be an arbitrary degree m monic polynomial, m € N.
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Definition

Let K be a field, and let x™ + ap_1x™2 +--- + a;x + ag = f(x) € K[x]
be an arbitrary degree m monic polynomial, m € N. Then the following
matrix in Mpn(K) is called the companion matrix of f(x):
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Companion matrix ]

Theorem

Let m € N and let A € M»(K) be the companion matrix of the monic
polynomial f(x) € K|[x].
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Theorem

Let m € N and let A € M»(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x).
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Theorem

Let m € N and let A € M»(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x). (We have to consider the monic
version of the characteristic polynomial, that is, the usual notion should
be multiplied by (—1)".)

v
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Theorem

Let m € N and let A € M»(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x). (We have to consider the monic
version of the characteristic polynomial, that is, the usual notion should
be multiplied by (—1)".)

v

Sketch of proof:
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Theorem

Let m € N and let A € M»(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x). (We have to consider the monic
version of the characteristic polynomial, that is, the usual notion should
be multiplied by (—1)".)

v

Sketch of proof: Ae; = ep, Aes = e3,...,Aey_1 = en, and
Aen=—am_1em—---—ajex — apey.
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Theorem

Let m € N and let A € M»(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x). (We have to consider the monic
version of the characteristic polynomial, that is, the usual notion should
be multiplied by (—1)".)

v

Sketch of proof: Ae; = ep, Aes = e3,...,Aey_1 = en, and
Aen = —am_1em— -+ — a16> — apéy.
Thus f(A)e; =0,
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Theorem

Let m € N and let A € M»(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x). (We have to consider the monic
version of the characteristic polynomial, that is, the usual notion should
be multiplied by (—1)".)

v

Sketch of proof: Ae; = ep, Aes = e3,...,Aey_1 = en, and
Aen=—am_1em—---—ajex — apey.
Thus f(A)e; = 0, and f(A)e; = 0 follows for all /,
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Theorem

Let m € N and let A € Mn(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x). (We have to consider the monic
version of the characteristic polynomial, that is, the usual notion should
be multiplied by (—1)".)

v

Sketch of proof: Ae; = ep, Aes = e3,...,Aey_1 = en, and
Aen=—am_1em—---—ajex — apey.
Thus f(A)e; = 0, and f(A)e; = 0 follows for all i, implying f(A) = 0.
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Theorem

Let m € N and let A € Mn(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x). (We have to consider the monic
version of the characteristic polynomial, that is, the usual notion should
be multiplied by (—1)™.)

v

Sketch of proof: Ae; = ep, Aes = e3,...,Aey_1 = en, and

Aen = —am_1em— -+ — a16> — apéy.

Thus f(A)e; = 0, and f(A)e; = 0 follows for all i, implying f(A) = 0.
The above equations show that f(x) = ma(x),
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Theorem

Let m € N and let A € M»(K) be the companion matrix of the monic
polynomial f(x) € K[x]. Then the characteristic polynomial and
minimal polynomial of A are both f(x). (We have to consider the monic
version of the characteristic polynomial, that is, the usual notion should
be multiplied by (—1)™.)

Sketch of proof: Ae; = ep, Aes = e3,...,Aey_1 = en, and

Aen = —am_1em— -+ — a16> — apéy.

Thus f(A)e; = 0, and f(A)e; = 0 follows for all i, implying f(A) = 0.
The above equations show that f(x) = ma(x), and then f(x) = xa(x)
by a simple calculation. (Fill in the gaps: cf. the exercises.)
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Companion matrix

The companion matrix of 0 is the one-by-one zero matrix.



The companion matrix of 0 is the one-by-one zero matrix.

The companion matrix is invertible iff ag # 0, and then its inverse is



The companion matrix of 0 is the one-by-one zero matrix.
The companion matrix is invertible iff ag # 0, and then its inverse is

~a,'ay 10 -~ 0 00
~a,'aa 01 .- 0 00

-8, anm2 0 0 0 10
~ay'am-1 0 0 0 0 1
-a,' 00 0 00



Given a matrix A € K", Then there is a unique sequence Ay, ..., Ak
of companion matrices corresponding to some polynomials
fi(x),..., fi(x) € K[x] such that



Given a matrix A € K™, Then there is a unique sequence Aq, ..., Ak
of companion matrices corresponding to some polynomials
fi(x),..., fi(x) € K[x] such that

fi(X)|(x)] - - - |fc(x) in the ring of polynomials K{[x], and

A is similar to the block matrix F with blocks Aq, ..., Ak,
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Given a matrix A € K™, Then there is a unique sequence Aq, ..., Ak
of companion matrices corresponding to some polynomials
fi(x),..., fi(x) € K[x] such that
fi(X)|(x)] - - - |fc(x) in the ring of polynomials K{[x], and
A is similar to the block matrix F with blocks Aq, ..., A, that is,
there is a regular matrix S over K such that F = SAS—".
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Given a matrix A € K" Then there is a unique sequence A, ..., Ak
of companion matrices corresponding to some polynomials
fi(x),..., fk(x) € K[x] such that
fi(X)|(x)] - - - |fc(x) in the ring of polynomials K{[x], and
A is similar to the block matrix F with blocks Aq, ..., A, that is,
there is a regular matrix S over K such that F = SAS™".

