
   
Center for Research and Training in Innovative 

Techniques of Applied Mathematics in Engineering 

  
Department of Applied Mathematics,  

Faculty of Applied Sciences 

University Politehnica of Bucharest 

 

 
 

 
 

 1 

ThinkBS: Basic Sciences in Engineering Education 

Erasmus Plus Project, International Training Module: 10-30 May, 2021, online 

https://learn.khas.edu.tr/course/view.php?id=5925 

 
Simona Mihaela Bibic, Mihai Rebenciuc, Elena-Corina Cipu 

 

 

KEYWORDS 
• Fractional Calculus; 

• Wavelet Analysis 

• Estimating of nonlinearities  

Some topics in this section that will be discussed: functions approximations by polynomial interpolation, 

iterative methods for calculating the eigenvalues and eigenvectors of a matrix, estimation methods of probability 

densities functions, estimation methods for solutions of nonlinear ODEs. 

 

Teachers 

The lecturers of this course are as follows: Simona Mihaela BIBIC, Elena Corina CIPU, Mihai Rebenciuc, Carmina GEORGESCU, Emil 

SIMION and Antonela TOMA from the Center for Research and Training in Innovative Techniques of Applied Mathematics in Engineering 

“Traian Lalescu” (CiTi), University Politehnica of Bucharest. 

 

 

 

https://secure-web.cisco.com/15znXH-puiQPVW_JP4oSv7RAoaT2WdJKt59t2l3Zj9sqc0PE3w8s6E6wHcwn5YMU94aaQnckcTZHwoGAlWpt2NBFe1qabAd7ZSCDxCRI4Xp-dU_ogUJKgCdd4IxKiSose2bWQXxmm2T7-m0gNIAdRSUB6vdVEoELt2PDfiVNOl550d3b2d3CZhLdbe_cosj2AMCiIfECDR97H-PkHImEawsPkR2emk0hhxOrmqsLHpVLP9oXMPR4Y_c6H2qI69DUEdQFARyTY5PTkP8rO9MK-KzZWXQEbLyIE0mhws3qQb1M/https:/learn.khas.edu.tr/course/view.php?id=5925


   
Center for Research and Training in Innovative 

Techniques of Applied Mathematics in Engineering 

  
Department of Applied Mathematics,  

Faculty of Applied Sciences 

University Politehnica of Bucharest 

 

 
 

 
 

 2 

 

ThinkBS: Basic Sciences in Engineering Education 

Erasmus Plus Project, International Training Module: 10-30 May, 2021, online 

https://learn.khas.edu.tr/course/view.php?id=5925 

 
Simona Mihaela Bibic, Mihai Rebenciuc, Elena-Corina Cipu 

 

 

ESTIMATION METHODS OF PROBABILITY DENSITIES FUNCTIONS 

Methods for estimating discrete distributions 

 

Recursive formulas 

 

Approximation of probability densities by orthogonal polynomials 

 

 

 

 

 

 

 

 

 

 

https://secure-web.cisco.com/15znXH-puiQPVW_JP4oSv7RAoaT2WdJKt59t2l3Zj9sqc0PE3w8s6E6wHcwn5YMU94aaQnckcTZHwoGAlWpt2NBFe1qabAd7ZSCDxCRI4Xp-dU_ogUJKgCdd4IxKiSose2bWQXxmm2T7-m0gNIAdRSUB6vdVEoELt2PDfiVNOl550d3b2d3CZhLdbe_cosj2AMCiIfECDR97H-PkHImEawsPkR2emk0hhxOrmqsLHpVLP9oXMPR4Y_c6H2qI69DUEdQFARyTY5PTkP8rO9MK-KzZWXQEbLyIE0mhws3qQb1M/https:/learn.khas.edu.tr/course/view.php?id=5925


   
Center for Research and Training in Innovative 

Techniques of Applied Mathematics in Engineering 

  
Department of Applied Mathematics,  

Faculty of Applied Sciences 

University Politehnica of Bucharest 

 

 
 

 
 

 3 
 



   
Center for Research and Training in Innovative 

Techniques of Applied Mathematics in Engineering 

  
Department of Applied Mathematics,  

Faculty of Applied Sciences 

University Politehnica of Bucharest 

 

 
 

 
 

 4  



   
Center for Research and Training in Innovative 

Techniques of Applied Mathematics in Engineering 

  
Department of Applied Mathematics,  

Faculty of Applied Sciences 

University Politehnica of Bucharest 

 

 
 

 
 

 5 

 

1. Methods for estimating discrete distributions. 

 

Poisson approximation of binomial distributions 

a. Let nN, k=1, 2, …, n and p(0,1), as for 𝑋~𝐵𝑖(𝑝, 𝑛),  𝑃(𝑋 = 𝑘) = (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘, then 

 

∑ 𝑃(𝑋 = 𝑖)𝑛
𝑖=𝑘 = ∑ (

𝑛
𝑖
)𝑛

𝑖=𝑘 𝑝𝑖(1 − 𝑝)𝑛−𝑖 = 𝑛 (
𝑛 − 1
𝑘 − 1

)∫ 𝑡𝑘−1(1 − 𝑡)𝑛−𝑘𝑑𝑡.
𝑝

0
 (1) 

b. For 𝜆 > 0and  𝑛 ∈ 𝑁0 we have for 𝑿~𝑷𝒐(𝝀) ,    𝑃(𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
,   

∑ 𝑃(𝑋 = 𝑘)∞
𝑘=𝑛+1 = ∑ 𝑒−𝜆∞

𝑘=𝑛+1
𝜆𝑘

𝑘!
= ∫

𝑡𝑛𝑒−𝑡

𝑛!
𝑑𝑡.

