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1. INTRODUCTION 

    1.1. Fractional Calculus (FC) as mathematical field  

  
Fractional calculus is the field of mathematical analysis which deals with the investigation 

and application of integrals and derivatives of arbitrary order (real or even complex). It is a 

generalization of the classical calculus and therefore preserves many of the basic properties. 

Fractional derivatives and integrals can be considered as an „interpolation”of the infinite 

sequence of the clasical n-fold integrals and n-fold derivatives. 

 

    1.2. Development 

 

The fractional calculus may be considered an old and yet novel topic.                                      

It is an old topic since, starting from some speculations of G.W. Leibniz (1695, 1697) and 

L. Euler (1730), it has been developed up to the present day. In fact the idea of 

generalizing the notion of derivative to non-integer order, in particular to the order 

1/2, is contained in the correspondence of Leibniz with Bernoulli, L’Hôpital and 

Wallis. Euler took the first step by observing that the result of the evaluation of the 

derivative of the power function has a meaning for non-integer order thanks to his 

Gamma function. A list of mathematicians who have provided important contributions up to 

the middle of the 20th century includes  J. Liouville (1832–1837), B. Riemann (1847), A.K. 

Grünwald (1867–1872), A.V. Letnikov (1868–1872), N.Ya.Sonine (1872–1884), M. Riesz 

(1949). 

As novel topic FC has only been the subject of specialized conferences and treatises in the last 

30 years – for proceedings of the First Conference on Fractional Calculus and its 

Applications at the University of NewHaven in June 1974 see [Ros75], [Ros77] and for the 

first monograph see [OldSpa74]. In addition around ten titles are explicitly devoted to FC and 
around twelve treatises contain a detailed analysis of some mathematical aspects and/or 

physical applications of FC, without referring to FC in the title (see [Gor et al20]). 

 The old and recent (up to 2010) history of Fractional Calculus are available on Research Gate 

and at the website of Fractional Calculus and Applied Analysis (FCAA) http://www.math.bas. 

bg/~fcaa/. The latter includes free access to full length papers from 2004-2010. 

For an introductory survey on FC, respectively for engineering and physics, respectively for 

economics and finance see [GorMai97], [Pod99], respectively [CarMai97], [Her14], [Hil00], 

respectively [BaiKin96]. 

In recent years considerable interest in fractional calculus has been stimulated 

by the applications that it finds in different fields of science, including numerical 

analysis, economics and finance, engineering, physics, biology, etc., as well as several 

contributions to the fractional theory and its applications in the recent series, edited by 

Machado (published by De Gruyter), of 8 Handbooks on Fractional Calculus with 

applications, [HAND1, HAND2, HAND3, HAND4, HAND5, HAND6, HAND7, HAND8] 

and also in the special issue of Mathematics (MDPI) edited by Mainardi [Mai-spec18].  

The regular journals devoted to fractional calculus, are Journal of FC (Descartes Press, 

Tokyo) and FC and Applied Analysis (De Gruyter, Berlin) - for information there is the WEB 

site https://www.degruyter.com/view/j/fca; a remarkable site devoted to FC is 

www.fracalmo.org, whose name comes from FRActional CALculusMOdelling, and the 

related links.  

 

https://www.degruyter.com/view/j/fca


    1.3. Interpretation 

Integer – order derivatives and integrals have physical and geometrical interpretations. For a 

physical interpretation of the fractional integration in terms of two different time scales – the 

homogeneous, equably flowing scale and the inhomogeneous time scale see [Pod99]. Some 

authors [M-THam8] consider the fractional operators as linear filters and also seek the 

geometrical interpretation of the fractional operators in the fractal geometry of which classical 

geometry is a subclass.  

