Markov Chains and Their Applications, Problem sheet 4

(1) Show that the inverse of a stochastic matrix A is non-negative iff it is stochastic. Prove that if this is the case, then A is a permutation matrix.
(2) Generalize the previous exercise to non-negative (invertible) matrices.
(3) By using the Jordan normal form of the matrix $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$, find the formula for the elements of P^{n}.
(4) Observe that the series of vectors $\underline{u}_{n}=\left(F_{n}, F_{n+1}\right)^{*}$, where F_{n} is the n-th Fibonacci number, satisfies the relations $\underline{u}_{0}=(0,1)^{*}$ and $\underline{u}_{n}=P \underline{u}_{n-1}$, with P as in the previous exercise. Deduce that $\underline{u}_{n}=P^{n} \underline{u}_{0}$. By the previous exercise, find the exact formula for F_{n}.
(5) Show that the union of the Gershgorin discs coincide with the spectrum iff the matrix is diagonal.