𝜆

0
  (2) 

c. For n=1, 2, …, 𝑝𝑛(0,1), 𝑛 ⋅ 𝑝𝑛 →
𝑛→∞

𝜆 > 0, and k=0, 1, … we have:  

 

(
𝑛
𝑘
) 𝑝𝑛

𝑘(1 − 𝑝𝑛)
𝑛−𝑘 =

1

𝑘!

𝑛

𝑛
. . .

𝑛−𝑘+1

𝑛
(𝑛 ⋅ 𝑝𝑛)

𝑘(1 −
𝑛⋅𝑝𝑛

𝑛
)𝑛(1 −

𝑛⋅𝑝𝑛

𝑛
)−𝑘 →

𝑛→∞
𝑒−𝜆

𝜆𝑘

𝑘!
. (3) 

 

Poisson approximation of negative binomial distributions  

 

For  𝑛 = 1,2, . . . , 𝑝𝑛 ∈ (0,1) and 𝑛 ⋅ (1 − 𝑝𝑛) →
𝑛→∞

𝜆 > 0, then for k=0, 1, … we have: 

 

(
𝑛 + 𝑘 − 1

𝑘
) 𝑝𝑛

𝑛(1 − 𝑝𝑛)
𝑘 =

1

𝑘!

𝑛

𝑛
. . .

𝑛+𝑘−1

𝑛
(1 −

𝑛⋅(1−𝑝𝑛)

𝑛
)𝑛(𝑛 ⋅ (1 − 𝑝𝑛))

𝑘 →
𝑛→∞

𝑒−𝜆
𝜆𝑘

𝑘!
. (4) 
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Simulation of geometrical distributions 

 

Next, we will show how a geometrical distribution of random variables, NB (1, p)  

can be obtained from a uniform distribution.  

 

Let 𝒑 ∈ (𝟎, 𝟏), X ~ U (0,1) then N expressed by 𝑵:= [
𝒍𝒏𝑿

𝒍𝒏(𝟏−𝒑)
]  is 𝑵~𝑵𝑩(𝟏, 𝒑) 

 

For k=0, 1, … we can write  

𝑃(𝑁 = 𝑘) = 𝑃(𝑘 + 1 >
𝑙𝑛 𝑋

𝑙𝑛( 1 − 𝑝)
≥ 𝑘) = 

𝑃((1 − 𝑝)𝑘+1 < 𝑋 ≤ (1 − 𝑝)𝑘) = 𝐹𝑋((1 − 𝑝)
𝑘) − 𝐹𝑋((1 − 𝑝)

𝑘+1). 
 

⇒ 𝑃(𝑁 = 𝑘) = (1 − 𝑝)𝑘 − (1 − 𝑝)𝑘+1 = 𝑝(1 − 𝑝)𝑘. (5) 

 

Also, NB (1, p) it can be constructed as a discretization of an exponential distribution as follows: 

 

Let 𝑌 =
𝑙𝑛 𝑋

𝑙𝑛(1−𝑝)
, N=[Y].  Y is defined in 𝑅+, and for x>0 we have: 

𝑃(𝑌 ≤ 𝑥) = 𝑃(𝑙𝑛 𝑋 ≥ 𝑥 𝑙𝑛( 1 − 𝑝)) = 𝑃(𝑋 ≥ 𝑒𝑥 𝑙𝑛(1−𝑝)) = 1 − 𝑒−|𝑙𝑛(1−𝑝)|𝑥, 

Therefore: 

[Y]~NB (1, p)⇒ Y~Exp(|𝑙𝑛( 1 − 𝑝)|),  (6) 

Y~Exp(a) ⇒ [Y]~NB (1, p) with p=1-exp(-a). (7) 
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Normal approximation and Wilson - Hilferty approximation for the Poisson distribution 

 

 Let 𝑋∗: = (𝑋 −𝑀(𝑋))/√𝑉(𝑋) the standardized of a random variable denoted with X, with M(X) notation for expectancy 

of X and V(X) the variance.  Then 𝑋∗ is approximated using the Laplace function  that explain the normal distribution 𝑁(0,1) 
since 

 

𝑃(𝑋∗ ≤ 𝑥) ≈ 𝛷(𝑥)   or    𝑃(𝑋 ≤ 𝑥) = 𝑃 (𝑋∗ ≤
𝑥−𝑀(𝑋)

√𝑉(𝑋)
) ≈ 𝛷 (

𝑥−𝑀(𝑋)

√𝑉(𝑋)
). (8) 

 

For high volume selections this approximation is justified by the Central Limit Theorem.  

 

Particular Case 

𝑵~𝑷𝒐𝒌(𝝀),  𝑃(𝑁 ≤ 𝑛) ≈ 𝛷(
𝑛−𝜆

√𝜆
), n=1,2, …                                                              (9) 

𝑁∗: = (𝑁 − 𝜆)/√𝜆 has the following momentum generating function: 

 

𝜙𝑁∗(𝑡) = 𝑒
−𝑡√𝜆𝑒𝜆(𝑒

𝑡/√𝜆−1) = 𝑒𝑥𝑝[ 𝜆(1 +
𝑡

√𝜆
+
𝑡2

2𝜆
+. . . −1) − √𝜆𝑡] = 𝑒𝑥𝑝[

𝑡2

2
+

𝑡3

6√𝜆
+. . . ]

 𝜆→∞ 
→     𝑒𝑥𝑝(

𝑡2

2
). (10) 

 The moment-generating function for N (0,1) is 𝑒𝑡
2/2. 

A first approximation 𝑁 = 𝜆 + √𝜆 𝑍 with 𝑍 ≈ 𝑁(0,1). 
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A better approximation could be obtained using the Wilson-Hilferty (WH) formula.  