 

    1.4. Applications 

The first application of a semi-derivative (of order ½) is done by Abel in 1823 and is in 

relation with the solution of an integral equation [see OldSpa9]. The last decades prove that 

FC is very convenient for describing properties of real materials, e.g.polymers as a tool for 

describing the memory and hereditary properties or solving Caputo-problems of 

viscoelasticity (see [Pod99]). FC also appears in the control theory, where for the description 

of the controlled system and the controller fractional differential equation are used.  

 

    1.5. Approaches 

There are two main approaches to the FC – the continuous and the discrete approaches (see 

[GorMai6]). The continuous approach is based on the Riemann-Liouville fractional integral 

which has the Cauchy integral formula as a starting point (see [OldSpa9]. The dicrete 

approach is based on the Grunwald-Letnikov fractional derivative – as a limit of a fractional-

order backward difference (see [GorMai6], [Pod99]).  

 

    1.6. Riemann-Liouville fractional operators vs. Caputo fractional operator 

Riemann-Liouville operators play an important role in the development of FC and for its 

applications in pure mathematics – solution of integer-order differential equations, definition 

of new function classes, see[Pod99]. Caputo fractional derivative can provide initial 

conditions with clear physical interpretation for the differential equation of fractional order      

 

2. SPECIAL FUNCTIONS OF THE FRACTIONAL CALCULUS 

    2.1. Special Functions 

 

    2.1.1. The Eulerian Functions 

     Definition 1.(in C)i. (Gamma function ( Γ) ) The Gamma function – as the Euler integral 

of the second kind is defined by the integral formula 

 , Re(z) > 0. (1) 

 

                          ii. (Beta function (Β)) The Beta function – as Euler integral of the first kind is 

defined by the integral formula  

 

                 B                            (2)   

 

Observation 1. (domain of analycity) This integral representation (i) is the most common for 

Γ, even if it is valid only in the right half-plane of . 

The analytic continuation to the left half-plane can be done in different ways. As 

will be shown later, the domain of analyticity 𝐷Γ of Γ is  

𝐷Γ = C ∖ 𝑍−.     (3)  

 



Lemma 1. i(the Gaussian integral representation of Γ)  

 

; (4)  

 

                ii(trigonometric integral reprezentation of Β)  

 

Β    (5)  

Proof. From definition, by the substitution 𝑢 = 𝑣2 (i), respectively  𝑢 = (𝑐𝑜𝑠𝑣)2 (ii). 
 

Theorem 1 (essential properties) 1.( Γ) i. (recurrence formula or difference equation)  

); (6) 

                  ii. (complementary formula or the reflection) Γ(z)Γ(1 − z) =
𝜋

𝑠𝑖𝑛𝜋𝑧
 .          (7) 

                2. (Β) i. (symmetry) B(p,q) = B(q, p); (8) 

                          ii. (relation to Gamma function) Β(p, q) =
Γ(p)Γ(q)

Γ(p+q)
 .      (9)  

Proof. 1.i. From definition using integration by parts. 

              ii. The simplest proof consists in proving (7) for 0 < Re(z) < 1 and extending the 

result by analytic continuation to C ∖ Z.   

           2. i. This property is a simple consequence of the definition 1.ii of Β. 

                  ii. The proof of (9) can easily be obtained by writing the product Γ(p) Γ(q) 
as a double integral that is to be evaluated introducing polar coordinates and by lemma 1, i.e.  

 

   

Observation 2. i. (n-recurrence formula) The recurrence formula can be iterated to         

n-recurrence formula: 

 (10)   

or                                                                                                                                  

Γ(z + n) = (𝑧)𝑛Γ(z), z ∈ C ∖ Z, n ∈ N,           (10’)  

where (z)n are the Pochhammer’s symbols which are defined as  

(z)0 = 1, (z)n := z (z + 1)(z + 2)...(z + n − 1), n ∈ N*. (11)  

By extension to 𝑍− it can be defined  

(z)−n := z (z − 1)(z − 2)...(z − n + 1), n ∈ N (12)  

or   

         (z)−n :=𝐴𝑧
𝑛, 𝑛 ∈ 𝑁 (formal);     (12’) 

