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WHATdo we nnderstand by NONLINEARITIES
and how to ESTIMATE them?

NONLINEARITIES

-what is different from linear type

-what is different from the expectance

ESTIMATIONS

-measurements, metrics of the part of the wowlinear process

First- the observer is outside the box and +ry to quantifty the dimensions
of the process

Second-the observer is iuside the box and +ry to see the light of the
outside the process
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NONLINEARLTIES

-what is different from livear +ype

a function [ an operator [a sistem known is nownlinear or
are knoww ouly some characteristics

-what is different from what is expected
asimptotic study, perturbation study, method of moments

ESTIMATIONS

First- interpolations, vonlinear regression, method of moments

Second- estimation parameters, perturbation study, developments,
stability, make decompositions, change part of the systewm, vumerical
study, learning algorithms and neural networks
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1. Methods for estimating discrete distributions.

Poisson approximation of binomial distributions
a. LetneN, k=1, 2, ...,nand pe(0,1), as for X~Bi(p,n), P(X = k) = (Z) p*(1 —p)" ¥, then

YL P =0 =38, ()P a-prt=n (” C) et -k )

k,-1
b. ForA > 0and n € N, we have for X~Po(4), P(X=k)= Ae :
Yi=nt1 PX = k) =Xipe ™5 =; :! dt. 2)

c.Forn=1,2, ...,p,€(0,1),n-p, = A>0,and k=0, 1, ... we have:
n—oo

1n n—-k+1

(71:) Pnk(l _ pn)n_k — E; (Tl . Pn)k(l n pn)n(l n- pn) N e—,1 E (3)

n n—oo k!
Poisson approximation of negative binomial distributions

Forn=1.2,...,p, € (0,1)andn- (1 —p,) — A>0,then fork=0, 1, ... we have:
n—oo

n+k— k _1n ntk-1. ..  n(1-Pn)\n, . _ k —lﬁ
( ; ) Rl—p)f =g A=) (e (L —p))* o e (4)
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Simulation of geometrical distributions

Next, we will show how a geometrical distribution of random variables, NB (1, p)
can be obtained from a uniform distribution.

InX

Letp € (0,1), X~U (0,1) then N expressed by N: = [ ] iISN~NB(1,p)

For k=0, 1, ... we can write
P(N=k)=P(k+1>l(711—p)_k)—
P(1-p)*"' <X < (1-p)") =F((1-p)) - Fx((1-p)**H.
>PN=k)=>0-p"-A-p)*' =p1-p)* ©)

Also, NB (1, p) it can be constructed as a discretization of an exponential distribution as follows:

LetY = —~ (1 N [Y]. Y is defined in R, and for x>0 we have:
P(Y<x)=P(nX =xIn(1-p)) =P(X = X)) = 1 — ¢~In(1-P)lx,
Therefore:
[YI-NB (1, p)= Y~Exp(|in(1 - p)]), (6)
Y~Exp(a) = [Y]~NB (1, p) with p=1-exp(-a). (7)
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Normal approximation and Wilson - Hilferty approximation for the Poisson distribution

Let X*:= (X — M(X))/+/V(X) the standardized of a random variable denoted with X, with M(X) notation for expectancy
of X'and VV(X) the variance. Then X* is approximated using the Laplace function ¢ that explain the normal distribution N(0,1)
since

P(X*<x)~®(x) or P(X<x)=P (X* = xﬁ%) ~ @ (2‘1%)) ©

For high volume selections this approximation is justified by the Central Limit Theorem.

Particular Case
N~Po (), P(N <n)=~®(>=),n=12, . 9)
N*:= (N — 1) /v/2 has the following momentum generating function:

t3

tot —) Vi =ep[S+ L4 ] ——ep(D). (1)

_ ,—tVa A(et/‘/_ 1) —
on(t) =€ exp[A(1 +\/_ o~

The moment-generating function for N (0,1) is e*"/2.
A first approximation N = 1 + v Z with Z ~ N(0,1).
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A Dbetter approximation could be obtained using the Wilson-Hilferty (WH) formula.
We are interested in a study of S = ¥ , X; where X; are some random variables that could be standard Gamma distribution,

fr(x) = "b;:)_x,x > 0, N could be expressed by Poisson distribution.

