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Syllabus 
 

Remark 1. 

The law of large numbers 

 Let be a series of independent two by two random variables nXXX ,...,, 21 , which admit finite mean values and bounded 

dispersions: 

 

𝑋1, 𝑋2, . . . , 𝑋𝑛 a.i. 𝑀(𝑋𝑘) < ∞∀𝑘 ∈ 𝑁 ∗,𝐷2(𝑋𝑘) ≤ 𝑐 < ∞, 0c,*Nk   then: 

(1)    
1

𝑛
∑ 𝑋𝑘

 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒  
→            𝑛

𝑘=1
1

𝑛
∑ 𝑀(𝑋𝑘)
𝑛
𝑘=1 ,  𝑙𝑖𝑚

𝑛→∞
𝑃 (|

1

𝑛
∑ 𝑋𝑘 −

1

𝑛
∑ 𝑀(𝑋𝑘)
𝑛
𝑘=1

𝑛
𝑘=1 | < 𝜀) = 1, *Nk     (2) 

 

Particular cases: 

A. If the random variables have the same mean: ,*Nk,m)X(M k =  
1

𝑛
∑ 𝑋𝑘

 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒 
→            𝑛

𝑘=1 𝑚 

B. If the random variables are Bernoulli type: 

𝑋𝑘 = (
1 0
𝑝 𝑞

) , 𝑝, 𝑞 > 0, =+ 1qp 𝑀(𝑋𝑘) = 𝑝, ∀𝑘 ∈ 𝑁, 
1

𝑛
∑ 𝑋𝑘

 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒 
→            𝑛

𝑘=1 𝑝 (3)    𝑓𝑛 =
1

𝑛
∑ 𝑋𝑘
𝑛
𝑘=1 , pf

)n(s.a
n ⎯⎯⎯⎯ →⎯

→  

 

Central-limit theorem 

Let be *Nnn )X(


 a series of independent two by two random variables, which admit finite mean values and bounded 

dispersions:  
∑ 𝑋𝑘  
𝑛
𝑘=1 −  ∑ 𝑀(𝑋𝑘)

𝑛
𝑘=1

√∑ 𝐷2(𝑋𝑘)
𝑛
𝑘=1

 𝑟𝑒𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑛→∞) 
→                𝑁(0,1). 
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Remark 2. 

𝑋 ∈ 𝑁(0,1), is the random variable having a normalized normal distribution if the distribution density is defined by:  

𝜑𝑋(𝑥) =
1

√2𝜋
𝑒  − 

𝑥2

2 , ∀𝑥 ∈ 𝑅. 

Its cumulative distribution function is: 

 𝐹(𝑥) = 𝑃(𝑋 < 𝑥) = ∫ 𝑓(𝑡)
𝑥

0
𝑑𝑡 = 

1

√2𝜋
∫ 𝑒−𝑡

2/2𝑑𝑡
𝑥

0
= 𝜙(𝑥), ∀𝑥 ∈ 𝑅. 

where 𝜙(𝑥) is  Laplace function having the following properties: 

  ϕ(0) = 0, functie tabelata; ϕ(−𝑥) = 1 − ϕ(𝑥); ϕ(∞) =
1

2
, 𝜑(−∞) =

1

2
. 

Error function is defined as erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
, ∀𝑥 ∈ 𝑅 and express the probability of a random variable, with normal 

distribution of mean 0 and variance 1/2 falling in the range  [-𝑥, 𝑥]. 𝜙(𝑥) =
1

2
[1 + erf (

𝑥

√2
)]. 

 

Remark 3. 

From the analytical form of the normal distribution function results the impossibility of explicitly solving an equation of form 

F(x)=y. This leads to the development of special methods for evaluating the solution x = F-1(y).  One of these methods is based 

on the Proposition:  

 

Proposition 1  

If U and V are 2 independent random variables, uniform distributed in the interval [0,1], then the random variables: 

𝑋 = √−2 ⋅ ln(𝑈) ⋅ cos(2π ⋅ 𝑉);  𝑌 = √−2 ⋅ ln(𝑈) ⋅ sin(2π ⋅ 𝑉) 

are independent and normal distributed, with mean m = 0 and mean square deviation 2=1.  



   
Center for Research and Training in Innovative 

Techniques of Applied Mathematics in Engineering 

  
Department of Applied Mathematics,  

Faculty of Applied Sciences 

University Politehnica of Bucharest 

 

 
 

 
 

 3 

 

For Z normal standard distribution, X =  Z + m is the cumulative normal distibuion function with mean m 0 and   1: 

 

P(m – k < X < m + k) = P(-k < Z < k) =2𝛷(𝑘) -1 

For  k=3 we have:  

P[m–3 < X <m+3] = 0 .997, meaning thet 99,7% values of the function Z are in the interval. 
 