We are interested in a study of 𝑆 = ∑ 𝑋𝑖
𝑁
𝑖=1  where 𝑋𝑖 are some random variables that could be standard Gamma distribution,  

𝑓𝑋(𝑥) =
𝑥𝑏−1𝑒−𝑥

𝛤(𝑏)
, 𝑥 > 0,𝑁 could be expressed by Poisson distribution. 

For Gamma distribution, first approximation for the cumulative distribution function (cdf) is   𝑋 = 𝑏 + √𝑏 𝑍 with 𝑍 ≈ 𝑁(0,1). 
Wilson-Hilferty (WH) for Gamma distribution 

 We look for a non-linear transformation of the type 

𝑋 = 𝑦(𝑍)𝑝 = (𝑎 + 𝑏 𝑍 + 𝜓(𝑍))𝑝   

 where X is Gamma random variable, 𝑍 is the transformed random variable, 𝑎, 𝑏, 𝑝 are suitable constants  

 to be determined such that 𝑍 is closely to a standard Gaussian random variable, 𝑁(0,1).  
 The class of transformation include an analytic correction 𝜓(𝑧) with initial conditions: 

𝜓(0) = 0, 𝜓′(0) = 0, 𝜓′′(0) = 0.    

From (11) the differential of x becomes 𝑑𝑥 = 𝑝(𝑎 + 𝑏 𝑧 + 𝜓(𝑧))𝑝−1(𝑏 + 𝜓′(𝑧))𝑑𝑧.  Also 

𝑓𝑋(𝑥, 𝑧)𝑑𝑥 = 𝑔(𝑧, 𝑏)𝑑𝑧 =
𝑝

𝛤(𝑏)
exp(𝜓(𝑧)) 𝑑𝑧 

where 𝑔(𝑧, 𝑏) is the new Gamma density function expressed through z variable. Because we need to obtain gaussian 

approximation for 𝜓(𝑧) is taken a parabolic approximation 𝜓(𝑧) ≅ 𝜓(0) −
1

2
𝑧2 = 𝜑(𝑧) that must satisfy initial 

conditions: 𝜑(0) = 0, 𝜑′(0) = −1, 𝜑′′(0) = 0.  One finds X= (𝑎 + 𝑏 𝑍 + 𝜓(𝑍))3, 𝑏 =
1

3√𝑎
;  

or  𝑎(𝛼) = √𝛼 −
1

3

3
, 𝑏(𝛼) =

1

3 √𝛼−
1

3

6
. And the following approximation Γ𝑊𝐻(𝑥,𝛼) = √2𝜋 (𝛼 −

1

3
)
𝛼−

1

2
𝑒
−(𝛼−

1

3
)
.  

The relative error of approximation is given by 𝜀(𝛼) = |1 −
Γ𝑊𝐻(𝑥,𝛼)

𝛤(𝑏)
| is of order 𝛼−2. 
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For Poisson distribution approximation is:  

 

𝑘(𝜆):= 3√𝜆 + 1,  𝑃(𝑁 ≤ 𝑛) ≈ 𝛷(𝑘(𝜆) −
1

𝑘(𝜆)
− √9 ⋅ 𝜆 ⋅ 𝑘(𝜆)

3 ), n=1,2, …                             (11) 

𝑷𝒐𝒌(𝝀) ≈  1 − 𝛷 (
𝑐−𝜇

𝜎
) , 𝑐 = (

𝜆

1+𝑘
)

1

3
, 𝜇 = 1 −

1

9(1+𝑘)
, σ =

1

3√𝑘+1
, (11’) 

For discrete type distributions such as Poisson distribution, it is necessary to approximate the distribution with a continuous 

probability density and apply the WH-type approximation. In this case 𝑘! = 𝛤(𝑘 + 1) is for the denominator. 

𝑓𝑋(𝑥,𝜆) =
𝜆
𝑘
𝑒−𝜆

𝛤(𝑘 + 1)
 

The class of transformations is defined as:  

𝑘(𝑧):= (𝑎(𝜆) + 𝑏(𝜆) 𝑍)𝑞 + 𝑐 
 

with the differential  

d𝑘(𝑧):= 𝑞𝑏(𝜆)(𝑎(𝜆) + 𝑏(𝜆) 𝑍)𝑞−1𝑑𝑥 

that leads to  

𝑓𝑋(𝑥,𝜆)d𝑘 =
𝜆
𝑘(𝑧)
𝑒−𝜆

𝛤(𝑘(𝑧)+1)
𝑏(𝜆)(𝑎(𝜆) + 𝑏(𝜆) 𝑍)𝑞−1𝑑𝑥=exp(𝜑(𝑧)) 𝑑𝑧 

𝜑(𝑧) = 𝑘(𝑧) ln(𝜆) − 𝜆 − ln[𝛤(𝑘(𝑧) + 1)] + (1 −
1

𝑞
) ln(𝑘(𝑧) − 𝑐) + ln(𝑏(𝜆)) + ln(𝑞). 

Then with the approximation  ln[𝛤(𝑘(𝑧) + 1)] ≅
1

2
ln(2𝜋) + (𝑘(𝑧) +

1

2
) ln (𝑘(𝑧) +

2

3
) − (𝑘(𝑧) +

2

3
)  

𝜑(𝑧) ≅ 𝑘(𝑧)ln𝑘(𝑧) + 𝑘(𝑧) + 𝑘(𝑧) ln(𝜆) −
1

2
ln𝑘(𝑧) + (1 −

1

𝑞
) ln𝑘(𝑧) + 𝑂(1), 𝜑(0) = 0, 𝜑′(0) = −1, 𝜑′′(0) = 0.   
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For 𝑘(0) = 𝑎𝑞 + 𝑐, with 𝑐 ≪  𝑘 ≅ 𝑎𝑞, ln𝑘 ≅ ln(𝑎𝑞) +
𝑐

𝑎𝑞
. For conditions imposed is choosen 𝑎(𝜆) = 𝜆

1

𝑞 and 𝑐 =
1

2
−
1

𝑞
. 

