Markov Chains and Their Applications

Dr. András Pongrácz

Week 2, University of Debrecen

Linear algebra

Matrix multiplication

Input: $n \times n$ matrices A, B

Matrix multiplication

Input: $n \times n$ matrices A, B
Find $A B$

Matrix multiplication

Input: $n \times n$ matrices A, B
Find $A B$
By definition: n^{3} multiplications (and some additions, less importantly).

Input: $n \times n$ matrices A, B
Find $A B$
By definition: n^{3} multiplications (and some additions, less importantly).

Strassen

For $n=2$, possible with 7 multiplications rather than 8 .

Input: $n \times n$ matrices A, B
Find $A B$
By definition: n^{3} multiplications (and some additions, less importantly).
Strassen
For $n=2$, possible with 7 multiplications rather than 8 .
If $2^{k-1} \leq n \leq 2^{k}$, dynamically build up in k iterative steps.

Input: $n \times n$ matrices A, B
Find $A B$
By definition: n^{3} multiplications (and some additions, less importantly).

Strassen

For $n=2$, possible with 7 multiplications rather than 8 .
If $2^{k-1} \leq n \leq 2^{k}$, dynamically build up in k iterative steps. E.g., if
$n=4$, then apply the 2×2 Strassen method to the 2×2 blocks.

Strassen, $n=2$

$A=\left(\begin{array}{ll}A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2}\end{array}\right) \quad B=\left(\begin{array}{ll}B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2}\end{array}\right)$
the entries can be square matrices of equal size.

Strassen, $n=2$

$A=\left(\begin{array}{ll}A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2}\end{array}\right) \quad B=\left(\begin{array}{ll}B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2}\end{array}\right)$
the entries can be square matrices of equal size. Then

$$
A B=\left(\begin{array}{cc}
x_{1}+x_{4}-x_{5}+x_{7} & x_{3}+x_{5} \\
x_{2}+x_{4} & x_{1}-x_{2}+x_{3}+x_{6}
\end{array}\right)
$$

Strassen, $n=2$

$$
A=\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \quad B=\left(\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right)
$$

the entries can be square matrices of equal size. Then

$$
A B=\left(\begin{array}{cc}
X_{1}+X_{4}-X_{5}+X_{7} & X_{3}+X_{5} \\
X_{2}+X_{4} & X_{1}-X_{2}+X_{3}+X_{6}
\end{array}\right)
$$

$$
\begin{aligned}
& X_{1}=\left(A_{1,1}+A_{2,2}\right)\left(B_{1,1}+B_{2,2}\right) ; \quad X_{2}=\left(A_{2,1}+A_{2,2}\right) B_{1,1} \\
& X_{3}=A_{1,1}\left(B_{1,2}-B_{2,2}\right) ; \quad X_{4}=A_{2,2}\left(B_{2,1}-B_{1,1}\right) \\
& X_{5}=\left(A_{1,1}+A_{1,2}\right) B_{2,2} ; \quad X_{6}=\left(A_{2,1}-A_{1,1}\right)\left(B_{1,1}+B_{1,2}\right) \\
& X_{7}=\left(A_{1,2}-A_{2,2}\right)\left(B_{2,1}+B_{2,2}\right) .
\end{aligned}
$$

Strassen, Coppersmith-Winograd, etc

Runtime (measured in the number of multiplications) is $\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.807}\right)$.

Strassen, Coppersmith-Winograd, etc

Runtime (measured in the number of multiplications) is $\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.807}\right)$.
Currently best improvement: $\approx \Theta\left(n^{2.373}\right)$

Strassen, Coppersmith-Winograd, etc

Runtime (measured in the number of multiplications) is $\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.807}\right)$.
Currently best improvement: $\approx \Theta\left(n^{2.373}\right)$
(Coppersmith-Winograd, Stothers, Williams, Le Gall) Similar ideas, more complex expressions.

Runtime (measured in the number of multiplications) is $\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.807}\right)$.
Currently best improvement: $\approx \Theta\left(n^{2.373}\right)$
(Coppersmith-Winograd, Stothers, Williams, Le Gall) Similar ideas, more complex expressions.
Conjecture : best algorithm has runtime $\approx \Theta\left(n^{2}\right)$.