This unique block matrix is the Frobenius normal form (or rational
canonical form) of A.
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Given a matrix A € K" Then there is a unique sequence A, ..., Ak
of companion matrices corresponding to some polynomials
fi(x),..., fk(x) € K[x] such that
fi(X)|(x)] - - - |fc(x) in the ring of polynomials K{[x], and
Ais similar to the block matrix F with blocks A, ..., Ak, that is,
there is a regular matrix S over K such that F = SAS™".
This unique block matrix is the Frobenius normal form (or rational

canonical form) of A.
Note that F € K™";
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Given a matrix A € K" Then there is a unique sequence A, ..., Ak
of companion matrices corresponding to some polynomials
fi(x),..., fk(x) € K[x] such that
fi(X)|(x)] - - - |fc(x) in the ring of polynomials K{[x], and
Ais similar to the block matrix F with blocks A, ..., Ak, that is,
there is a regular matrix S over K such that F = SAS™".
This unique block matrix is the Frobenius normal form (or rational
canonical form) of A.
Note that F € K™*"; unlike the Jordan normal form, whose entries are
in general outside F, in the algebraic closure of F.
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Given a matrix A € K" Then there is a unique sequence A, ..., Ak
of companion matrices corresponding to some polynomials
fi(x),..., fk(x) € K[x] such that
fi(X)|(x)] - - - |fc(x) in the ring of polynomials K{[x], and
Ais similar to the block matrix F with blocks A, ..., Ak, that is,
there is a regular matrix S over K such that F = SAS™".

This unique block matrix is the Frobenius normal form (or rational
canonical form) of A.

Note that F € K™"; unlike the Jordan normal form, whose entries are
in general outside F, in the algebraic closure of F.

Remark: the 0 polynomial is allowed in the series fi(x), ..., fx(x) any
number of times (at the end).

Pongracz



Frobenius normal form =

The polynomials fi(x),. .., fx(x) can be read from A (in linear time).



The polynomials fi(x),. .., fx(x) can be read from A (in linear time).

Then xa(x) = fi(x) - - - f(x), ma(x) = fx(x) (yielding a proof to the
Cayley-Hamilton theorem).



The polynomials f;(x), ..., fx(x) can be read from A (in linear time).

Then xa(x) = fi(x) - - - f(x), ma(x) = fx(x) (yielding a proof to the
Cayley-Hamilton theorem). In particular, det(A) = £1(0) - - - f(0) is the
product of elements in the upper right corner of the blocks.
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The polynomials f;(x), ..., fx(x) can be read from A (in linear time).

Then xa(x) = fi(x) - - - f(x), ma(x) = fx(x) (yielding a proof to the
Cayley-Hamilton theorem). In particular, det(A) = £1(0) - - - f(0) is the
product of elements in the upper right corner of the blocks.

The rank o(A) of Ais the sum of the rank of the blocks.
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The polynomials fi(x),. .., fx(x) can be read from A (in linear time).

Then xa(x) = fi(x) - - - f(x), ma(x) = fx(x) (yielding a proof to the
Cayley-Hamilton theorem). In particular, det(A) = £1(0) - - - f(0) is the
product of elements in the upper right corner of the blocks.

The rank o(A) of Ais the sum of the rank of the blocks. A block has full
rank iff ag # 0 in the corresponding polynomials.
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The polynomials fi(x),. .., fx(x) can be read from A (in linear time).

Then xa(x) = fi(x) - - - f(x), ma(x) = fx(x) (yielding a proof to the
Cayley-Hamilton theorem). In particular, det(A) = £1(0) - - - f(0) is the
product of elements in the upper right corner of the blocks.

The rank o(A) of Ais the sum of the rank of the blocks. A block has full

rank iff ag # 0 in the corresponding polynomials. Otherwise it has
co-rank 1.
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The polynomials f(x),. .., fx(x) can be read from A (in linear time).

Then xa(x) = fi(x) - - - f(x), ma(x) = fx(x) (yielding a proof to the
Cayley-Hamilton theorem). In particular, det(A) = £1(0) - - - f(0) is the
product of elements in the upper right corner of the blocks.

The rank o(A) of Ais the sum of the rank of the blocks. A block has full
rank iff ag # 0 in the corresponding polynomials. Otherwise it has
co-rank 1. That is, o(A) = n— ¢, where ¢ is the number of blocks with a
0 in the upper right corner (easy to determine in linear time).
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The polynomials f(x),. .., fx(x) can be read from A (in linear time).
Then xa(x) = fi(x) - - - f(x), ma(x) = fx(x) (yielding a proof to the

Cayley-Hamilton theorem). In particular, det(A) = £1(0) - - - f(0) is the
product of elements in the upper right corner of the blocks.

