Markov Chains and Their Applications

Dr. András Pongrácz

Week 2, University of Debrecen

Linear algebra

Markov chains

Pongrácz

Input: $n \times n$ matrices A, B

By definition: n^3 multiplications (and some additions, less importantly).

By definition: n^3 multiplications (and some additions, less importantly).

STRASSEN

For n = 2, possible with 7 multiplications rather than 8.

By definition: n^3 multiplications (and some additions, less importantly).

STRASSEN

For n = 2, possible with 7 multiplications rather than 8. If $2^{k-1} \le n \le 2^k$, dynamically build up in *k* iterative steps.

By definition: n^3 multiplications (and some additions, less importantly).

STRASSEN

For n = 2, possible with 7 multiplications rather than 8. If $2^{k-1} \le n \le 2^k$, dynamically build up in *k* iterative steps. E.g., if n = 4, then apply the 2 × 2 Strassen method to the 2 × 2 blocks.

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \qquad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$$

the entries can be square matrices of equal size.

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \qquad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$$

the entries can be square matrices of equal size. Then

$$AB = \begin{pmatrix} X_1 + X_4 - X_5 + X_7 & X_3 + X_5 \\ X_2 + X_4 & X_1 - X_2 + X_3 + X_6 \end{pmatrix}$$

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$$

the entries can be square matrices of equal size. Then

$$AB = \begin{pmatrix} X_1 + X_4 - X_5 + X_7 & X_3 + X_5 \\ X_2 + X_4 & X_1 - X_2 + X_3 + X_6 \end{pmatrix}$$

$$\begin{array}{ll} X_1 = (A_{1,1} + A_{2,2})(B_{1,1} + B_{2,2}); & X_2 = (A_{2,1} + A_{2,2})B_{1,1} \\ X_3 = A_{1,1}(B_{1,2} - B_{2,2}); & X_4 = A_{2,2}(B_{2,1} - B_{1,1}) \\ X_5 = (A_{1,1} + A_{1,2})B_{2,2}; & X_6 = (A_{2,1} - A_{1,1})(B_{1,1} + B_{1,2}) \\ X_7 = (A_{1,2} - A_{2,2})(B_{2,1} + B_{2,2}). \end{array}$$

Runtime (measured in the number of multiplications) is $\Theta(n^{\log_2 7}) \approx \Theta(n^{2.807}).$

Runtime (measured in the number of multiplications) is $\Theta(n^{\log_2 7}) \approx \Theta(n^{2.807}).$

Currently best improvement: $\approx \Theta(n^{2.373})$

- Runtime (measured in the number of multiplications) is $\Theta(n^{\log_2 7}) \approx \Theta(n^{2.807}).$
- Currently best improvement: $\approx \Theta(n^{2.373})$
- (Coppersmith–Winograd, Stothers, Williams, Le Gall) Similar ideas, more complex expressions.

- Runtime (measured in the number of multiplications) is $\Theta(n^{\log_2 7}) \approx \Theta(n^{2.807}).$
- Currently best improvement: $\approx \Theta(n^{2.373})$
- (Coppersmith–Winograd, Stothers, Williams, Le Gall) Similar ideas, more complex expressions.
- Conjecture : best algorithm has runtime $\approx \Theta(n^2)$.

- Runtime (measured in the number of multiplications) is $\Theta(n^{\log_2 7}) \approx \Theta(n^{2.807}).$
- Currently best improvement: $\approx \Theta(n^{2.373})$

(Coppersmith–Winograd, Stothers, Williams, Le Gall) Similar ideas, more complex expressions.

Conjecture : best algorithm has runtime $\approx \Theta(n^2)$. The lower bound $2n^2$ is trivial (we have to read the input),

- Runtime (measured in the number of multiplications) is $\Theta(n^{\log_2 7}) \approx \Theta(n^{2.807}).$
- Currently best improvement: $\approx \Theta(n^{2.373})$

(Coppersmith–Winograd, Stothers, Williams, Le Gall) Similar ideas, more complex expressions.

Conjecture : best algorithm has runtime $\approx \Theta(n^2)$. The lower bound $2n^2$ is trivial (we have to read the input), necessity of Cn^2 multiplications with large *C* can be proven by advanced algebraic methods.

Definition

Let *K* be a field, and let $x^m + a_{m-1}x^{m-2} + \cdots + a_1x + a_0 = f(x) \in K[x]$ be an arbitrary degree *m* monic polynomial, $m \in \mathbb{N}$.