Finally, optimal parameters for the transformation are  

𝑞 =
3

2
, 𝑎(𝜆) = 𝜆

2
3, 𝑏(𝜆) =

2

3
𝜆
1
6, 𝑐 = −

1

6
⟹ 𝑘(𝜆) = (𝜆

2
3 +

2

3
𝜆
1
6𝑍)

3
2
−
1

6
   

 

2. Recursive formulas 

 

 Let N - random variables with natural values that satisfy recursive relations: 

 

P(N=0) =p (0), 𝑃(𝑁 = 𝑛) = 𝑃(𝑁 = 𝑛 − 1)(𝑎 +
𝑏

𝑛
), a, b real, n=1,2, …                         (12) 

 

First, we precise that condition (12) is true only for the following repartitions: 

 

1. 𝑁~𝑃𝑜(𝜆) leads to 𝑃(𝑁 = 0) = 𝑒−𝜆 and  
𝐏(𝐍=𝐧)

𝐏(𝐍=𝐧−𝟏)
=
𝛌

𝐧
, n=1,2, … It results a=0 and b=. 

2. N~Bi (m, p) with 𝑃(𝑁 = 0) = (1 − 𝑝)𝑚 and 𝑷(𝑵 = 𝒏) = 𝑷(𝑵 = 𝒏 − 𝟏) ⋅
𝒎−𝒏+𝟏

𝒏

𝒑

𝟏−𝒑
, 𝒏 = 𝟏, 𝟐. . ., 

it results 𝑎 = −𝑝/(1 − 𝑝), 𝑏 = (𝑚 + 1)𝑝/(1 − 𝑝). 

3. N~ NB (r, p) with 𝑃(𝑁 = 0) = 𝑝𝑟 and 
𝑃(𝑁=𝑛)

𝑃(𝑁=𝑛−1)
=
𝑟+𝑛−1

𝑛
(1 − 𝑝), 𝑛 = 1,2, . . ., it results a=1-p, b=(r-1) (1-p). 

 

4. Degenerate distribution with P(N=0) =1, from where a + b=0. 
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Counter example: 

On the other hand, the relation (12) is not fulfilled in the case: N ~ Ln (p) with P(N=0) =0 and 
𝑃(𝑁=𝑛)

𝑃(𝑁=𝑛−1)
= 𝑝(1 −

1

𝑛
),  

that is valid only for n=2,3, …, but not for n = 1. 

 

Theorem: If the relation (12) takes place, then the corresponding distributions are only Poisson, Binomial, Negative Binomial 

and Logarithmic. 

Proof: 

i. Case a+b<0 

Because of P(N=1) = (a+b) P(N=0) we find P(N=0) =0 and P(N=1) =P(N=2) =…=0 from where one concludes that is 

necessary to have a+b>=0. 

 

ii.  Let a+b=0, then P(N=1) =P(N=2) =…=0, so p (0) =P(N=0) =1. 

 

iii. Now, let a+b>0 and a=0.  Results that:  

𝑃(𝑁 = 𝑛) = 𝑃(𝑁 = 𝑛 − 1)
𝑏

𝑛
= 𝑃(𝑁 = 𝑛 − 2)

𝑏2

𝑛(𝑛−1)
=. . . = 𝑃(𝑁 = 0)

𝑏𝑛

𝑛!
, n=1,2, …  

 

And because 1 = ∑ 𝑃(𝑁 = 𝑛) = 𝑃(𝑁 = 0) ⋅ 𝑒𝑏∞
𝑛=0 , 𝑃(𝑁 = 𝑛) = 𝑒−𝑏

𝑏𝑛

𝑛!
 , 

 

iv. For a<0, let 𝑚 ∈ 𝑁 such that: 𝑎 +
𝑏

𝑚+1
= 0, meaning 𝑚 = −

𝑎+𝑏

𝑎
 and P (N = n) =0 for n=m+1, m+2, …  

Moreover, for n=1,2, …, m we have: 
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𝑃(𝑁 = 𝑛) = 𝑃(𝑁 = 𝑛 − 1)(𝑎 +
𝑏

𝑛
) =. . . = 

= 𝑃(𝑁 = 0)(𝑎 + 𝑏)(𝑎 +
𝑏

2
). . . (𝑎 +

𝑏

𝑛
) = 𝑃(𝑁 = 0)

𝑎𝑛

𝑛!
(
𝑎 + 𝑏

𝑎
)(
𝑎 + 𝑏

𝑎
+ 1). . . (

𝑎 + 𝑏

𝑎
+ 𝑛 − 1) = 

= 𝑃(𝑁 = 0)
𝑎𝑛

𝑛!
(−𝑚)(−𝑚 + 1). . . (−𝑚 + 𝑛 − 1) = 𝑃(𝑁 = 0)(−𝑎)𝑛(𝑛

𝑚), 

 

so 

1 = ∑𝑃(𝑁 = 𝑛)

𝑚

𝑛=0

= 𝑃(𝑁 = 0)∑(𝑛
𝑚)(−𝑎)𝑛 = 𝑃(𝑁 = 0)(1 − 𝑎)𝑚

𝑚

𝑛=0

 

 

thus 𝑃(𝑁 = 0) = (1 − 𝑎)−𝑚 and 𝑃(𝑁 = 𝑛) = (𝑛
𝑚)(

−𝑎

1−𝑎
)𝑛(

1

1−𝑎
)𝑚−𝑛, n=0,1, …, m,  

 

where 
−𝑎

1−𝑎
= 1 −

1

1−𝑎
∈ (0,1).                 