Exemples of  distribuions functions 

1. Normal distribution with parameters m and 2 ,  ),m(N~X 2 ; )1,0(N~
mX

),m(NX 2




−
  

 
2.Uniform distribution  ]b,a[U~X  

X v.a. with density function: 









−=

restîn           0

]b,a[x,
ab

1

)x(Xf . X has the mean 2/)ba()X(M +=  and dispersion 12/)ab()X(D 2−= . 
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3. Exponential distribution ),(Exp~X   

             X r.d. with density function funcţia: 𝑓𝑋(𝑥) = {
1

𝜆
𝑒−

𝑥−𝛼

𝜆 , 𝑥 ≥ 𝛼, 𝜆 > 0

0         în  rest
. 

X has the mean  +=)X(M  and dispersion 2)X(D = . Remark: )(Exp)0,(Exp  = . 

Negative exponentional distribution 

X has density function: 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥, x[0,), >0, 

 or cdf  𝐹(𝑥) = 𝑃[𝑋 < 𝑥] = {
𝑙 − 𝑒−𝜆⋅𝑥, 𝑥 ≥ 0
0, otherwise

. 

 

)1(Exp  

4. Weibull  distribution ),(~ WX  

X r.d. having density function: 𝑓𝑋(𝑥) = 𝛼𝛽𝑥
𝛽−1𝑒−(𝛼𝑥

𝛽) 

with mean  +=)X(M  and dispersion𝐷(𝑋) = 𝜆2. 
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5. chi-square distribution𝑿~𝝌𝟐(𝒏) 

 X r.d. with density function: 𝑓𝑋(𝑥) = {
𝑥𝑛/2−1

2𝑛/2𝛤(
𝑛

2
)
𝑒−𝑥/2, 𝑥 ≥ 0,

0         în  rest

, and 𝛤(𝑝) = ∫ 𝑥𝑝−1𝑒−𝑥𝑑𝑥
∞

0
. 

 
                 1= ;   n=0.5   n=5    n=10 

6. Student distribution 𝑿~𝑻(𝒏)  with n degrees of freedom 

X r.d. with density function: 𝑓𝑋(𝑥) =
𝛤(
𝑛+1

2
)

√𝜋⋅𝑛𝛤(
𝑛

2
)
(1 +

𝑥2

𝑛
)
−(𝑛+1)/2

. 

Proposition: 

For U, V two random variables such that 

𝑈~𝑁(0,1) and 𝑉~𝜒2 then: 

 

 𝑾 = 𝑼/√𝑽/𝒏 ⋅ ~T(𝒏) 
  

n=5     n=1 
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7. Fisher distribution with n, and m degrees of freedom )m,n(F~X  

X r.d. with density function 

𝑓𝑋(𝑥) =
𝛤 (
𝑚 + 𝑛
2

)

𝛤 (
𝑚
2
)𝛤 (

𝑛
2
)
(
𝑛

𝑚
)
𝑛/2

(1 +
𝑥2

𝑛
)

−(𝑛+1)/2

 

 

 
F(5,5)      F(5,1) 

8. Beta distribution ),(Be~X  , 0,0    

X r.d. with density function: 

𝑓𝑋(𝑥) =
𝑥𝛼−1(1−𝑥)𝛽−1

𝐵(𝛼,𝛽)
,𝑥 ∈ (0,1), cu 𝐵(𝛼, 𝛽) =

𝛤(𝛼)𝛤(𝛽)

𝛤(𝛼+𝛽)
. 

M(X)= 
ba

a

+
 , Var(X)=

( ) ( )12
+++ baba

ab
 

 

 
9. Gamma distribution G(a,b) , a>0,b>0. 

X r.d. with density function:
b 1 ax b

X

x e a
f (x) , x 0

(b)

− −

= 


   with  M(X)=b/a  ;  Var(X)=b/a2. 

For b=1 one obtain exponentioal distribution Exp(a). 
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Discrete distributions 

 

Binomial distribution 𝑿~𝑩𝒊(𝒑, 𝒏). 
𝑃(𝑋 = 𝑘) = 𝐶𝑛

𝑘𝑝𝑘(1 − 𝑝)𝑛−𝑘  

M(X)=np ;  Var(X)=npq. 

 

represents the probability with which an 

event A is realized k times in a number n 

(fixed) of samples in which the probability 

of realization of A in each sample is p. 

 

 

Negative Binomial distribution 

𝑿~𝑵𝑩(𝒓, 𝒑) 
𝑃(𝑋 = 𝑘) = 𝐶𝑟+𝑘−1

𝑘 𝑝𝑟𝑞𝑘 ; k=0,1,2..... 

M(X)=r
p

q
 ;     Var(X)=r

2p

q
. 

is the probability of having k failures 

before the second success in a series of 

Bernoulli tests (the result of each test 

consists in the realization of an event A 

with the probability p or of the event 

opposite to it with the probability q). 

Poisson distribution  

)(Po~X  .    𝑃(𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
 

M(X)=Var(X)= . 

 

express the number of events that 

result in property damage. 
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The Moment generating Function (MGF) 
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Compund distribution 

 
 