Definition

Let *K* be a field, and let $x^m + a_{m-1}x^{m-2} + \cdots + a_1x + a_0 = f(x) \in K[x]$ be an arbitrary degree *m* monic polynomial, $m \in \mathbb{N}$. Then the following matrix in $M_m(K)$ is called the companion matrix of f(x):

/0	0	0	•••	0	0	$-a_0$
1	0	0	•••	0	0	$-a_1$
0	1	0	•••	0	0	$-a_2$
:		·				
:			۰.			
0	0	0		1	0	$-a_{m-2}$
/0	0	0		0	1	- <i>a</i> _{m-1} /

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$.

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x).

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x). (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^m$.)

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x). (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^m$.)

Sketch of proof:

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x). (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^m$.)

Sketch of proof: $Ae_1 = e_2$, $Ae_2 = e_3$, ..., $Ae_{m-1} = e_m$, and $Ae_m = -a_{m-1}e_m - \cdots - a_1e_2 - a_0e_1$.

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x). (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^m$.)

Sketch of proof: $Ae_1 = e_2, Ae_2 = e_3, \dots, Ae_{m-1} = e_m$, and $Ae_m = -a_{m-1}e_m - \dots - a_1e_2 - a_0e_1$. Thus $f(A)e_1 = 0$,

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x). (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^m$.)

Sketch of proof: $Ae_1 = e_2$, $Ae_2 = e_3$, ..., $Ae_{m-1} = e_m$, and $Ae_m = -a_{m-1}e_m - \cdots - a_1e_2 - a_0e_1$. Thus $f(A)e_1 = 0$, and $f(A)e_i = 0$ follows for all *i*,

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x). (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^m$.)

Sketch of proof: $Ae_1 = e_2, Ae_2 = e_3, \dots, Ae_{m-1} = e_m$, and $Ae_m = -a_{m-1}e_m - \dots - a_1e_2 - a_0e_1$. Thus $f(A)e_1 = 0$, and $f(A)e_i = 0$ follows for all *i*, implying f(A) = 0.

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x). (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^m$.)

Sketch of proof: $Ae_1 = e_2$, $Ae_2 = e_3$, ..., $Ae_{m-1} = e_m$, and $Ae_m = -a_{m-1}e_m - \cdots - a_1e_2 - a_0e_1$. Thus $f(A)e_1 = 0$, and $f(A)e_i = 0$ follows for all *i*, implying f(A) = 0. The above equations show that $f(x) = m_A(x)$,

Let $m \in \mathbb{N}$ and let $A \in M_m(K)$ be the companion matrix of the monic polynomial $f(x) \in K[x]$. Then the characteristic polynomial and minimal polynomial of A are both f(x). (We have to consider the monic version of the characteristic polynomial, that is, the usual notion should be multiplied by $(-1)^m$.)

Sketch of proof: $Ae_1 = e_2, Ae_2 = e_3, ..., Ae_{m-1} = e_m$, and $Ae_m = -a_{m-1}e_m - \cdots - a_1e_2 - a_0e_1$. Thus $f(A)e_1 = 0$, and $f(A)e_i = 0$ follows for all *i*, implying f(A) = 0. The above equations show that $f(x) = m_A(x)$, and then $f(x) = \chi_A(x)$ by a simple calculation. (Fill in the gaps: cf. the exercises.)

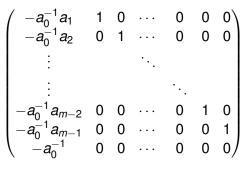
The companion matrix of 0 is the one-by-one zero matrix.

The companion matrix of 0 is the one-by-one zero matrix.

The companion matrix is invertible iff $a_0 \neq 0$, and then its inverse is

The companion matrix of 0 is the one-by-one zero matrix.

The companion matrix is invertible iff $a_0 \neq 0$, and then its inverse is



Frobenius normal form

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_1, \ldots, A_k of companion matrices corresponding to some polynomials $f_1(x), \ldots, f_k(x) \in K[x]$ such that

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_1, \ldots, A_k of companion matrices corresponding to some polynomials $f_1(x), \ldots, f_k(x) \in K[x]$ such that

 $f_1(x)|f_2(x)|\cdots|f_k(x)$ in the ring of polynomials K[x], and

A is similar to the block matrix F with blocks A_1, \ldots, A_k ,

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_1, \ldots, A_k of companion matrices corresponding to some polynomials $f_1(x), \ldots, f_k(x) \in K[x]$ such that

 $f_1(x)|f_2(x)|\cdots|f_k(x)$ in the ring of polynomials K[x], and

A is similar to the block matrix F with blocks A_1, \ldots, A_k , that is, there is a regular matrix S over K such that $F = SAS^{-1}$.

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_1, \ldots, A_k of companion matrices corresponding to some polynomials $f_1(x), \ldots, f_k(x) \in K[x]$ such that

 $f_1(x)|f_2(x)|\cdots|f_k(x)$ in the ring of polynomials K[x], and

A is similar to the block matrix F with blocks A_1, \ldots, A_k , that is, there is a regular matrix S over K such that $F = SAS^{-1}$.