 

Further the last case, for a>0 and 𝑟:= (𝑎 + 𝑏)/𝑎 ∈ 𝑅+, one obtains as before: 

 

𝑃(𝑁 = 𝑛) = 𝑃(𝑁 = 0)(−𝑎)𝑛(𝑛
−𝑟) = 𝑃(𝑁 = 0)𝑎𝑛 (

𝑟 + 𝑛 − 1
𝑛

) = (1 − 𝑎)−𝑟 , 

𝑃(𝑁 = 0) = (1 − 𝑎)𝑟 
𝑃(𝑁 = 𝑛) = (𝑛

𝑟+𝑛−1)(1 − 𝑎)𝑟𝑎𝑛, 𝑛 = 0,1, . .. 
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Summary. Simple adjustments 

In the applications of stochastic mathematics, the most common method of adjusting a distribution is the normal 

approximation: 

𝑃(𝑋 ≤ 𝑥) ≈ 𝛷(
𝑥−𝑀(𝑋)

√𝑉(𝑋)
).                                                               (6) 

For the variable S, S = ∑ Xi
N
i=1  , and (Xi) i.i.d. as X (6) means: 

 

𝑃(𝑆 ≤ 𝑥) ≈ 𝛷(
𝑥−𝑀(𝑁(𝑀(𝑋))

√𝑀(𝑁𝑉(𝑋))+(𝑀𝑁)2𝑉(𝑁)
),                                   (7) 

 

and for 𝑁~𝑃𝑜(𝜆) one finds𝑃(𝑆 ≤ 𝑥) ≈ 𝛷(
𝑥−𝜆𝑀(𝑋)

√𝜆𝑀(𝑋2)
).  

In cases where the distribution is not symmetrical, the normal approximation is not appropriate. In this situation, the 

transformation of the variable Y into Z = lnY is considered, a transformation that brings the distribution of Z closer to a normal 

one. 

A third approach is given by introducing a Gamma distribution. This is applied as follows: 

For 𝑋~𝛤(𝑎, 𝑏) one has 
𝑀(𝑋)

𝑉(𝑋)
=

𝑏/𝑎

𝑏/𝑎2
= 𝑎,   

(𝑀(𝑋))2

𝑉(𝑋)
=
𝑏2/𝑎2

𝑏/𝑎2
= 𝑏. 

So, if the distribution of a random variable X is adjusted by a Gamma distribution, a suitable choice would be:  

𝛤(
𝑀(𝑋)

𝑉(𝑋)
,
𝑀(𝑋)2

𝑉(𝑋)
).  
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3.Approximation of probability densities by Orthogonal Polynomials 

 

The approximation of densities by orthogonal polynomials is based on the following idea:  let 𝐼 ∈ 𝑅 an interval and f a real 

function defined on I which will be approximate. Let w a positive continuous function on I such that exists and be finite for 

any polynomial 𝜋the integral ∫𝜋(𝑥)𝑤(𝑥)𝑑𝑥. For i=0,1, … let 𝜋𝑖 a polynomial such that ∫𝜋𝑖(𝑥)𝜋𝑘(𝑥)𝑤(𝑥)𝑑𝑥 = 0  pentru 

𝑖 ≠ 𝑘 and  

𝐶𝑘: = ∫𝜋𝑘
2(𝑥)𝑤(𝑥)𝑑𝑥,    k=0,1, … 

 

The regular function f can be developed as follows: 

𝑓(𝑥) = 𝐴0𝜋0(𝑥)𝑤(𝑥) + 𝐴1𝜋1(𝑥)𝑤(𝑥)+. . .,                                                 (8) 

Where the coefficients 𝐴0,𝐴1, . .. are obtained from: 

 

∫𝜋𝑘(𝑥)𝑓(𝑥)𝑑𝑥 = ∫𝜋𝑘(𝑥)∑𝐴𝑖𝜋𝑖(𝑥)𝑤(𝑥)𝑑𝑥 = 𝐴𝑘 ∫𝜋𝑘
2𝑤(𝑥)𝑑𝑥 = 𝐴𝑘𝐶𝑘 .   𝐴𝑘 = ∫𝜋𝑘(𝑥)𝑓(𝑥)𝑑𝑥/𝐶𝑘,     k=0,1, … 

 

particularly if f is the density of a random variable X:   𝐴𝑘 = 𝑀(𝜋𝑘(𝑥))/𝐶𝑘,   k=0,1, …, 

 

From (8) choosing the first n terms for a truncated relation at step n one gets the approximation 

 

𝑓(𝑥) ≈ 𝐴0𝜋0(𝑥)𝑤(𝑥)+. . . +𝐴𝑛𝜋𝑛(𝑥)𝑤(𝑥),                                           (9) 

 

for which it is sufficient to know the moments up to the order n. 

We will further consider some examples of evaluated functions and corresponding polynomial series. In all cases the 

evaluated functions are densities. In the limit case in which n = 0 the approximation f(x)~w(x)  is obtained by the relation (9). 
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1. BOWERS’ Gamma approximation function. 

 

We want to approximate the density function g or the distribution function G for a positive random variable S. Instead of 

S we will consider the random variable 𝑍 =
𝑀(𝑆)

𝑉(𝑆)
𝑆 with density function f and distribution function F.  

One obtains: 

 𝐺(𝑥) = 𝐹(
𝑀(𝑆)

𝑉(𝑆)
𝑥),  𝑔(𝑥) =

𝑀(𝑆)

𝑉(𝑆)
𝑓(
𝑀(𝑆)

𝑉(𝑆)
𝑥), 𝑥 ∈ 𝑅. 

Let 𝐼 = 𝑅+ and𝑤(𝑥) =
1

𝛤(𝑏)
𝑥𝑏−1𝑒−𝑥   with 𝑏 = 𝑀(𝑍) =

𝑀(𝑆)2

𝑉(𝑆)
. 

So, w has the meaning of density function for 𝛤(1, 𝑏). 
 