If 𝑧 ∈ 𝐶 ∖ 𝑍, 𝑡ℎ𝑒𝑛 Γ(z + 1) = (𝑧)−𝑛Γ(z − n + 1).         (13)   



 

 ii. (the extension of the domain of analycity) A formal way to obtain 

the real domain of analyticity 𝐷Γ is to carry out the required analytical continuation via 

the n-recurrence formula with the help of which we can enter the left half-plane step by 

step. The relation (9) is of fundamental importance. Furthermore, it allows us to obtain 

the analytical continuation of the Beta function.  

Theorem 2. (in ) 1.( Γ)i. Γ(1) = Γ(2) = 1, Γ(
1

2
) = ∫ 𝑒−𝑣2

𝑑𝑣 = 2 ∫ 𝑒−𝑣2
𝑑𝑣 =

∞

0

∞

−∞ √𝜋 ≈ 

1.77245;        (14) 

                                       ii. Γ(n + 1) = n!, n ∈ N.    (15)  

                               2. (Β)i. Β(
1

2
,

1

2
) = 𝜋;       (16)  

                                    ii. (other integral  representation) Representations of 

Β(p, q) on [0, ∞], respectively a representation of Β(p, q) on [0, 1] are  

∫
𝑢(𝑥)

𝑤(𝑥)
𝑑𝑥, ∫

𝑣(𝑥)

𝑤(𝑥)
𝑑𝑥,

∞

0
 

1

2
∫

𝑢(𝑥)+𝑣(𝑥)

𝑤(𝑥)
𝑑𝑥,

∞

0
 ∫

𝑢(𝑥)+𝑣(𝑥)

𝑤(𝑥)
𝑑𝑥

1

0
 𝑤ℎ𝑒𝑟𝑒 𝑢(𝑥) = 𝑥𝑝−1, 𝑣(𝑥) =

∞

0

𝑥𝑞−1, 𝑤(𝑥) = (1 + 𝑥)𝑝+𝑞.       (17)   

𝑃𝑟𝑜𝑜𝑓. 1.i. Usual calculation.  

              ii. From n-recurrence formula (10) for z=1 and according to (14).  

            2. i. From „relation to Gamma function” (9) and according to (14); 

                ii. The first representation follows from definition of Β by setting 𝑦 =
 𝑥

𝑥+1
; 

 the other two are easily obtained by using the symmetry property of B(p, q) . The 

representation of Β(p, q) on [0, 1] is obtained from the first integral by additivity on 

[0, 1], [1, ∞].    

Observation 3. (the graph of the Gamma function on the Real Axis) Plots of (continuous 

line) and 1  (dashed line) for −4 < x ≤ 4 are shown in Fig.1 and for 0 < x ≤ 3 in Fig. 2. 

Hereafter we provide some analytical arguments that support the plots on the real axis. In fact, 

one can get an idea of the graph of the Gamma function on the real axis using the formulas 

 , 

to be iterated starting from the interval 0 < x ≤ 1,where  as x → 0+ and  

For x > 0 the integral representation (1) yields 0 since 

 . 

As a consequence, on the positive real axis  turns out to be positive and convex so that it 

first decreases and then increases, exhibiting a minimum value. Since 

 1, we must have a minimum at some x0, 1 < x0 < 2. It turns out 

that x0 = 1.4616... and  ; hence x0 is quite close to the point x = 1.5 where  

attains the value √𝜋/2=0.8862.... 



On the negative real axis  exhibits vertical asymptotes at x = −n (n = 0,1,2,...); it turns 

out to be positive for −2 < x < −1, −4 < x < −3, ..., and negative for −1 < x < 0, −3 < x < −2, ....  

 
x 

Fig.1 Plots of (continuous line) and 1  (dashed line)  

 
x 

Fig. 2 Plots of (continuous line) and 1  (dashed line)  

Application 1. (derivatives vs. „fractional derivatives”) For power function 𝑦(𝑥) = 𝑥𝑛                      

k-derivative  is  

𝑦(𝑘)(𝑥) =
𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘 = 𝐴𝑛
𝑘𝑥𝑛−𝑘 =

𝑛!