For Gamma distribution, first approximation for the cumulative distribution function (cdf)is X = b ++/b ZwithZ = N(0,1).
Wilson-Hilferty (WH) for Gamma distribution
We look for a non-linear transformation of the type
X=yZ)YP =((@+bZ+yY(Z))P
where X is Gamma random variable, Z is the transformed random variable, a, b, p are suitable constants
to be determined such that Z is closely to a standard Gaussian random variable, N(0,1).
The class of transformation include an analytic correction y(z) with initial conditions:
¥(0) =0,9'(0) =0,9"(0) = 0.
From (11) the differential of x becomes dx = p(a + b z + Y (2))P"1(b +¢'(2))dz. Also

fx(x,z)dx = g(z,b)dz = F?b) exp(tp(z)) dz

where g(z, b) is the new Gamma density function expressed through z variable. Because we need to obtain gaussian

approximation for ¥ (z) is taken a parabolic approximation ¥ (z) = ¥ (0) — %22 = @(z) that must satisfy initial
conditions: ¢(0) = 0, ¢'(0) = —1, ¢"'(0) = 0. One finds X=(a + b Z + Y(2))3,b = %;

or a(a) = 3/(1 — % b(a) = 6\[1*1 And the following approximation Iy, (x, @) = v2n (a — g)a_g (@3
3 |a—=

The relative error of approximation is given by e(a) = |1 —

Ty (x,)

is of order a~2.
r'(b)

8
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For Poisson distribution approximation is:

k(1):=3VA+1, P(N<n)~ cD(k(/l) —@— (91 k(2)),n=1.2, . (11)
- . c— _ A 1 _ 1 _ 1 ,
Pok()l) = 1 qb( o )'C (1+k) =1 9(1+k)’0 © 3vk+1 (11°)

For discrete type distributions such as Poisson distribution, it is necessary to approximate the distribution with a continuous
probability density and apply the WH-type approximation. In this case k! = I'(k + 1) is for the denominator.

fxGe, D) = ———

The class of transformations is defined as:
k(z):=(aA)+b(A) 2)1+c

with the differential
dk(z):= gb(V)(a(d) + b(1) Z2)9 1dx
that leads to

fx (x, Adk =

r(k - >+1> ~ p) @A) + b(A) )4 ldx=exp(¢(z)) dz
0(2) = k(z)In(A) = A — In[r(k(2) + 1] + (1 - %) In(k(z) — ¢) + In(b(D)) + In(q).
Then with the approximation In[r(k(z) + 1)] = gln(Zn) + (k(z) + %) In (k(z) + é) — (k(z) + g)
9(2) = k(2Ink(z) + k(2) + k(z) In(2) — 5 Ink(z) + (1 . g) Ink(z) + 0(1), (0) = 0, ¢'(0) = —1, " (0) = 0.

9
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1

Fork(0) =a% + c,withc K k = af,Ink = In(a?) + é For conditions imposed is choosen a(1) = A2 and ¢ =

N R

1
7

Finally, optimal parameters for the transformation are

Nl w

3 A = B b() =2 a8, = 1:>k(,1)—(,1§+2,1%z) !
1= QW =40 =gah =% - 3 6

2. Recursive formulas

Let N - random variables with natural values that satisfy recursive relations:
P(N=0)=p (0), P(N=n)=P(N=n-1)(a + %), a, breal,n=1.2, ... (12)

First, we precise that condition (12) is true only for the following repartitions:

P(N=n) _ A

1. N~Po(A) leadsto P(N = 0) = e * and =-,n=1,2, ... It results a=0 and b=A.
P(N=n-1) n

2.N~Bi(m,p)withP(N=0)=(1—-p)"and P(N=n)=P(N=n-1)-

itresultsa = —p/(1 —p),b = (m+ Dp/(1 — p).

3. N~ NB (r, p) with P(N = 0) = p” and Pz\(”:’_l)l) = T+Z_1 (1—p),n = 12,... itresults a=1-p, b=(r-1) (1-p).

m-n+1
L n=1,2.,

n 1-p’

4. Degenerate distribution with P(N=0) =1, from where a + b=0.

10
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Counter example:
On the other hand, the relation (12) is not fulfilled in the case: N ~ Ln (p) with P(N=0) =0 and
that is valid only for n=2,3, ..., but not forn= 1.