Runtime (measured in the number of multiplications) is $\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.807}\right)$.
Currently best improvement: $\approx \Theta\left(n^{2.373}\right)$
(Coppersmith-Winograd, Stothers, Williams, Le Gall) Similar ideas, more complex expressions.
Conjecture: best algorithm has runtime $\approx \Theta\left(n^{2}\right)$. The lower bound $2 n^{2}$ is trivial (we have to read the input),

Runtime (measured in the number of multiplications) is $\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.807}\right)$.
Currently best improvement: $\approx \Theta\left(n^{2.373}\right)$
(Coppersmith-Winograd, Stothers, Williams, Le Gall) Similar ideas, more complex expressions.
Conjecture: best algorithm has runtime $\approx \Theta\left(n^{2}\right)$. The lower bound $2 n^{2}$ is trivial (we have to read the input), necessity of Cn^{2} multiplications with large C can be proven by advanced algebraic methods.

Companion matrix

Definition

Let K be a field, and let $x^{m}+a_{m-1} x^{m-2}+\cdots+a_{1} x+a_{0}=f(x) \in K[x]$ be an arbitrary degree m monic polynomial, $m \in \mathbb{N}$.

Companion matrix

Definition

Let K be a field, and let $x^{m}+a_{m-1} x^{m-2}+\cdots+a_{1} x+a_{0}=f(x) \in K[x]$ be an arbitrary degree m monic polynomial, $m \in \mathbb{N}$. Then the following matrix in $M_{m}(K)$ is called the companion matrix of $f(x)$:
$\left(\begin{array}{ccccccc}0 & 0 & 0 & \cdots & 0 & 0 & -a_{0} \\ 1 & 0 & 0 & \cdots & 0 & 0 & -a_{1} \\ 0 & 1 & 0 & \cdots & 0 & 0 & -a_{2} \\ \vdots & & \ddots & & & & \\ \vdots & & & \ddots & & & \\ 0 & 0 & 0 & \cdots & 1 & 0 & -a_{m-2} \\ 0 & 0 & 0 & \cdots & 0 & 1 & -a_{m-1}\end{array}\right)$

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$.

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$.

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$. (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^{m}$.)

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$. (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^{m}$.)

Sketch of proof:

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$. (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^{m}$.)

Sketch of proof: $A e_{1}=e_{2}, A e_{2}=e_{3}, \ldots, A e_{m-1}=e_{m}$, and $A e_{m}=-a_{m-1} e_{m}-\cdots-a_{1} e_{2}-a_{0} e_{1}$.

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$. (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^{m}$.)

Sketch of proof: $A e_{1}=e_{2}, A e_{2}=e_{3}, \ldots, A e_{m-1}=e_{m}$, and $A e_{m}=-a_{m-1} e_{m}-\cdots-a_{1} e_{2}-a_{0} e_{1}$.
Thus $f(A) e_{1}=0$,

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$. (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^{m}$.)

Sketch of proof: $A e_{1}=e_{2}, A e_{2}=e_{3}, \ldots, A e_{m-1}=e_{m}$, and $A e_{m}=-a_{m-1} e_{m}-\cdots-a_{1} e_{2}-a_{0} e_{1}$.
Thus $f(A) e_{1}=0$, and $f(A) e_{i}=0$ follows for all i,

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$. (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^{m}$.)

Sketch of proof: $A e_{1}=e_{2}, A e_{2}=e_{3}, \ldots, A e_{m-1}=e_{m}$, and $A e_{m}=-a_{m-1} e_{m}-\cdots-a_{1} e_{2}-a_{0} e_{1}$.
Thus $f(A) e_{1}=0$, and $f(A) e_{i}=0$ follows for all i, implying $f(A)=0$.

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$. (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^{m}$.)

Sketch of proof: $A e_{1}=e_{2}, A e_{2}=e_{3}, \ldots, A e_{m-1}=e_{m}$, and $A e_{m}=-a_{m-1} e_{m}-\cdots-a_{1} e_{2}-a_{0} e_{1}$.
Thus $f(A) e_{1}=0$, and $f(A) e_{i}=0$ follows for all i, implying $f(A)=0$.
The above equations show that $f(x)=m_{A}(x)$,

Companion matrix

Theorem

Let $m \in \mathbb{N}$ and let $A \in M_{m}(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both $f(x)$. (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^{m}$.)

