Markov chains and Their Applications

Dr. András Pongrácz

Week 1, University of Debrecen

Linear algebra

Basic problems

Given a field K (typically $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, sometimes a finite field), a matrix $A \in K^{m \times n}$ and a (column) vector $\underline{b} \in \mathbb{R}^{m}$.

Basic problems

Given a field K (typically $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, sometimes a finite field), a matrix $A \in K^{m \times n}$ and a (column) vector $\underline{b} \in \mathbb{R}^{m}$.

1. Find the rank $\varrho(A)$ of A.

Basic problems

Given a field K (typically $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, sometimes a finite field), a matrix $A \in K^{m \times n}$ and a (column) vector $\underline{b} \in \mathbb{R}^{m}$.

1. Find the rank $\varrho(A)$ of A.
2. Solve the system of linear equations $A \underline{x}=\underline{b}$.

Basic problems

Given a field K (typically $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, sometimes a finite field), a matrix $A \in K^{m \times n}$ and a (column) vector $\underline{b} \in \mathbb{R}^{m}$.

1. Find the rank $\varrho(A)$ of A.
2. Solve the system of linear equations $A \underline{x}=\underline{b}$.
3. If $m=n$, compute the determinant $\operatorname{det}(A)$ of A.

Basic problems

Given a field K (typically $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, sometimes a finite field), a matrix $A \in K^{m \times n}$ and a (column) vector $\underline{b} \in \mathbb{R}^{m}$.

1. Find the rank $\varrho(A)$ of A.
2. Solve the system of linear equations $A \underline{x}=\underline{b}$.
3. If $m=n$, compute the determinant $\operatorname{det}(A)$ of A.
4. If $m=n$, compute the inverse A^{-1} of A (or verify that $\operatorname{det}(A)=0$).

Given a field K (typically $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, sometimes a finite field), a matrix $A \in K^{m \times n}$ and a (column) vector $\underline{b} \in \mathbb{R}^{m}$.

1. Find the rank $\varrho(A)$ of A.
2. Solve the system of linear equations $A \underline{x}=\underline{b}$.
3. If $m=n$, compute the determinant $\operatorname{det}(A)$ of A.
4. If $m=n$, compute the inverse A^{-1} of A (or verify that $\operatorname{det}(A)=0$).
5. If $m=n$, compute the characteristic polynomial $\chi_{A}(x)$ of A.

Given a field K (typically $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, sometimes a finite field), a matrix $A \in K^{m \times n}$ and a (column) vector $\underline{b} \in \mathbb{R}^{m}$.

1. Find the rank $\varrho(A)$ of A.
2. Solve the system of linear equations $A \underline{x}=\underline{b}$.
3. If $m=n$, compute the determinant $\operatorname{det}(A)$ of A.
4. If $m=n$, compute the inverse A^{-1} of A (or verify that $\operatorname{det}(A)=0$).
5. If $m=n$, compute the characteristic polynomial $\chi_{A}(x)$ of A.
6. If $m=n$, compute the minimal polynomial $m_{A}(x)$ of A.

Gaussian elimination

The following operations do not affect the row space, rank and determinant of the matrix.

Gaussian elimination

The following operations do not affect the row space, rank and determinant of the matrix.

1. Exchange two rows.

Gaussian elimination

The following operations do not affect the row space, rank and determinant of the matrix.

1. Exchange two rows.
2. Multiply a row vector by a nonzero element $\lambda \in K^{\times}$.

Gaussian elimination

The following operations do not affect the row space, rank and determinant of the matrix.

1. Exchange two rows.
2. Multiply a row vector by a nonzero element $\lambda \in K^{\times}$.
3. Given two row vectors $\underline{u}, \underline{v}$ and $\lambda \in K$, replace \underline{u} by $\underline{u}+\lambda \underline{v}$.

Gaussian elimination

The following operations do not affect the row space, rank and determinant of the matrix.