(𝑛−𝑘)!
𝑥𝑛−𝑘, 𝑘, 𝑛 ∈ 𝑁, 𝑘 ≤ 𝑛    (18)  or                                         

𝑦(𝑘)(𝑥) =
Γ(n+1)

Γ(n−k+1)
𝑥𝑛−𝑘;            (18’)                          

−4 −3 −2 −1 0 1 2 3 4 −6 

−4 

−2 

0 

2 

4 

6 
Γ ) x ( 

1 / Γ ) ( x 

0 0.5 1 1.5 2 2.5 3 3.5 4 0 

0.5 

1 

1.5 

2 

2.5 

3 

X: 1.462 
Y: 0.8856 

Γ x ( ) 

1 / Γ ( x ) 



„ 
1

2
 – derivative” is  

𝑑
1
2𝑦(𝑥)

𝑑𝑥
1
2

=
Γ(n+1)

Γ(n+
1

2
)

𝑥𝑛−
1

2 .       (19)  

In particular  

(𝑥)(
1

2
) =

Γ(2)

Γ(
3

2
)

𝑥
1

2 =
2

√𝜋
√𝑥, (𝑥2)(

1

2
) =

Γ(3)

Γ(
5

2
)

𝑥
3

2 =
8

3√𝜋
𝑥√𝑥, Γ(

5

2
) =

3

2
Γ(

3

2
) =

3

2
 
1

2
Γ(

1

2
) =

3

4
√𝜋, 

(√𝑥)
(

1

2
)

=
Γ(

3

2
)

Γ(1)
𝑥0 =

√𝜋

2
   (20) 

(see (6)). More general, for power function 𝑦(𝑥) = 𝑥𝛼 „k-derivative” is 

𝑦(𝑘)(𝑥) = 𝐴𝛼
𝑘 𝑥𝛼−𝑘 =

Γ(α+1)

Γ(α−k+1)
𝑥𝛼−𝑘, 𝑘 ∈ 𝑁, 𝛼 ∈ 𝑅 ∖ {−1}    (21) 

(see (12’), (13).  

Exercices (verification) 

1.i. Γ(n +
1

2
) = (

1

2
)𝑛Γ(

1

2
) =

(2𝑛−1)!!

2𝑛 √𝜋 =
(2𝑛)!

22𝑛𝑛!
√𝜋, 𝑛 ∈ 𝑁;      (22)  

   ii. Γ(−n +
1

2
) =

Γ(
1

2
)

(−
1

2
)−𝑛

= (−1)𝑛 2𝑛

(2𝑛−1)!!
√𝜋  = (−1)𝑛 22𝑛𝑛!

(2𝑛)!
√𝜋, 𝑛 ∈ 𝑁.   (22’) 

2.i. (Γ −alternative reflection formula)    ;   (23) 

    ii. Γ(
1

2
− 𝑖𝑦)Γ(

1

2
+ 𝑖𝑦) =

𝜋

𝑐𝑜𝑠ℎ𝜋𝑦
, 𝑦 ∈ 𝑅.   (23’) 

3.i. ∫ 𝑡𝑧−1𝑠𝑖𝑛𝑡𝑑𝑡
∞

0
= Γ(z)sin

𝜋𝑧

2
, 𝑅𝑒(𝑧) > 1;      (24) 

   ii. ∫ 𝑡𝑧−1𝑐𝑜𝑠𝑡𝑑𝑡
∞

0
= Γ(z)cos

𝜋𝑧

2
, 𝑅𝑒(𝑧) > 1.      (24’) 



