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Basic problems

Given a field K (typically K ∈ {Q,R,C}, sometimes a finite field), a
matrix A ∈ K m×n and a (column) vector b ∈ Rm.

1. Find the rank %(A) of A.
2. Solve the system of linear equations Ax = b.
3. If m = n, compute the determinant det(A) of A.
4. If m = n, compute the inverse A−1 of A (or verify that det(A) = 0).
5. If m = n, compute the characteristic polynomial χA(x) of A.
6. If m = n, compute the minimal polynomial mA(x) of A.
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Gaussian elimination

The following operations do not affect the row space, rank and
determinant of the matrix.

1. Exchange two rows.
2. Multiply a row vector by a nonzero element λ ∈ K×.
3. Given two row vectors u, v and λ ∈ K , replace u by u + λv .

In some sources: also delete an all-zero row.
Moreover, if the corresponding operations are executed on the entries
of b, then we also obtain equivalent systems of equations.

We can simplify the matrix to a trapezoid form to have an easier time
solving the first three problems.
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Gaussian elimination

Moreover, each step of the Gaussian elimination is a multiplication by a
matrix from the left.

Hence, if m = n, then by executing the
corresponding operations on the identity matrix In,

either we find that the trapezoid form is singular, i.e., det(A) = 0,
or we can reach In from A, and obtain A−1 from In.

Runtime: Θ(n3) ; not bad, but cf. the next class for much faster
algorithms.
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Characteristic polynomial, minimal
polynomial
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Characteristic polynomial

Trivial algorithm to compute χA(x) is to compute χA(r) = det(A− rIn)
for n different values of r (surely possible if the field K is infinite).

Then
solve the system of linear equations by multiplying with the inverse of
the Vendermonde matrix.

1 r1 · · · rn−1
1 rn

1
1 r2 · · · rn−1

2 rn
2

...

1 rn−1 · · · rn−1
n−1 rn

n−1
1 rn · · · rn−1

n rn
n




a0
a1
...

an−1
(−1)n

 =


det(A− r0In)
det(A− r1In)

...
det(A− rnIn)


Runtime: Θ(n4). Possible to improve to Θ(n3) with some extra work,
but not worth it : cf. the next class.
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Minimal polynomial

Cayley-Hamilton theorem

χA(A) = 0

That is, mA(x) | χA(x).

If we can factorize χA(x), the problem is reduced to a finite calculation.

Very roundabout, cf. the next class for a much better algorithm.
The improvement is based on the Frobenius normal form, but the
minimal polynomial is even simpler to calculate from the Jordan normal
form.
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Exercises

1. Are the given vectors independent? In case they are, then
express one of the vectors as a linear combination of the others.
a) (1,2,−7)T , (−3,4,−3)T , (−1,8,−17)T

b) (−2,2,−3)T , (6,7,9)T , (6,−1,11)T

c) (5,3,−10)T , (−2,3,−9)T , (−3,4,−5)T

d) (1,1,1)T , (1,2,2)T , (3,4,4)T

2. Consider the four subspaces generated by the system of vectors
in each subproblem of the previous exercise. Which of them
contain the vector b = (0,10,−24)T ?

3. Find the change of basis matrix for converting from the standard
basis to the following bases.
a) f1 = (2,−1,0), f2 = (1,0,1), f3 = (0,0,−2)

b) g1 = (1,1,1),g2 = (1,1,0),g3 = (2,1,1)

What is the change of basis matrix for converting from (f ) to (g)?
And that from (g) to (f )?
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Exercises

4. Solve the system of linear equations.

a)

−3x1 + 4x2 − x3 + 2x4 = 0
x1 + 2x2 − 4x3 + 5x4 = −11
5x1 − 5x2 + 2x4 = −1

−4x1 − 3x2 + 10x3 − 9x4 = −3

b)

x1 + 2x2 − 3x3 = 8
−2x1 − 5x2 − 4x3 = −8

4x1 + 7x2 + x3 = 17
2x1 + 9x2 + 21x3 = −1

c)

−x1 + 4x2 − x3 + 2x4 = 1
x1 + 2x2 − 5x3 + 4x4 = −13

7x1 − 5x2 + 6x3 + 2x4 = −11
4x1 + x2 + 9x3 + 2x4 = 4

d)

5x1 + 4x2 − 6x3 + 3x4 = −3
3x1 + 2x2 − 5x3 + 6x4 = −19
2x1 + 2x2 − x3 − 3x4 = 11
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Exercises

5. Consider the systems of linear equations in the previous problem
that had at least one solution. Where there is exactly one solution
and the matrix of coefficients on the left-hand side is square,
compute the determinant and inverse of the square matrix. When
you obtain infinitely many solutions, compute the rank of the
matrix and compare it to the dimension of the affine subspace of
all solutions (i.e., the number of free variables).
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