1. Exchange two rows.
2. Multiply a row vector by a nonzero element $\lambda \in K^{\times}$.
3. Given two row vectors $\underline{u}, \underline{v}$ and $\lambda \in K$, replace \underline{u} by $\underline{u}+\lambda \underline{v}$.

In some sources: also delete an all-zero row.

Gaussian elimination

The following operations do not affect the row space, rank and determinant of the matrix.

1. Exchange two rows.
2. Multiply a row vector by a nonzero element $\lambda \in K^{\times}$.
3. Given two row vectors $\underline{u}, \underline{v}$ and $\lambda \in K$, replace \underline{u} by $\underline{u}+\lambda \underline{v}$.

In some sources: also delete an all-zero row.
Moreover, if the corresponding operations are executed on the entries of \underline{b}, then we also obtain equivalent systems of equations.

The following operations do not affect the row space, rank and determinant of the matrix.

1. Exchange two rows.
2. Multiply a row vector by a nonzero element $\lambda \in K^{\times}$.
3. Given two row vectors $\underline{u}, \underline{v}$ and $\lambda \in K$, replace \underline{u} by $\underline{u}+\lambda \underline{v}$.

In some sources: also delete an all-zero row.
Moreover, if the corresponding operations are executed on the entries of \underline{b}, then we also obtain equivalent systems of equations.

We can simplify the matrix to a trapezoid form to have an easier time solving the first three problems.

Gaussian elimination

Moreover, each step of the Gaussian elimination is a multiplication by a matrix from the left.

Gaussian elimination

Moreover, each step of the Gaussian elimination is a multiplication by a matrix from the left. Hence, if $m=n$, then by executing the corresponding operations on the identity matrix I_{n},

Gaussian elimination

Moreover, each step of the Gaussian elimination is a multiplication by a matrix from the left. Hence, if $m=n$, then by executing the corresponding operations on the identity matrix I_{n},
either we find that the trapezoid form is singular, i.e., $\operatorname{det}(A)=0$,

Gaussian elimination

Moreover, each step of the Gaussian elimination is a multiplication by a matrix from the left. Hence, if $m=n$, then by executing the corresponding operations on the identity matrix I_{n},
either we find that the trapezoid form is singular, i.e., $\operatorname{det}(A)=0$, or we can reach I_{n} from A, and obtain A^{-1} from I_{n}.

Gaussian elimination

Moreover, each step of the Gaussian elimination is a multiplication by a matrix from the left. Hence, if $m=n$, then by executing the corresponding operations on the identity matrix I_{n},
either we find that the trapezoid form is singular, i.e., $\operatorname{det}(A)=0$, or we can reach I_{n} from A, and obtain A^{-1} from I_{n}.

Runtime: $\Theta\left(n^{3}\right)$; not bad, but cf. the next class for much faster algorithms.

Characteristic polynomial, minimal polynomial

Characteristic polynomial

Trivial algorithm to compute $\chi_{A}(x)$ is to compute $\chi_{A}(r)=\operatorname{det}\left(A-r I_{n}\right)$ for n different values of r (surely possible if the field K is infinite).

Characteristic polynomial

Trivial algorithm to compute $\chi_{A}(x)$ is to compute $\chi_{A}(r)=\operatorname{det}\left(A-r I_{n}\right)$ for n different values of r (surely possible if the field K is infinite). Then solve the system of linear equations by multiplying with the inverse of the Vendermonde matrix.