The rank o(A) of Ais the sum of the rank of the blocks. A block has full
rank iff ag # 0 in the corresponding polynomials. Otherwise it has
co-rank 1. That is, o(A) = n— ¢, where ¢ is the number of blocks with a
0 in the upper right corner (easy to determine in linear time).

The inverse matrix A~ = (SFS~")~" = SF~1S~" can be determined
by replacing each block of F by its inverse; see an earlier slide.
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There is a randomized algorithm using matrix multiplication that
computes F together with the change of basis matrix S (with high
probability).
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There is a randomized algorithm using matrix multiplication that
computes F together with the change of basis matrix S (with high
probability).

The expected runtime is the same as that of matrix multiplication,
yielding ~ ©(n?373) at the moment.
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There is a randomized algorithm using matrix multiplication that
computes F together with the change of basis matrix S (with high
probability).

The expected runtime is the same as that of matrix multiplication,
yielding ~ ©(n?373) at the moment.

This yields a randomized algorithm of runtime ~ ©(n?373) to all basic
problems in linear algebra; see the previous slide.
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There is a randomized algorithm using matrix multiplication that
computes F together with the change of basis matrix S (with high
probability).

The expected runtime is the same as that of matrix multiplication,
yielding ~ ©(n?373) at the moment.

This yields a randomized algorithm of runtime ~ ©(n?373) to all basic
problems in linear algebra; see the previous slide.

The algorithm is not yet fully de-randomized.
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Exercises



1. Multiply the matrices A = 3 N 6) via the

2
1 7)3”0'5:(9 8

Strassen algorithm. Observe that it only requires 7 multiplications.



1. Multiply the matrices A = (? _73> and B = (_95 g) via the
Strassen algorithm. Observe that it only requires 7 multiplications.

2. Show that the companion matrix A of a polynomial f(x) has
minimal and characteristic polynomial ma(x) = xa(x) = f(x).
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Multiply the matrices A = 3 - 6) via the

2
1 7)a”dB:<9 8

Strassen algorithm. Observe that it only requires 7 multiplications.

Show that the companion matrix A of a polynomial f(x) has
minimal and characteristic polynomial ma(x) = xa(x) = f(x).
Using the Frobenius normal form and companion matrices,
construct a matrix A with minimal polynomial

ma(x) = x?(x? + 1)(x — 2) and characteristic polynomial

xa(x) = x3(x? + 1)?(x — 2). In particular, observe that the minimal
polynomial of a matrix is not necessarily irreducible.
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Multiply the matrices A = 3 - 6> via the

2
1 7)a”dB:<9 8

Strassen algorithm. Observe that it only requires 7 multiplications.

Show that the companion matrix A of a polynomial f(x) has
minimal and characteristic polynomial ma(x) = xa(x) = f(x).
Using the Frobenius normal form and companion matrices,
construct a matrix A with minimal polynomial

ma(x) = x?(x? + 1)(x — 2) and characteristic polynomial

xa(x) = x3(x? + 1)?(x — 2). In particular, observe that the minimal
polynomial of a matrix is not necessarily irreducible.

Compute the inverse of the matrix constructed in problem 3. Show
that the computation runs in linear time for a Frobenius normal
form.
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Multiply the matrices A = 3 - 6> via the

2
1 7)a”dB:<9 8

Strassen algorithm. Observe that it only requires 7 multiplications.

Show that the companion matrix A of a polynomial f(x) has
minimal and characteristic polynomial ma(x) = xa(x) = f(x).
Using the Frobenius normal form and companion matrices,
construct a matrix A with minimal polynomial

ma(x) = x?(x? + 1)(x — 2) and characteristic polynomial

xa(x) = x3(x? + 1)?(x — 2). In particular, observe that the minimal
polynomial of a matrix is not necessarily irreducible.

Compute the inverse of the matrix constructed in problem 3. Show
that the computation runs in linear time for a Frobenius normal
form.

Compute the cube of the matrix constructed in problem 3.

Pongracz



Multiply the matrices A = 3 - 6> via the

2
1 7)a”dB:<9 8

Strassen algorithm. Observe that it only requires 7 multiplications.
Show that the companion matrix A of a polynomial f(x) has
minimal and characteristic polynomial ma(x) = xa(x) = f(x).
Using the Frobenius normal form and companion matrices,
construct a matrix A with minimal polynomial

ma(x) = x2(x? + 1)(x — 2) and characteristic polynomial

xa(x) = x3(x? +1)?(x — 2). In particular, observe that the minimal
polynomial of a matrix is not necessarily irreducible.

Compute the inverse of the matrix constructed in problem 3. Show
that the computation runs in linear time for a Frobenius normal
form.

Compute the cube of the matrix constructed in problem 3.
. What is dim ker(A) for the matrix A constructed in problem 37?
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