Remark: For 𝑋~𝛤(𝛼, 𝛽) we have 𝛼 =
𝑀(𝑋)

𝑉(𝑋)
, 𝛽 =

𝑀(𝑋)2

𝑉(𝑋)
, and with c>0, 𝑐𝑋~𝛤(

𝛼

𝑐
, 𝛽). 

Thus 𝛼𝑋 =
𝑀(𝑋)

𝑉(𝑋)
𝑋~𝛤(1, 𝛽) = 𝛤(1,

(𝐸𝑋)2

𝑉(𝑋)
) and reversely  

 

𝛶~𝛤(1,
𝑀(𝑋)2

𝑉(𝑋)
) ⇒

𝑉(𝑋)

𝑀(𝑋)
𝛶~𝛤(

𝑀(𝑋)

𝑉(𝑋)
,
𝑀(𝑋)2

𝑉(𝑋)
). 

 

Thus, the transition from S to Z is a kind of standardization of a Gamma random variable. 

For the family of orthogonal polynomials, it is used 

𝐿𝑘(𝑥) = (−1)
𝑘𝑥1−𝑏𝑒𝑥

𝑑𝑘

𝑑𝑥𝑘
(𝑥𝑘+𝑏−1𝑒−𝑥) = 𝛤(𝑏 + 𝑘)∑ (−1)𝑖+𝑘(𝑖

𝑘)𝑥𝑖
1

𝛤(𝑏+𝑖)

𝑘
𝑖=0 ,       k=0,1, … 

𝐿𝑘 is called the Laguerre polynomial of order k and we get for example: 
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𝐿0(𝑥) = 1, 
𝐿1(𝑥) = 𝑥 − 𝑏, 
𝐿2(𝑥) = 𝑥

2 − 2(𝑏 + 1)𝑥 + 𝑏(𝑏 + 1), 
𝐿3(𝑥) = 𝑥

3 − 3(𝑏 + 2)𝑥2 + 3(𝑏 + 2)(𝑏 + 1)𝑥 − (𝑏 + 2)(𝑏 + 1)𝑏. 
Moreover,  

𝐶𝑘 = 𝑘!
𝛤(𝑏+𝑘)

𝛤(𝑏)
= 𝑘! (𝑏 + 𝑘 − 1) ⋅ (𝑏 + 𝑘 − 2) ⋅. . .⋅ 𝑏  and  

𝐴0 = 1, 𝐴1 = 𝐴2 = 0, 𝐴3 =
𝛤(𝑏)

6𝛤(𝑏+3)
(𝜇3 − (𝑏 + 2)(𝑏 + 1)𝑏) with 𝜇3: = 𝑀(𝑍

3).  

We find the approximation: 

 

𝑓(𝑥) ≈ 𝑤(𝑥) + 𝐴3𝐿3(𝑥)𝑤(𝑥), 𝐹(𝑥) ≈ 𝑊(𝑥) + 𝐴3 ∫ 𝐿3(𝑡)𝑤(𝑡)𝑑𝑡
𝑥

0
, (10) 

 

where W is the distribution function of the density w(x). Because  

∫ 𝐿3(𝑡)𝑤(𝑡)𝑑𝑡 = −
𝑥𝑏𝑒−𝑥

𝛤(𝑏)

𝑥

0
((𝑏 + 2)(𝑏 + 1) − 2(𝑏 + 2)𝑥 + 𝑥2)  

we finally can write: 

 

𝐹(𝑥) ≈ 𝑊(𝑥) − 𝑥𝑏𝑒−𝑥[
1

𝛤(𝑏+1)
−

2𝑥

𝛤(𝑏+2)
+

𝑥2

𝛤(𝑏+3)
]
𝜇3−(𝑏+2)(𝑏+1)𝑏

6
. (11) 

 

Replacing x by 𝑥 ⋅
𝑀(𝑆)

𝑉(𝑆)
 in the right hand of (11) an approximation of G(x) is obtained.  
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2. Gram-Charlier approximation 

 

It is desired to approximate the distribution function G of the density function g for a random variable S with 𝜇:= 𝑀(𝑆) and 

𝜎2: = 𝑉(𝑆). Instead of S we consider the standardized value 𝑍:= (𝑆 − 𝜇)/𝜎 with the density function f and distribution 

function F. Obviously 

M(Z)=0, V(Z)=1 and 𝐺(𝑥) = 𝐹(
𝑥−𝜇

𝜎
),  𝑔(𝑥) =

1

𝜎
𝑓(
𝑥−𝜇

𝜎
),   𝑥 ∈ 𝑅. 

For now, we take I=R and 𝑤 = 𝜙, where 𝜙 express the probability density function for N (0,1), and 𝛷 is the Laplace function. 

For orthogonal polynomials we use 

𝐻𝑘(𝑥) = 𝜙
(𝑘)(𝑥)/𝜙(𝑥) 

            (−1)𝑘 ∑ (2𝑖
𝑘 )𝑚

𝑖=0 𝑥𝑘−2𝑖(−1)𝑖∏ (2𝑗 + 1)𝑖−1
𝑗=0 ,  𝑚:= [

𝑘

2
],  k=0,1, … (12) 

 

with the recursive relations 

 

𝐻𝑘+1(𝑥) = −𝑥𝐻𝑘(𝑥) + 𝐻𝑘
′ (𝑥),  k=0,1, … 

 

𝐻𝑘 is the Hermite polynomial of order k, for which: 

 

𝐻0(𝑥) = 1,𝐻1(𝑥) = −𝑥, 𝐻2(𝑥) = 𝑥
2 − 1,𝐻3(𝑥) = −𝑥

3 − 6𝑥2 + 3. 
One finds 𝐶𝑘 = 𝑘! and 

𝐴0 = 1, 𝐴1 = 𝐴2 = 0, 𝐴3 = −
𝜇3

6
, 𝐴4 =

1

24
(𝜇4 − 3) 

with 𝜇𝑖: = 𝑀(𝑍
𝑖), i=3,4.  
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We find the approximations: 

 

𝑓(𝑥) ≈ 𝜙(𝑥) + 𝐴3𝜙
(3)(𝑥) + 𝐴4𝜙

(4)(𝑥), 𝐹(𝑥) ≈ 𝛷(𝑥) + 𝐴3𝛷
(3)(𝑥) + 𝐴4𝛷

(4)(𝑥).                       (13) 

 

The approximation for G(x) results by replacing x with (𝑥 − 𝜇)/𝜎 in the right hand of the relation (13). 