Characteristic polynomial

Trivial algorithm to compute $\chi_{A}(x)$ is to compute $\chi_{A}(r)=\operatorname{det}\left(A-r I_{n}\right)$ for n different values of r (surely possible if the field K is infinite). Then solve the system of linear equations by multiplying with the inverse of the Vendermonde matrix.

$$
\left(\begin{array}{ccccc}
1 & r_{1} & \cdots & r_{1}^{n-1} & r_{1}^{n} \\
1 & r_{2} & \cdots & r_{2}^{n-1} & r_{2}^{n} \\
& & \vdots & & \\
1 & r_{n-1} & \cdots & r_{n-1}^{n-1} & r_{n-1}^{n} \\
1 & r_{n} & \cdots & r_{n}^{n-1} & r_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1} \\
(-1)^{n}
\end{array}\right)=\left(\begin{array}{c}
\operatorname{det}\left(A-r_{0} I_{n}\right) \\
\operatorname{det}\left(A-r_{1} I_{n}\right) \\
\vdots \\
\operatorname{det}\left(A-r_{n} I_{n}\right)
\end{array}\right)
$$

Runtime: $\Theta\left(n^{4}\right)$.

Characteristic polynomial

Trivial algorithm to compute $\chi_{A}(x)$ is to compute $\chi_{A}(r)=\operatorname{det}\left(A-r I_{n}\right)$ for n different values of r (surely possible if the field K is infinite). Then solve the system of linear equations by multiplying with the inverse of the Vendermonde matrix.

$$
\left(\begin{array}{ccccc}
1 & r_{1} & \cdots & r_{1}^{n-1} & r_{1}^{n} \\
1 & r_{2} & \cdots & r_{2}^{n-1} & r_{2}^{n} \\
& & \vdots & & \\
1 & r_{n-1} & \cdots & r_{n-1}^{n-1} & r_{n-1}^{n} \\
1 & r_{n} & \cdots & r_{n}^{n-1} & r_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1} \\
(-1)^{n}
\end{array}\right)=\left(\begin{array}{c}
\operatorname{det}\left(A-r_{0} I_{n}\right) \\
\operatorname{det}\left(A-r_{1} I_{n}\right) \\
\vdots \\
\operatorname{det}\left(A-r_{n} I_{n}\right)
\end{array}\right)
$$

Runtime: $\Theta\left(n^{4}\right)$. Possible to improve to $\Theta\left(n^{3}\right)$ with some extra work, but not worth it: cf. the next class.

Minimal polynomial

Cayley-Hamilton theorem

$$
\chi_{A}(A)=0
$$

Minimal polynomial

Cayley-Hamilton theorem

$$
\chi_{A}(A)=0
$$

That is, $m_{A}(x) \mid \chi_{A}(x)$.

Minimal polynomial

Cayley-Hamilton theorem

$$
\chi_{A}(A)=0
$$

That is, $m_{A}(x) \mid \chi_{A}(x)$.

If we can factorize $\chi_{A}(x)$, the problem is reduced to a finite calculation.

Minimal polynomial

Cayley-Hamilton theorem

$$
\chi_{A}(A)=0
$$

That is, $m_{A}(x) \mid \chi_{A}(x)$.

If we can factorize $\chi_{A}(x)$, the problem is reduced to a finite calculation. Very roundabout, cf. the next class for a much better algorithm.

Minimal polynomial

Cayley-Hamilton theorem

$$
\chi_{A}(A)=0
$$

That is, $m_{A}(x) \mid \chi_{A}(x)$.

If we can factorize $\chi_{A}(x)$, the problem is reduced to a finite calculation.
Very roundabout, cf. the next class for a much better algorithm. The improvement is based on the Frobenius normal form,

Minimal polynomial

Cayley-Hamilton theorem

$$
\chi_{A}(A)=0
$$

That is, $m_{A}(x) \mid \chi_{A}(x)$.

If we can factorize $\chi_{A}(x)$, the problem is reduced to a finite calculation.
Very roundabout, cf. the next class for a much better algorithm. The improvement is based on the Frobenius normal form, but the minimal polynomial is even simpler to calculate from the Jordan normal form.

