Markov Chains and Their Applications, Problem sheet 3

Let G be a graph with eigenvalues of the adjacency matrix $\lambda_{1}, \ldots, \lambda_{n}$.
(1) Show that $\left(\lambda_{1}^{3}+\cdots+\lambda_{n}^{3}\right) / 6$ is the number of triangles in G.
(2) Prove that all the $\left|\lambda_{i}\right|$ are at most the maximum degree in G.
(3) If there is equality in Problem 2, then G is regular.
(4) Prove that the Laplacian L of G is singular.
(5) Show that $\operatorname{dim} \operatorname{ker}(L)$ is the number of connected components in G. In particular, 0 is an eigenvalue with multiplicity 1 if G is connected. What is the trace of the Laplacian?
(6) Prove Cayley's theorem on the number of labelled trees on n vertices.