4. 𝐼𝑛 = ∫
𝑑𝑥

𝑥𝑛+1

∞

0
∈

𝜋

𝑛

𝑠𝑖𝑛
𝜋

𝑛

, 𝑛 ∈ 𝑁 ∖ {0, 1}. Discussion 𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4.   (25)  

5. 𝜑𝑈(𝑢) =
1

√2𝜋
∫ 𝑒𝑖𝑢𝑥∞

−∞
𝑒−

𝑥2

2 𝑑𝑥 = 𝑒−
𝑢2

2 , 𝜑𝑈: 𝑅 → 𝑅+
∗    (26) 

(the characteristic function associated with the normal unit distribution). 

6. i. 𝐼(𝑝, 𝑞) = ∫ 𝑠𝑖𝑛𝑝
𝜋

2
0

𝑥𝑐𝑜𝑠𝑞𝑥𝑑𝑥 =
1

2
Β(

𝑝+1

2
,

𝑞+1

2
), 𝑝, 𝑞 ∈ (−1, ∞);    (27) 

    ii. 𝐼(𝑝, −𝑝) = ∫ 𝑡𝑔𝑝
𝜋

2
0

𝑥𝑑𝑥 =
𝜋

2

𝑠𝑖𝑛(𝑝+1)
𝜋

2

, 𝑝 ∈ (−1, 1);     (27’) 

    iii. 𝐼(2𝑚, 2𝑛) =  
(2𝑚−1)!!(2𝑛−1)!!

(𝑚+𝑛)!2𝑚+𝑛  
𝜋

2
=

(2𝑚)!(2𝑛)!

(𝑚+𝑛)!𝑚!𝑛!4𝑚+𝑛  
𝜋

2
, 𝑚, 𝑛 ∈ 𝑁.    (27”) 

 

2.1.2. (Complementary) Error function 

Definition 1.i. (erf) The (Gaus-) error function 𝑒𝑟𝑓: 𝐶 → 𝐶 is defined by                        

𝑒𝑟𝑓(𝑧) =
2

√π
∫ 𝑒−τ2𝑧

0
𝑑𝜏;        (1) 

                    ii. (erfc) The complementary error function 𝑒𝑟𝑓𝑐: 𝐶 → 𝐶 is given by 

erfc=1- erf.       (1̅)   

Exercise (verification)  𝑒𝑟𝑓𝑐(𝑧) =
2

√π
∫ 𝑒−τ2∞

𝑧
𝑑τ.    (1̅′)  

Observation 1 (interpretations) For 𝑋~𝑁(0,
1

2
) we have the interpretations 

erf(t)=P(X falls in [-t, t]), erfc(t)=P(X resist in [-t, t]).       (2) 

Proposition 1. i. (special values)  

 𝑒𝑟𝑓𝑐(𝑡) = {

    2, 𝑓𝑜𝑟 𝑡 = −∞  
1, 𝑓𝑜𝑟 𝑡 = 0
0, 𝑓𝑜𝑟 𝑡 = ∞

;   (3) 



                         ii. (relations)                                                                                                   

𝑒𝑟𝑓𝑐(−𝑡) = 2 − 𝑒𝑟𝑓𝑐(𝑡),  ∫ 𝑒𝑟𝑓𝑐(𝑡)𝑑𝑡
∞

0
=

1

√π
, ∫ 𝑒𝑟𝑓𝑐2(𝑡)𝑑𝑡

∞

0
=

2−√2

√𝜋
.    (4)  

Observation 2.i. (scaled complementary function (erfcx) Is defined by                        

𝑒𝑟𝑓𝑐𝑥(𝑧) = 𝑒𝑧2
𝑒𝑟𝑓𝑐(𝑧);  (5) 

                       ii. (Faddeeva (Kramp)-scaled complementary function) Is defined by 

 