 

Particular Case 

 

If we consider 𝑆~𝐶𝑃(𝜆, 𝑄), where Q has 𝑚𝑘the moment of order k, k=1,2, …, one finds: 

 

𝜇 = 𝜆𝑚1,  𝜎
2 = 𝜆𝑚2, 

𝜇3 = 𝑀𝑍
3 =

1

𝜎3
𝑀(𝑆 − 𝜇)3 =

𝜆𝑚3

√(𝜆𝑚2)
3
=

𝑚3

√𝜆𝑚2
3
, 

𝜇4 = 𝑀𝑍
4 =

1

𝜎4
𝑀(𝑆 − 𝜇)4 =

3𝜆2𝑚2
2 + 𝜆𝑚4

(𝜆𝑚2)
2

=
𝑚4

𝜆𝑚2
2 + 3, 

so 

𝐴3 = −
𝑚3

6√𝜆𝑚2
3
, 𝐴4 =

𝑚4

24𝜆𝑚2
2. 

 

If we consider N~B (n, p) or N~NB (r, p) the values for 𝐴3 and  𝐴4 can be determined using recursive formulas. 
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3. Edgeworth approximation 

 

Let S a random variable with 𝜇 = 𝑀(𝑆),  𝜎2: = 𝑉(𝑆), and we look for approximation of the density function g or the 

distribution function G. As we did before, the variable is standardized by𝑍 = (𝑆 − 𝜇)/𝜎 with density function f, and 

distribution function F and 𝜙the momentum generation function. Taylor's next development is supposed to take place: 

𝜙̄(𝑡): = 𝑒−
𝑡2

2 𝜑(𝑡) =∑𝑎𝑖𝑡
𝑖 ,

∞

𝑖=0

𝜑(𝑡) =∑𝑎𝑖𝑡
𝑖𝑒
𝑡2

2 .

∞

𝑖=𝑜

 

By induction one observes that:  

 

𝑡𝑖𝑒
𝑡2

2 = ∫ 𝑒𝑡𝑢
∞

−∞
(−1)𝑖𝜑(𝑖)(𝑢)𝑑𝑢,   i=0,1, …, where 𝜑 express the density function for N (0,1),  

 

thus, 𝜑(𝑡) = ∑ 𝑎𝑖
∞
𝑖=0 ∫ 𝑒𝑡𝑢

∞

−∞
(−1)𝑖𝛷(𝑖)(𝑢)𝑑𝑢 = ∫ 𝑒𝑡𝑢(∑ 𝑎𝑖(−1)

𝑖𝜑(𝑖)(𝑢))𝑑𝑢.∞
𝑖=0

∞

−∞
 

Consequently: 

 

𝑓(𝑡) = ∑ 𝑎𝑖(−1)
𝑖𝜑(𝑖)(𝑡)∞

𝑖=0 , 𝐹(𝑥) = ∑ 𝑎𝑖(−1)
𝑖𝛷(𝑖)(𝑢)𝑑𝑢∞

𝑖=𝑜 ,  (14) 

 

Edgeworth approximation of the order n is obtained by truncate the above series, 

 

             𝑓(𝑥) ≈ ∑ 𝑎𝑖(−1)
𝑖𝜑(𝑖)(𝑥)𝑛

𝑖=0 , or   𝑔(𝑥) ≈ ∑ 𝑎𝑖(−1)
𝑖 1

𝜎

𝑛
𝑖=0 𝛷(𝑖)(

𝑥−𝜇

𝜎
). (15) 
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We find equality: 𝑎𝑖 =
1

𝑖!
𝜙̄(𝑖)(0), i=0,1, …. and K. Schroter gave us the following representation: 

 

𝑎𝑖 =
1

𝑖!
∑ (𝑗

𝑖 )𝑖
𝑗=0 𝜇𝑗𝐻𝑖−𝑗(0),                   i=0,1, … 

 

where 𝜇𝑘 = 𝑀(𝑍
𝑘) and 𝐻𝑘is the Hermite polynomial of order k, k=0,1, ….  

 

Using the explicit representation of Hermite's polynomial, we obtain for i=0,1, … 

                   𝑎2𝑖 = ∑ (−
1

2
)𝑖−𝑗𝑖

𝑗=0
1

(1−𝑗)!(2𝑗)!
𝜇2𝑗 , 

                   𝑎2𝑖+1 = ∑ (−
1

2
)𝑖−𝑗

1

(𝑖−𝑗)!(2𝑗+1)!
𝜇2𝑗+1.

𝑖
𝑗=0  

 

In particular we have: 

𝑎0 = 1, 𝑎1 = 𝑎2 = 0, 𝑎3 = 𝜇3/6, 
𝑎4 = (𝜇4 − 3)/24, 
𝑎5 = (𝜇5 − 10𝜇3)/120, 
𝑎6 = (𝜇6 − 15𝜇4 + 30)/720. 

 

The moments for S and Z can be determined according to the formulas in the previous sections. 
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Power approximation 

 

Power approximation is an additional method to improve Edgeworth approximation. 