P(N n) _l
N=n-1) p(1 n)’

Theorem: If the relation (12) takes place, then the corresponding distributions are only Poisson, Binomial, Negative Binomial
and Logarithmic.

Proof:

I. Case a+b<0

Because of P(N=1) = (a+b) P(N=0) we find P(N=0) =0 and P(N=1) =P(N=2) =...=0 from where one concludes that is
necessary to have a+b>=0.

ii. Let a+b=0, then P(N=1) =P(N=2) =...=0, so p (0) =P(N=0) =1.

iii. Now, let a+b>0 and a=0. Results that:
P(N—n)—P(N—n—l)——P(N—n—Z)

=..=P(N=0)>,n=12, ...

(n 1
And because 1 = ¥%_, P(N =n) = P(N = 0) - e?, P(N =n) = e—b%’f,
Iv. For a<0, let m € N such that: a + # = 0, meaningm = —% and P (N = n) =0 for n=m+1, m+2, ...

Moreover, for n=1,2, ..., m we have:

11
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P(N=n)=P(N=n—1)(a+§) =...=

b b a® a+b a+b a+b
=P(N=0)(a+b)(a+§)...(a+;)=P(N=O)H( " )( - +1)...(

+n—-1) =

a
n

= P(N = 0)%(—m)(—m +1)...(-m+n-1)=PWN =0)(—-a)"(),
S0

1= ;P(N =n)=P(N = 0>;(m(—a)” = P(N = 0)(1 - @)™

thus P(N=0)=(1—a) ™™ and P(N =n) = (ﬁ)(ﬁ)”(ﬁ)m‘”, n=0,1, ..., m,
where =% = 1 —— € (0,1).

1-a 1-a
Further the last case, for a>0 and r: = (a + b)/a € R*, one obtains as before:

PN =m) = P(N = 0)(-)"GN) = P(N = 0)a" (" T " N = (1 — ),
P(N=0)=(1-a)
P(N=n)=(C""1YH{A—-a)a®,n=0,1,..

12
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Summary. Simple adjustments
In the applications of stochastic mathematics, the most common method of adjusting a distribution is the normal
approximation:
M(X
PX <x) = o(* Jg) ©)
For the variable S, S = YN, X; , and (X;) i.i.d. as X (6) means:

( x—=M(N (M (X))
VMOV (X)) +(MN)2V (N)

PS<x)= ), @)

- . < ~ x—AM(X)
and for N~Po(A) one findsP(S < x) = ¢ (——= o] ).

In cases where the distribution is not symmetrical, the normal approximation is not appropriate. In this situation, the
transformation of the variable Y into Z = InY is considered, a transformation that brings the distribution of Z closer to a normal
one.

A third approach is given by introducing a Gamma distribution. This is applied as follows:

MX) _ b/a _ MX)? _ b%/a*
For X~I'(a, b) one has —= o e = v e
So, if the distribution of a random variable X is adjusted by a Gamma distribution, a suitable choice would be:
M(X) M(X)?
F(V(X) " vx) ).

13
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3.Approximation of probability densities by Orthogonal Polynomials

The approximation of densities by orthogonal polynomials is based on the following idea: let I € R an interval and f a real
function defined on | which will be approximate. Let w a positive continuous function on I such that exists and be finite for
any polynomial mthe integral [ w(x)w(x)dx. For i=0,1, ... let r; a polynomial such that [ 7; (x)m, (x)w(x)dx = 0 pentru
i # k and

Cr:= [ma(x)w(x)dx, k=01, ...

The regular function f can be developed as follows:

f(x) = Agmo ()W (x) + Aty ()W () +. ., (8)
Where the coefficients A A, ... are obtained from:

[ () f(x)dx = [, () X A ()w(x)dx = Ay [ tiw(x)dx = ACy. Ax = [ (x)f(x)dx/Cr, k=0,1, ...
particularly if f is the density of a random variable X: A, = M(m,(x))/C,, k=0,1, ...,
From (8) choosing the first n terms for a truncated relation at step n one gets the approximation
f(x) = Agmo()w(x)+... +A, 1, ()w(x), 9)
for which it is sufficient to know the moments up to the order n.

We will further consider some examples of evaluated functions and corresponding polynomial series. In all cases the
evaluated functions are densities. In the limit case in which n = 0 the approximation f(x)~w(x) is obtained by the relation (9).