𝑤(𝑧) = 𝑒−𝑧2
∙ 𝑒𝑟𝑓𝑐(−𝑖𝑧) = 𝑒𝑟𝑓𝑐𝑥(−𝑖𝑧) = 𝑒−𝑧2

∙ (1 +
2𝑖

√𝜋
∙ ∫ 𝑒𝜏2

𝑑𝜏
𝑧

0
),  (6) 

Were this function is related to the Fresnel integral, to Dawson’s integral and to the Voigt 

function;  

                       iii. (series representations)  

 

𝑒𝑟𝑓(𝑧) =
2

√𝜋
𝑒−𝑧2

∑
2𝑛

(2𝑛+1)!!
∞
𝑛=0 𝑧2𝑛+1 =

1

√𝜋
𝑒−𝑧2

∑
𝑧2𝑛+1

(
1

2
)𝑛+1

∞
𝑛=0 ,   (7)                                             

𝑒−𝑡2
∙ 𝑒𝑟𝑓𝑐(−𝑖𝑡) = ∑

(𝑖𝑡)𝑘

Γ(
𝑘

2
+1)

 ∞
𝑘=0    (8)   

(see 2.1.1, formula (22)).  

 

2.1.3. Confluent hypergeometric function 

Definition 1(Confluent hypergeometric function - Kummer) The confluent hypergeometric 

function of the first kind or Kummer function of the first kind is defined as  

 

 1𝐹1(α, β; 𝑧) =
Γ(α)

Γ(β)
∙ ∑

Γ(α+𝑛)

Γ(β+𝑛)
∞
𝑛=0 ∙

𝑧𝑛

Γ(𝑛+1)
.      (1) 

Observation 1. i. (convergence) The convergence condition of the series is fulfilled for α, β, 𝑧 ∈

ℂ, −β ∉ 𝑁 and |𝑧| < ∞;  

                        ii. (generalization of exp)  1𝐹1(α, α; 𝑧) = 𝑒𝑧.  (2) 

Proposition 1. i. (value)   𝐹1(α, 𝛽; 0) = 1; (3)   

                        

ii. (relation)   
𝑑

𝑑𝑧
( 1𝐹1(𝛼, 𝛽; 𝑧)) =  1𝐹1(𝛼 + 1, 𝛽 + 1; 𝑧). (3)  

Proof. i.  (A simple calculation. 

           ii. Exercise 1 (verification (3)).  

Observation 2 (generating differential equation) Two standard solution to Kummer’s 

differential equation  



𝑧
𝑑2𝑤

𝑑𝑧2 + (𝛽 − 𝑧)
𝑑𝑤

𝑑𝑧
− 𝛼𝑤 = 0        (4)   

are the following  

𝑀(𝛼, 𝛽; 𝑧) = ∑
(𝛼)𝑛

(𝛽)𝑛𝑛!
∞
𝑛=0 𝑧𝑛, 𝛽 ∈ 𝑁,     (5)   

𝑀(𝛼, 𝛽; 𝑧) = ∑
(𝛼)𝑛

Γ(𝛽+𝑛)𝑛!
∞
𝑛=0 𝑧𝑛.            (6) 

It is used the notation 𝑀(𝛼, 𝛽; 𝑧) = ( 1𝐹1(𝛼, 𝛽; 𝑧)).   (7) 

Exercise 2 (verification) 𝑀(𝛼, 𝛽;  𝑧) = Γ(𝛽)𝑀(𝛼, 𝛽;  𝑧).   (8)    

 

2.2. Mittag-Leffler functions 

Definition 1. (Mittag-Leffler (ML) functions) i. (one-parametric) The Mittag-Leffler (ML) 

one-parametric function is denoted by 𝐸α(𝑧) and has the form                                                                   

𝐸𝛼(𝑧) = ∑
𝑧𝑛

Γ(𝛼𝑛+1)
∞
𝑛=0  , 𝑅𝑒(𝛼) > 0 , 𝑧 ∈ ℂ ;    (1)  

                    ii. (two-parametric-Agarwal) The Mittag-Leffler (ML) two-parametric function is 

denoted by 𝐸α,β(𝑧) and has the form                                                                                                      

𝐸α,β(𝑧) = ∑
𝑧𝑘

Γ(α𝑘+β)
∞
𝑘=0    , 𝑅𝑒(α) > 0, β ∈ C,  𝑧 ∈ ℂ.    (2)   

