## Markov Chains and Their Applications, Problem sheet 2

(1) Multiply the matrices $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}-5 & 6 \\ 9 & 8\end{array}\right)$ via the Strassen algorithm. Observe that it only requires 7 multiplications.
(2) Show that the companion matrix $A$ of a polynomial $f(x)$ has minimal and characteristic polynomial $m_{A}(x)=\chi_{A}(x)=f(x)$.
(3) Using the Frobenius normal form and companion matrices, construct a matrix $A$ with minimal polynomial $m_{A}(x)=x^{2}\left(x^{2}+1\right)(x-2)$ and characteristic polynomial $\chi_{A}(x)=x^{3}\left(x^{2}+1\right)^{2}(x-2)$. In particular, observe that the minimal polynomial of a matrix is not necessarily irreducible.
(4) Compute the inverse of the matrix constructed in problem 3. Show that the computation runs in linear time for a Frobenius normal form.
(5) Compute the cube of the matrix constructed in problem 3.
(6) What is $\operatorname{dim} \operatorname{ker}(A)$ for the matrix $A$ constructed in problem 3 ?