Let be S random variabile with cumulative density function G, 𝛾 = 𝑀(𝑆), 𝜎2 = 𝑉(𝑆) and random variable 𝑍 = (𝑆 −
𝛾)/𝜎. Let be also 𝛾1: = 𝑀(𝑍

3), 𝛾2: = 𝑀(𝑍
4) − 3. We shall study the case 𝑆~𝐶𝑃(𝜆, 𝑄). 

From Edgeworth aproximation for the distribution function F of Z we have: 

𝐹(𝑥) ≈ 𝑒(𝑥):= 𝛷(𝑥) −
𝛾1
6
𝛷(3)(𝑥) +

𝛾2
24
𝛷(4)(𝑥) +

𝛾2
1

72
𝛷(6)(𝑥). 

For a function p with the inverse 𝑝−1 such that: 

𝑒(𝑝(𝑦)) = 𝛷(𝑦).                                                                                                (18) 

we obtain 

𝐺(𝑥) = 𝐹(
𝑥−𝜇

𝜎
) ≈ 𝑒(

𝑥−𝜇

𝜎
) = 𝛷(𝑝−1(

𝑥−𝜇

𝜎
)).                                               (19) 

If 𝑝(𝑦) = 𝑦 + 𝛥𝑦, from (19) 

0 = 𝑞(𝛥𝑦):= 𝛷(𝑦) − 𝑒(𝑦 + 𝛥𝑦) 

   = 𝛷(𝑦) − 𝛷(𝑦 + 𝛥𝑦) +
1

6
𝛾1𝛷

(3)(𝑦 + 𝛥𝑦) −
1

24
𝛾2𝛷

(4)(𝑦 + 𝛥𝑦) −
1

72
𝛾1
2𝛷(6)(𝑦 + 𝛥𝑦)+. .. 

In order to obtain 𝛥𝑦(𝑞) we use newton methods of order one, 

𝛥𝑦 ≈ 𝑦0 −
𝑞(𝑦0)

𝑞′(𝑦0)
−
1

2

𝑞"(𝑦0)

𝑞′(𝑦0)
[
𝑞(𝑦0)

𝑞′(𝑦0)
]2,                                                              (20) 

 

With initial value 𝑦0: = 0.  



   
Center for Research and Training in Innovative 

Techniques of Applied Mathematics in Engineering 

  
Department of Applied Mathematics,  

Faculty of Applied Sciences 

University Politehnica of Bucharest 

 

 
 

 
 

 22 

Prin marirea valorii 𝜆 in cazul 𝐶𝑃(𝜆, 𝑄) si prin omiterea termenilor care devin mult prea mici ca si valoare, se obtine din 

ecuatia (21): 

𝛥𝑦 ≈ −
𝑞(0)

𝑞′(0)
−
1

2

𝑞"(0)

𝑞′(0)
[
𝑞(0)

𝑞′(0)
]2 

      ≈ −
1

6
𝛾1𝛷

(3)(𝑦)−
1

24
𝛾2𝛷

(4)(𝑦)−
1

72
𝛾1
2𝛷(6)(𝑦)

−𝛷′(𝑦)+
1

6
𝛾1𝛷

(4)(𝑦)−
1

24
𝛾2𝛷

(5)(𝑦)−
1

72
𝛾1
2𝛷(7)(𝑦)

−
1

2
. .. 

 

       ≈
1

6
𝛾1(𝑦

2−1)+
1

24
𝛾2(𝑦

3−3𝑦)+
1

72
𝛾1
2(𝑦5−10𝑦3+15𝑦)

1+
1

6
𝛾1(𝑦

3−3𝑦)
+

1

72
𝛾1
2(𝑦5 − 2𝑦3 + 𝑦). 

After dividing the terms into the first fraction: 
1

6
𝛾1(𝑦

2 − 1) +
1

24
𝛾2(𝑦

3 − 3𝑦) −
1

72
𝛾1
2(𝑦5 + 2𝑦3 − 9𝑦)+. .., 

We find the following approximation: 

𝛥𝑦 ≈
1

6
𝛾1(𝑦

2 − 1) +
1

24
𝛾2(𝑦

3 − 3𝑦) −
1

36
𝛾1
2(2𝑦3 − 5𝑦) 

And 

𝑝(𝑦) = 𝑦 +
1

6
𝛾1(𝑦

2 − 1) +
1

24
𝛾2(𝑦

3 − 3𝑦) −
1

36
𝛾1
2(2𝑦3 − 5𝑦).                (21) 

 

According with (19) we must now obtain that y for which the relaion 𝑝(𝑦) = (𝑥 − 𝜇)/𝜎 take place. 

 

Fisrt case in (21), p(y)=y; formula (19) being the normal approximation. 
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Second approximation 𝑝(𝑦) = 𝑦 +
1

6
𝛾1(𝑦

2 − 1), leads to: 

𝐺(𝑥) ≈ 𝛷(√
9

𝛾1
2 +

6

𝛾1

𝑥−𝜇

𝜎
+ 1 −

3

𝛾1
). 

In  case 𝑆~𝐶𝑃(𝜆, 𝑄), with Q having 𝑚𝑘, k=1,2,…, moments: 

 

)
3

1)(
69

()(
3

3

2

1

3

2

2

3

3

2

m

m
mx

m

m

m

m
xG





−+−+


 .                                              (22) 

Called  normal approximation of the power two. 

In case Q=Exp(a), relation (22) becoms: 

𝐺(𝑥) ≈ 𝛷(√2𝑎𝑥 + 1 − √2𝜆). 
 

In this case a better approximation is obtained if all the terms in relation (21) are taken into account. The third order 

approximation would be the following: 

𝐺(𝑥) ≈ 𝛷(√2𝑎𝑥 +
1

2
+

1

32𝜆
− √2𝜆(1 −

1

8𝜆
)). 

 