Observation 1. i. (generalizations of exp) We have 𝐸1 = 𝑒𝑥𝑝, 𝐸𝛼,1 = 𝐸𝛼;  (3)  

               ii. ((modern) generalizations vs. Fractional Calculus, see [Gor et al20]) in 1971 

Prabhakar introduced the three-parametric Mittag-Leffler function (or generalized Mittag-

Leffler function, or Prabhakar function) 

𝐸𝛼,𝛽
𝜌

(𝑧) = ∑
(𝜌)𝑛

Γ(𝑛𝛼+𝛽)
∞
𝑛=0 𝑧𝑛.     (3)  

This function appeared in the kernel of a first-order integral equation which Prabhakar treated 

by using Fractional Calculus. Other three-parametric Mittag-Leffler functions (also called 

generalized Mittag-Leffler functions or Mittag-Leffler type functions, or Kilbas–Saigo 

functions) were introduced by Kilbas and Saigo. These functions appeared in connection with 

the solution of new types of integral and differential equations and with the development of the 

Fractional Calculus. They are referred to as Kilbas–Saigo functions. One more generalization 

of the Mittag-Leffler function depending on three parameters was studied recently as  

𝐹𝛼,𝛽
(𝛾)

(𝑧) = ∑
𝑧𝑛

Γ(nα+β)𝛾
∞
𝑛=0 , 𝛼, 𝛽, 𝛾, 𝑧 ∈ 𝐶;      (4)  

it plays an important role in Probability Theory and is related to the so-called Le Roy function  

𝑅𝛾(𝑧) = ∑
𝑧𝑛

(𝑛+1)!𝛾
∞
𝑛=0 , 𝑧 ∈ 𝐶.     (4’) 

Generalizing the four-parametricMittag-Leffler function with 𝛼1, 𝛼2 ∈ 𝑅, 𝛼1
2 + 𝛼2

2 ≠

0, 𝛽1, 𝛽2 ∈ 𝐶 introduced by Dzherbashian (=Djrbashian)  Al-Bassam and Luchko introduced 

the Mittag-Leffler type function with 2m parameters 𝛼𝑖 > 0, 𝛽𝑖 ∈ 𝑅, 𝑖 ∈ [𝑚]∗ =

{1, . . . , 𝑚}, 𝑧 ∈ 𝐶 and gave an explicit solution to a Cauchy type problem for a fractional 

differential equation. 



In the last several decades the study of the Mittag-Leffler function has become 

a very important branch of Special Function Theory. Many important results have 

been obtained by applying integral transforms to different types of functions from the 

Mittag-Leffler collection. Conversely,Mittag-Leffler functions generate new kinds of 

integral transforms with properties making them applicable to various mathematical 

models. The recent notable increased interest in the study of their relevant 

properties is due to the close connection of the Mittag-Leffler function to the Fractional 

Calculus and its application to the study of Differential and Integral Equations 

(in particular, of fractional order). Many modern models of fractional type have 

recently been proposed in Probability Theory, Mechanics, Mathematical Physics, 

Chemistry, Biology,  Mathematical Economics etc. 