This unique block matrix is the Frobenius normal form (or rational canonical form) of *A*.

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_1, \ldots, A_k of companion matrices corresponding to some polynomials $f_1(x), \ldots, f_k(x) \in K[x]$ such that

 $f_1(x)|f_2(x)|\cdots|f_k(x)$ in the ring of polynomials K[x], and

A is similar to the block matrix F with blocks A_1, \ldots, A_k , that is, there is a regular matrix S over K such that $F = SAS^{-1}$.

This unique block matrix is the Frobenius normal form (or rational canonical form) of *A*. Note that $F \in K^{n \times n}$:

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_1, \ldots, A_k of companion matrices corresponding to some polynomials $f_1(x), \ldots, f_k(x) \in K[x]$ such that

 $f_1(x)|f_2(x)|\cdots|f_k(x)$ in the ring of polynomials K[x], and

A is similar to the block matrix F with blocks A_1, \ldots, A_k , that is, there is a regular matrix S over K such that $F = SAS^{-1}$.

This unique block matrix is the Frobenius normal form (or rational canonical form) of *A*.

Note that $F \in K^{n \times n}$; unlike the Jordan normal form, whose entries are in general outside *F*, in the algebraic closure of *F*.

Given a matrix $A \in K^{n \times n}$. Then there is a unique sequence A_1, \ldots, A_k of companion matrices corresponding to some polynomials $f_1(x), \ldots, f_k(x) \in K[x]$ such that

 $f_1(x)|f_2(x)|\cdots|f_k(x)$ in the ring of polynomials K[x], and

A is similar to the block matrix F with blocks A_1, \ldots, A_k , that is, there is a regular matrix S over K such that $F = SAS^{-1}$.

This unique block matrix is the Frobenius normal form (or rational canonical form) of *A*.

Note that $F \in K^{n \times n}$; unlike the Jordan normal form, whose entries are in general outside *F*, in the algebraic closure of *F*.

Remark: the 0 polynomial is allowed in the series $f_1(x), \ldots, f_k(x)$ any number of times (at the end).

The polynomials $f_1(x), \ldots, f_k(x)$ can be read from A (in linear time). Then $\chi_A(x) = f_1(x) \cdots f_k(x)$, $m_A(x) = f_k(x)$ (yielding a proof to the Cayley-Hamilton theorem).

Then $\chi_A(x) = f_1(x) \cdots f_k(x)$, $m_A(x) = f_k(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\det(A) = f_1(0) \cdots f_k(0)$ is the product of elements in the upper right corner of the blocks.

Then $\chi_A(x) = f_1(x) \cdots f_k(x)$, $m_A(x) = f_k(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\det(A) = f_1(0) \cdots f_k(0)$ is the product of elements in the upper right corner of the blocks.

The rank $\rho(A)$ of A is the sum of the rank of the blocks.

Then $\chi_A(x) = f_1(x) \cdots f_k(x)$, $m_A(x) = f_k(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\det(A) = f_1(0) \cdots f_k(0)$ is the product of elements in the upper right corner of the blocks.

The rank $\rho(A)$ of A is the sum of the rank of the blocks. A block has full rank iff $a_0 \neq 0$ in the corresponding polynomials.

Then $\chi_A(x) = f_1(x) \cdots f_k(x)$, $m_A(x) = f_k(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\det(A) = f_1(0) \cdots f_k(0)$ is the product of elements in the upper right corner of the blocks.

The rank $\rho(A)$ of A is the sum of the rank of the blocks. A block has full rank iff $a_0 \neq 0$ in the corresponding polynomials. Otherwise it has co-rank 1.

Then $\chi_A(x) = f_1(x) \cdots f_k(x)$, $m_A(x) = f_k(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\det(A) = f_1(0) \cdots f_k(0)$ is the product of elements in the upper right corner of the blocks.

The rank $\rho(A)$ of *A* is the sum of the rank of the blocks. A block has full rank iff $a_0 \neq 0$ in the corresponding polynomials. Otherwise it has co-rank 1. That is, $\rho(A) = n - \ell$, where ℓ is the number of blocks with a 0 in the upper right corner (easy to determine in linear time).

Then $\chi_A(x) = f_1(x) \cdots f_k(x)$, $m_A(x) = f_k(x)$ (yielding a proof to the Cayley-Hamilton theorem). In particular, $\det(A) = f_1(0) \cdots f_k(0)$ is the product of elements in the upper right corner of the blocks.

The rank $\rho(A)$ of *A* is the sum of the rank of the blocks. A block has full rank iff $a_0 \neq 0$ in the corresponding polynomials. Otherwise it has co-rank 1. That is, $\rho(A) = n - \ell$, where ℓ is the number of blocks with a 0 in the upper right corner (easy to determine in linear time).