Exercises

1. Are the given vectors independent? In case they are, then express one of the vectors as a linear combination of the others.
a) $(1,2,-7)^{T},(-3,4,-3)^{T},(-1,8,-17)^{T}$
b) $(-2,2,-3)^{T},(6,7,9)^{T},(6,-1,11)^{T}$
c) $(5,3,-10)^{T},(-2,3,-9)^{T},(-3,4,-5)^{T}$
d) $(1,1,1)^{T},(1,2,2)^{T},(3,4,4)^{T}$
2. Are the given vectors independent? In case they are, then express one of the vectors as a linear combination of the others.
a) $(1,2,-7)^{T},(-3,4,-3)^{T},(-1,8,-17)^{T}$
b) $(-2,2,-3)^{T},(6,7,9)^{T},(6,-1,11)^{T}$
c) $(5,3,-10)^{T},(-2,3,-9)^{T},(-3,4,-5)^{T}$
d) $(1,1,1)^{T},(1,2,2)^{T},(3,4,4)^{T}$
3. Consider the four subspaces generated by the system of vectors in each subproblem of the previous exercise. Which of them contain the vector $\underline{b}=(0,10,-24)^{T}$?
4. Are the given vectors independent? In case they are, then express one of the vectors as a linear combination of the others.
a) $(1,2,-7)^{\top},(-3,4,-3)^{\top},(-1,8,-17)^{T}$
b) $(-2,2,-3)^{T},(6,7,9)^{T},(6,-1,11)^{T}$
c) $(5,3,-10)^{\top},(-2,3,-9)^{T},(-3,4,-5)^{T}$
d) $(1,1,1)^{T},(1,2,2)^{T},(3,4,4)^{T}$
5. Consider the four subspaces generated by the system of vectors in each subproblem of the previous exercise. Which of them contain the vector $\underline{b}=(0,10,-24)^{T}$?
6. Find the change of basis matrix for converting from the standard basis to the following bases.
a) $\underline{f_{1}}=(2,-1,0), \underline{f_{2}}=(1,0,1), \underline{f_{3}}=(0,0,-2)$
b) $\underline{g_{1}}=(1,1,1), \underline{g_{2}}=(1,1,0), \underline{g_{3}}=(2,1,1)$

What is the change of basis matrix for converting from (f) to (g) ? And that from (g) to (f) ?
4. Solve the system of linear equations.
a)
c)

$$
\begin{aligned}
& -3 x_{1}+4 x_{2}-x_{3}+2 x_{4}=0 \\
& x_{1}+2 x_{2}-4 x_{3}+5 x_{4}=-11 x_{1}+2 x_{2}-5 x_{3}+4 x_{4}=-13 \\
& 5 x_{1}-5 x_{2}+2 x_{4}=-17 x_{1}-5 x_{2}+6 x_{3}+2 x_{4}=-11 \\
& -4 x_{1}-3 x_{2}+10 x_{3}-9 x_{4}=-3 \quad 4 x_{1}+x_{2}+9 x_{3}+2 x_{4}=4
\end{aligned}
$$

b)

$$
\begin{array}{rlrl}
x_{1}+2 x_{2}-3 x_{3} & =8 & & \\
-2 x_{1}-5 x_{2}-4 x_{3} & =-8 & 5 x_{1}+4 x_{2}-6 x_{3}+3 x_{4} & =-3 \\
4 x_{1}+7 x_{2}+x_{3} & =17 & 3 x_{1}+2 x_{2}-5 x_{3}+6 x_{4} & =-19 \\
2 x_{1}+9 x_{2}+21 x_{3} & =-1 & & 2 x_{1}+2 x_{2}-x_{3}-3 x_{4}
\end{array}=11
$$

5. Consider the systems of linear equations in the previous problem that had at least one solution. Where there is exactly one solution and the matrix of coefficients on the left-hand side is square, compute the determinant and inverse of the square matrix. When you obtain infinitely many solutions, compute the rank of the matrix and compare it to the dimension of the affine subspace of all solutions (i.e., the number of free variables).