14
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1. BOWERS’ Gamma approximation function.

We want to approximate the density function g or the distribution function G for a positive random variable S. Instead of
S we will consider the random variable Z = 2$) s with density function f and distribution function F.

V(s)
One obtains:
M(S) _M® M(S)
_ p+ 1 _p-1_-x _ _ M(8)?
Let/ = R" andw(x) = o e withb = M(2) = TOR

So, w has the meaning of density function for I"(1, b).

ME) 5 _ ME)? : e
Remark: For X~TI'(a, B) we have a = oo P = Vo and with ¢>0, cX F(c,ﬁ).
Thus aX = M((X)) X~I'(1,p) =T(1, (ffx))) and reversely

MEO? V) MOO MO

AT 2 um Yo v

Thus, the transition from S to Z is a kind of standardization of a Gamma random variable.
For the family of orthogonal polynomials itis used
Le() = (~DFxPer 2 R = T(b + ) Tieo(-D* (Oxi rry k0L, -
L, is called the Laguerre polynomlal of order k and we get for example:
15
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Lo(x) =1,

Li(x) =x—b,

Ly(x) =x?>—-2(b+ 1x+b(b+ 1),

Ly(x) =x3—-3(b+2)x>+3(b+2)(b+1Dx—(b+2)(b+ 1)b.

Moreover,
C, = k!rff’(;"') =kl(b+k—1)-(b+k—2)-.-b and
Ag=1A4,=4,=0 A4, = 6;(5’33) (us — (b + 2)(b + 1)b) with pz: = M(Z3).
We find the approximation:
f) = w(x) + AsLy(0)w(x), F(x) = W(x) + A3 [, Ls(D)w(t)dt, (10)

where W is the distribution function of the density w(x). Because

—-X

Jy Ly(Ow(Ddt = (b) ((b+2)(b+1)—=2(b+2)x +x?)
we finally can write:

2x x? [ puz—(b+2)(b+1)b
r(b+2) F(b+3)] 6 ' (11)

F(x) =~ W(x) —xPe™™

[F(b+1)

Replacing x by x - (( )) in the right hand of (11) an approximation of G(x) is obtained.

16
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2. Gram-Charlier approximation

It is desired to approximate the distribution function G of the density function g for a random variable S with u: = M(S) and
g2:=V(S). Instead of S we consider the standardized value Z: = (S — u) /o with the density function f and distribution
function F. Obviously

M(2)=0, V(2)=1 and G (x) = F(=5), g(x) = § fED, x€R.

For now, we take I=R and w = ¢, where ¢ express the probability density function for N (0,1), and @ is the Laplace function.
For orthogonal polynomials we use

) =90/
(—DF T () =D TR + 1 mi= ], k0L, ... (12)

with the recursive relations
Hyoq1(x) = —xH,(x) + H,(x), k=01, ...
H, is the Hermite polynomial of order k, for which:

Hy(x) = 1,H;(x) = —x, Hy(x) = x? — 1,H3(x) = —x3 — 6x2 + 3.
One finds C;, = k! and
Ap=1A =4, =043 =—24, =—(u, - 3)
with p;: = M(ZY), i=3,4.
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We find the approximations:
f) = d(x) + A30P(x) + AW (x), F(x) = &(x) + 430 P (x) + 4,0@ (x). (13)
The approximation for G(x) results by replacing x with (x — u) /o in the right hand of the relation (13).
Particular Case
If we consider S~CP (4, @), where Q has m,the moment of order k, k=1,2, ..., one finds:

H = /1m1, 0-2 = Amz;

1 Am, mg
Ha = MZP = — M(S—p)° =

Jam)?E  Am3
31°m3 + Am, _my
Am)?  am?

1
Uy = MZ* = —M(S — p)* =

g + 3,

SO

mgy A _ my
T 4 — 2"

If we consider N~B (n, p) or N~NB (r, p) the values for A; and A, can be determined using recursive formulas.