Sketch of proof: $A e_{1}=e_{2}, A e_{2}=e_{3}, \ldots, A e_{m-1}=e_{m}$, and $A e_{m}=-a_{m-1} e_{m}-\cdots-a_{1} e_{2}-a_{0} e_{1}$.
Thus $f(A) e_{1}=0$, and $f(A) e_{i}=0$ follows for all i, implying $f(A)=0$.
The above equations show that $f(x)=m_{A}(x)$, and then $f(x)=\chi_{A}(x)$ by a simple calculation. (Fill in the gaps: cf. the exercises.)

Companion matrix

The companion matrix of 0 is the one-by-one zero matrix.

The companion matrix of 0 is the one-by-one zero matrix.
The companion matrix is invertible iff $a_{0} \neq 0$, and then its inverse is

Companion matrix

The companion matrix of 0 is the one-by-one zero matrix.
The companion matrix is invertible iff $a_{0} \neq 0$, and then its inverse is

$$
\left(\begin{array}{ccccccc}
-a_{0}^{-1} a_{1} & 1 & 0 & \cdots & 0 & 0 & 0 \\
-a_{0}^{-1} a_{2} & 0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & & & \ddots & & & \\
\vdots & & & & \ddots & & \\
-a_{0}^{-1} a_{m-2} & 0 & 0 & \cdots & 0 & 1 & 0 \\
-a_{0}^{-1} a_{m-1} & 0 & 0 & \cdots & 0 & 0 & 1 \\
-a_{0}^{-1} & 0 & 0 & \cdots & 0 & 0 & 0
\end{array}\right)
$$

Frobenius normal form

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_{1}, \ldots, A_{k} of companion matrices corresponding to some polynomials $f_{1}(x), \ldots, f_{k}(x) \in K[x]$ such that

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_{1}, \ldots, A_{k} of companion matrices corresponding to some polynomials $f_{1}(x), \ldots, f_{k}(x) \in K[x]$ such that
$f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{k}(x)$ in the ring of polynomials $K[x]$, and
A is similar to the block matrix F with blocks A_{1}, \ldots, A_{k},

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_{1}, \ldots, A_{k} of companion matrices corresponding to some polynomials $f_{1}(x), \ldots, f_{k}(x) \in K[x]$ such that
$f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{k}(x)$ in the ring of polynomials $K[x]$, and
A is similar to the block matrix F with blocks A_{1}, \ldots, A_{k}, that is, there is a regular matrix S over K such that $F=S A S^{-1}$.

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_{1}, \ldots, A_{k} of companion matrices corresponding to some polynomials $f_{1}(x), \ldots, f_{k}(x) \in K[x]$ such that
$f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{k}(x)$ in the ring of polynomials $K[x]$, and
A is similar to the block matrix F with blocks A_{1}, \ldots, A_{k}, that is, there is a regular matrix S over K such that $F=S A S^{-1}$.
This unique block matrix is the Frobenius normal form (or rational canonical form) of A.

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_{1}, \ldots, A_{k} of companion matrices corresponding to some polynomials $f_{1}(x), \ldots, f_{k}(x) \in K[x]$ such that
$f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{k}(x)$ in the ring of polynomials $K[x]$, and
A is similar to the block matrix F with blocks A_{1}, \ldots, A_{k}, that is, there is a regular matrix S over K such that $F=S A S^{-1}$.
This unique block matrix is the Frobenius normal form (or rational canonical form) of A. Note that $F \in K^{n \times n}$;

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_{1}, \ldots, A_{k} of companion matrices corresponding to some polynomials $f_{1}(x), \ldots, f_{k}(x) \in K[x]$ such that
$f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{k}(x)$ in the ring of polynomials $K[x]$, and
A is similar to the block matrix F with blocks A_{1}, \ldots, A_{k}, that is, there is a regular matrix S over K such that $F=S A S^{-1}$.
This unique block matrix is the Frobenius normal form (or rational canonical form) of A.
Note that $F \in K^{n \times n}$; unlike the Jordan normal form, whose entries are in general outside F, in the algebraic closure of F.

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_{1}, \ldots, A_{k} of companion matrices corresponding to some polynomials $f_{1}(x), \ldots, f_{k}(x) \in K[x]$ such that
$f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{k}(x)$ in the ring of polynomials $K[x]$, and
A is similar to the block matrix F with blocks A_{1}, \ldots, A_{k}, that is, there is a regular matrix S over K such that $F=S A S^{-1}$.
This unique block matrix is the Frobenius normal form (or rational canonical form) of A.
Note that $F \in K^{n \times n}$; unlike the Jordan normal form, whose entries are in general outside F, in the algebraic closure of F. Remark: the 0 polynomial is allowed in the series $f_{1}(x), \ldots, f_{k}(x)$ any number of times (at the end).