The inverse matrix $A^{-1} = (SFS^{-1})^{-1} = SF^{-1}S^{-1}$ can be determined by replacing each block of *F* by its inverse; see an earlier slide.

There is a randomized algorithm using matrix multiplication that computes F together with the change of basis matrix S (with high probability).

- There is a randomized algorithm using matrix multiplication that computes F together with the change of basis matrix S (with high probability).
- The expected runtime is the same as that of matrix multiplication, yielding $\approx \Theta(n^{2.373})$ at the moment.

- There is a randomized algorithm using matrix multiplication that computes F together with the change of basis matrix S (with high probability).
- The expected runtime is the same as that of matrix multiplication, yielding $\approx \Theta(n^{2.373})$ at the moment.
- This yields a randomized algorithm of runtime $\approx \Theta(n^{2.373})$ to all basic problems in linear algebra; see the previous slide.

- There is a randomized algorithm using matrix multiplication that computes F together with the change of basis matrix S (with high probability).
- The expected runtime is the same as that of matrix multiplication, yielding $\approx \Theta(n^{2.373})$ at the moment.
- This yields a randomized algorithm of runtime $\approx \Theta(n^{2.373})$ to all basic problems in linear algebra; see the previous slide.
- The algorithm is not yet fully de-randomized.

Markov chains

Pongrácz

1. Multiply the matrices $A = \begin{pmatrix} 2 & -3 \\ 1 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 6 \\ 9 & 8 \end{pmatrix}$ via the Strassen algorithm. Observe that it only requires 7 multiplications.

- 1. Multiply the matrices $A = \begin{pmatrix} 2 & -3 \\ 1 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 6 \\ 9 & 8 \end{pmatrix}$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
- 2. Show that the companion matrix *A* of a polynomial f(x) has minimal and characteristic polynomial $m_A(x) = \chi_A(x) = f(x)$.

- 1. Multiply the matrices $A = \begin{pmatrix} 2 & -3 \\ 1 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 6 \\ 9 & 8 \end{pmatrix}$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
- 2. Show that the companion matrix *A* of a polynomial f(x) has minimal and characteristic polynomial $m_A(x) = \chi_A(x) = f(x)$.
- 3. Using the Frobenius normal form and companion matrices, construct a matrix *A* with minimal polynomial $m_A(x) = x^2(x^2 + 1)(x 2)$ and characteristic polynomial $\chi_A(x) = x^3(x^2 + 1)^2(x 2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.

- 1. Multiply the matrices $A = \begin{pmatrix} 2 & -3 \\ 1 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 6 \\ 9 & 8 \end{pmatrix}$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
- 2. Show that the companion matrix *A* of a polynomial f(x) has minimal and characteristic polynomial $m_A(x) = \chi_A(x) = f(x)$.
- 3. Using the Frobenius normal form and companion matrices, construct a matrix *A* with minimal polynomial $m_A(x) = x^2(x^2 + 1)(x 2)$ and characteristic polynomial $\chi_A(x) = x^3(x^2 + 1)^2(x 2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.
- 4. Compute the inverse of the matrix constructed in problem 3. Show that the computation runs in linear time for a Frobenius normal form.

- 1. Multiply the matrices $A = \begin{pmatrix} 2 & -3 \\ 1 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 6 \\ 9 & 8 \end{pmatrix}$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
- 2. Show that the companion matrix *A* of a polynomial f(x) has minimal and characteristic polynomial $m_A(x) = \chi_A(x) = f(x)$.
- 3. Using the Frobenius normal form and companion matrices, construct a matrix *A* with minimal polynomial $m_A(x) = x^2(x^2 + 1)(x 2)$ and characteristic polynomial $\chi_A(x) = x^3(x^2 + 1)^2(x 2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.
- 4. Compute the inverse of the matrix constructed in problem 3. Show that the computation runs in linear time for a Frobenius normal form.
- 5. Compute the cube of the matrix constructed in problem 3.

- 1. Multiply the matrices $A = \begin{pmatrix} 2 & -3 \\ 1 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 6 \\ 9 & 8 \end{pmatrix}$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
- 2. Show that the companion matrix *A* of a polynomial f(x) has minimal and characteristic polynomial $m_A(x) = \chi_A(x) = f(x)$.
- 3. Using the Frobenius normal form and companion matrices, construct a matrix *A* with minimal polynomial $m_A(x) = x^2(x^2 + 1)(x 2)$ and characteristic polynomial $\chi_A(x) = x^3(x^2 + 1)^2(x 2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.
- 4. Compute the inverse of the matrix constructed in problem 3. Show that the computation runs in linear time for a Frobenius normal form.
- 5. Compute the cube of the matrix constructed in problem 3.
- 6. What is dim ker(A) for the matrix A constructed in problem 3?