A3:_
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3. Edgeworth approximation

Let S a random variable with u = M(S), o%:=V(S), and we look for approximation of the density function g or the
distribution function G. As we did before, the variable is standardized byZ = (S — u)/o with density function f, and
distribution function F and ¢pthe momentum generation function. Taylor's next development is supposed to take place:

_ t? , o t?
p(t):=e 2¢(t) = z a;th,e(t) = z a;tlez.
i=0 i=o0
By induction one observes that:

.2 % o i ) .
tlez = [ e™ (=1)'eW(w)du, i=0,1, ..., where ¢ express the density function for N (0,1),

thus, o (t) = iz a; [ e (—D'oOwdu = [~ e™ (X, a:(-1)ip®w))du.
Consequently:

f(®) = EiZoai (=D (0), F(x) = L2, a;(—1)'¢ P (w)du, (14)

Edgeworth approximation of the order n is obtained by truncate the above series,

FOO) = Sl a,(~DipO (), or g(x) = Tpa(—1)i 2dO L), (15)
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We find equality: a; = %(ﬁ(i)(O), 1I=0,1, .... and K. Schroter gave us the following representation:

1« i .
a; = ; ;=0(;) ,Ll]Hl_](O), |:0,1, ces
where u, = M(Z*) and H,is the Hermite polynomial of order k, k=0,1, ....

Using the explicit representation of Hermite's polynomial, we obtain for i=0,1, ...

— 1Ni-j 1
azi = j:o(_g)l ]m“ﬁ'

. 1 i 1
Azi+1 = Z;'=O(_ E)l J (i—j)!(2j+1)!'u2j+1.

In particular we have:
a,=1,a; =a, =0,a; = u3/6,
ay = (Ug — 3)/24,
as = (us —10pu3)/120,
ag = (Ug — 15u, + 30)/720.

The moments for S and Z can be determined according to the formulas in the previous sections.
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Power approximation

Power approximation is an additional method to improve Edgeworth approximation.

Let be S random variabile with cumulative density function G, y = M(S), a2 = V(S) and random variable Z = (§ —
¥)/o. Letbealso y;: = M(Z3), y,: = M(Z*) — 3. We shall study the case S~CP(4, Q).

From Edgeworth aproximation for the distribution function F of Z we have:

PG = e = 0(0) - 2001w + 2001 + Lo ),
For a function p with the inverse p~? such that:
e(P()) = D). (18)
we obtain
G(x) = F(=D) ~e(=5) = o(p™' (=9). (19)

If p(y) =y + Ay, from (19)
0=q(dy):=o(y) —e(y +4y)
= 0(y) — Dy +4y) + =10y + 4y) =1, 0D (y + 4y) — —y20©O(y + 4y)+...
In order to obtain Ay(q) we use newton methods of order one,

Ay ~ y, — 400 1 q':(yo) 4012 20
YEI0 T o0 2000 [q (yo)] (20)

With initial value y,: = 0.
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Prin marirea valorii A in cazul CP (A, Q) si prin omiterea termenilor care devin mult prea mici ca si valoare, se obtine din
ecuatia (21):
q(0) 1q(0) q(0),

q(0) 2q(0)°q(0)
12O @)D (1) -2 (y) 1

—o' M+ OB @) 52O N —y2eN(y) 27"

Ay =~ —

—Vl(y —1)+§yz(y —3y)+51/1 (r°-10y° +15y)
1421 (y3-3)
After dividing the terms into the first fraction:
1 1 1
O - D+ 720° = 3y) — - vi(° + 2y° = 9+,
We find the following approximation:

1 3
721/1 fO° —2y° + ).

1 1 1
Ay~gh(y —1)+—V2(3’ —3y)— V1(2y — 5y)
And

PO) =y +:11(? — D)+ 12 (v° - 3y) — - ¥2(2y° — 59). (21)
According with (19) we must now obtain that y for which the relaion p(y) = (x — u)/o take place.

Fisrt case in (21), p(y)=y; formula (19) being the normal approximation.
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Second approximation p(y) =y + %yl (y? — 1), leads to:

G(x) ~ ¢(J_+£u+ 1 ——)
In case S~CP(4,Q), with Q having m;, k=1,2,..., moments:

}Lm .6 3/Am;

M, (x—Am,)+1—

G(x) = GD(\/ -

Called normal approximation of the power two.
In case Q=Exp(a), relation (22) becoms:

) (22)

G(x) ~ d(\2ax + 1 —22).

In this case a better approximation is obtained if all the terms in relation (21) are taken into account. The third order
approximation would be the following:

G(x) ~ cb(\/Zax +- 4 — —V2A(1 - ).
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