Frobenius normal form

The polynomials $f_{1}(x), \ldots, f_{k}(x)$ can be read from A (in linear time).

The polynomials $f_{1}(x), \ldots, f_{k}(x)$ can be read from A (in linear time). Then $\chi_{A}(x)=f_{1}(x) \cdots f_{k}(x), m_{A}(x)=f_{k}(x)$ (yielding a proof to the Cayley-Hamilton theorem).

The polynomials $f_{1}(x), \ldots, f_{k}(x)$ can be read from A (in linear time).
Then $\chi_{A}(x)=f_{1}(x) \cdots f_{k}(x), m_{A}(x)=f_{k}(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\operatorname{det}(A)=f_{1}(0) \cdots f_{k}(0)$ is the product of elements in the upper right corner of the blocks.

The polynomials $f_{1}(x), \ldots, f_{k}(x)$ can be read from A (in linear time).
Then $\chi_{A}(x)=f_{1}(x) \cdots f_{k}(x), m_{A}(x)=f_{k}(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\operatorname{det}(A)=f_{1}(0) \cdots f_{k}(0)$ is the product of elements in the upper right corner of the blocks.
The rank $\varrho(A)$ of A is the sum of the rank of the blocks.

The polynomials $f_{1}(x), \ldots, f_{k}(x)$ can be read from A (in linear time).
Then $\chi_{A}(x)=f_{1}(x) \cdots f_{k}(x), m_{A}(x)=f_{k}(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\operatorname{det}(A)=f_{1}(0) \cdots f_{k}(0)$ is the product of elements in the upper right corner of the blocks.
The rank $\varrho(A)$ of A is the sum of the rank of the blocks. A block has full rank iff $a_{0} \neq 0$ in the corresponding polynomials.

The polynomials $f_{1}(x), \ldots, f_{k}(x)$ can be read from A (in linear time).
Then $\chi_{A}(x)=f_{1}(x) \cdots f_{k}(x), m_{A}(x)=f_{k}(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\operatorname{det}(A)=f_{1}(0) \cdots f_{k}(0)$ is the product of elements in the upper right corner of the blocks.
The rank $\varrho(A)$ of A is the sum of the rank of the blocks. A block has full rank iff $a_{0} \neq 0$ in the corresponding polynomials. Otherwise it has co-rank 1.

The polynomials $f_{1}(x), \ldots, f_{k}(x)$ can be read from A (in linear time).
Then $\chi_{A}(x)=f_{1}(x) \cdots f_{k}(x), m_{A}(x)=f_{k}(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\operatorname{det}(A)=f_{1}(0) \cdots f_{k}(0)$ is the product of elements in the upper right corner of the blocks.
The rank $\varrho(A)$ of A is the sum of the rank of the blocks. A block has full rank iff $a_{0} \neq 0$ in the corresponding polynomials. Otherwise it has co-rank 1. That is, $\varrho(A)=n-\ell$, where ℓ is the number of blocks with a 0 in the upper right corner (easy to determine in linear time).

The polynomials $f_{1}(x), \ldots, f_{k}(x)$ can be read from A (in linear time).
Then $\chi_{A}(x)=f_{1}(x) \cdots f_{k}(x), m_{A}(x)=f_{k}(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\operatorname{det}(A)=f_{1}(0) \cdots f_{k}(0)$ is the product of elements in the upper right corner of the blocks.
The rank $\varrho(A)$ of A is the sum of the rank of the blocks. A block has full rank iff $a_{0} \neq 0$ in the corresponding polynomials. Otherwise it has co-rank 1. That is, $\varrho(A)=n-\ell$, where ℓ is the number of blocks with a 0 in the upper right corner (easy to determine in linear time).
The inverse matrix $A^{-1}=\left(S F S^{-1}\right)^{-1}=S F^{-1} S^{-1}$ can be determined by replacing each block of F by its inverse; see an earlier slide.

Basic problems revisited

There is a randomized algorithm using matrix multiplication that computes F together with the change of basis matrix S (with high probability).

There is a randomized algorithm using matrix multiplication that computes F together with the change of basis matrix S (with high probability).

The expected runtime is the same as that of matrix multiplication, yielding $\approx \Theta\left(n^{2.373}\right)$ at the moment.

There is a randomized algorithm using matrix multiplication that computes F together with the change of basis matrix S (with high probability).

The expected runtime is the same as that of matrix multiplication, yielding $\approx \Theta\left(n^{2.373}\right)$ at the moment.
This yields a randomized algorithm of runtime $\approx \Theta\left(n^{2.373}\right)$ to all basic problems in linear algebra; see the previous slide.

There is a randomized algorithm using matrix multiplication that computes F together with the change of basis matrix S (with high probability).

The expected runtime is the same as that of matrix multiplication, yielding $\approx \Theta\left(n^{2.373}\right)$ at the moment.
This yields a randomized algorithm of runtime $\approx \Theta\left(n^{2.373}\right)$ to all basic problems in linear algebra; see the previous slide.

The algorithm is not yet fully de-randomized.

Exercises

Exercises

1. Multiply the matrices $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}-5 & 6 \\ 9 & 8\end{array}\right)$ via the Strassen algorithm. Observe that it only requires 7 multiplications.

Exercises

1. Multiply the matrices $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}-5 & 6 \\ 9 & 8\end{array}\right)$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
2. Show that the companion matrix A of a polynomial $f(x)$ has minimal and characteristic polynomial $m_{A}(x)=\chi_{A}(x)=f(x)$.
3. Multiply the matrices $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}-5 & 6 \\ 9 & 8\end{array}\right)$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
4. Show that the companion matrix A of a polynomial $f(x)$ has minimal and characteristic polynomial $m_{A}(x)=\chi_{A}(x)=f(x)$.
5. Using the Frobenius normal form and companion matrices, construct a matrix A with minimal polynomial $m_{A}(x)=x^{2}\left(x^{2}+1\right)(x-2)$ and characteristic polynomial $\chi_{A}(x)=x^{3}\left(x^{2}+1\right)^{2}(x-2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.
6. Multiply the matrices $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}-5 & 6 \\ 9 & 8\end{array}\right)$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
7. Show that the companion matrix A of a polynomial $f(x)$ has minimal and characteristic polynomial $m_{A}(x)=\chi_{A}(x)=f(x)$.
8. Using the Frobenius normal form and companion matrices, construct a matrix A with minimal polynomial $m_{A}(x)=x^{2}\left(x^{2}+1\right)(x-2)$ and characteristic polynomial $\chi_{A}(x)=x^{3}\left(x^{2}+1\right)^{2}(x-2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.
9. Compute the inverse of the matrix constructed in problem 3. Show that the computation runs in linear time for a Frobenius normal form.
10. Multiply the matrices $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}-5 & 6 \\ 9 & 8\end{array}\right)$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
11. Show that the companion matrix A of a polynomial $f(x)$ has minimal and characteristic polynomial $m_{A}(x)=\chi_{A}(x)=f(x)$.
12. Using the Frobenius normal form and companion matrices, construct a matrix A with minimal polynomial $m_{A}(x)=x^{2}\left(x^{2}+1\right)(x-2)$ and characteristic polynomial $\chi_{A}(x)=x^{3}\left(x^{2}+1\right)^{2}(x-2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.
13. Compute the inverse of the matrix constructed in problem 3. Show that the computation runs in linear time for a Frobenius normal form.
14. Compute the cube of the matrix constructed in problem 3.
15. Multiply the matrices $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}-5 & 6 \\ 9 & 8\end{array}\right)$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
16. Show that the companion matrix A of a polynomial $f(x)$ has minimal and characteristic polynomial $m_{A}(x)=\chi_{A}(x)=f(x)$.
17. Using the Frobenius normal form and companion matrices, construct a matrix A with minimal polynomial $m_{A}(x)=x^{2}\left(x^{2}+1\right)(x-2)$ and characteristic polynomial $\chi_{A}(x)=x^{3}\left(x^{2}+1\right)^{2}(x-2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.
18. Compute the inverse of the matrix constructed in problem 3. Show that the computation runs in linear time for a Frobenius normal form.
19. Compute the cube of the matrix constructed in problem 3.
20. What is $\operatorname{dim} \operatorname{ker}(A)$ for the matrix A constructed in problem 3 ?