Exercises (verification)                                                                                                               

1. 𝐸1,𝑛(𝑧) = ∑
𝑧𝑘

Γ(𝑘+𝑛)
=∞

𝑘=0
1

𝑧𝑛−1 (𝑒𝑧 − ∑
𝑧𝑝

𝑝!
𝑛−2
𝑝=0 )  , 𝑛 ≥ 2  (5) 

and in particular  

𝐸1,2(𝑧) =
1

𝑧
(𝑒𝑧 − 1),     (5’)                                                                                                                               

𝐸1,3(𝑧) =
1

𝑧
[𝑒𝑧 − (1 + 𝑧)].    (5”)   

2.  𝐸2,1(𝑧2) = 𝑐𝑜𝑠ℎ(𝑧),    (6)                                                                                                            

𝐸2,2(𝑧2) =
1

𝑧
∙ 𝑠𝑖𝑛ℎ(𝑧),      (6’)                                                                                                          

𝑒𝑧2
∙ 𝑒𝑟𝑓𝑐(−𝑧) = 𝐸1

2
,1

(𝑧).  (6”)  

Observation 2 (order and type of entire function) A complex-valued function 𝐹 ∶  𝐶 →  𝐶 

is called an entire function (or integral function) if it is analytic (C-differentiable) everywhere 

on the complex plane. Typical examples of entire functions are the polynomials, the exponential 

functions and also sums, products and compositions of these functions, thus trigonometric 

(hyperbolic) functions. Among the special functions we point out the following entire functions: 

Bessel functions of the first and second, the reciprocal Gamma function 
1

Γ
, the (ML) one-

parametric function and its different generalizations. According to Liouville’s theorem an entire 

function either has a singularity at infinity or it is a constant. Such a singularity can be either a 

pole (as is the case for a polynomial), or an essential singularity. In the latter case we speak of 

transcendental entire functions. All of the above-mentioned special functions are 

transcendental. Every entire function can be represented in the form of a power series           

𝐹(𝑧) = ∑ 𝑐𝑛
∞
𝑛=0 𝑧𝑛    (7) 

converging everywhere on C. Thus, according to the Cauchy.Hadamard formula, the 

coefficients of the series (7) satisfy the following condition (the necessary and sufficient 

condition for the sum of a power series to represent an entire function):                    

lim
𝑛

|𝑐𝑛|
1

𝑛 = 0.     (8)   



The global behavior of entire functions of finite order is characterized by their order 

and type. Recall (see [Gor et al20]) that the order ρ[F] of an entire function F(z) is 

defined as   

 

𝜌[𝐹] = 𝑖𝑛𝑓 𝑁𝜌[𝐹]
, 𝑁𝜌[𝐹]={𝑛|𝑀𝐹(𝑟)(= 𝑚𝑎𝑥{𝐹(𝑧)||𝑧| = 𝑟}) < 𝑒𝑟𝑛

, 𝑟 > 𝑟(𝑛)}    (9) 

or equivalently 

𝜌[𝐹] = limsup
𝑟→∞

𝑙𝑜𝑔𝑙𝑜𝑔𝑀𝐹(𝑟)

𝑙𝑜𝑔𝑟
 .      (9’) 

The type 𝜎[𝐹]  of an entire function F(z) of finite order ρ[F] is defined as 

𝜎[𝐹] = 𝑖𝑛𝑓 𝐴𝜎[𝐹]
, 𝐴𝜎[𝐹]={𝐴 > 0|𝑀𝐹(𝑟) < 𝑒𝐴𝑟𝜌

}   (10) 

or equivalently 

𝜎[𝐹] = limsup
𝑟→∞

𝑙𝑜𝑔𝑀𝐹(𝑟)

𝑟𝜌 .     (10’) 

For an entire function F(z) represented in the form of the series (7)   

its order and type can by found by the following formulas  

𝜌[𝐹] = limsup
𝑛

𝑛𝑙𝑜𝑔𝑛

𝑙𝑜𝑔
1

|𝑐𝑛|

 ,     (9”) 

         (𝜎[𝐹]𝑒𝜌)
1

𝜌 = limsup
𝑛

𝑛
1

𝜌 |𝑐𝑛|
1

𝑛 .      (10”) 

 

Proposition 1(entire function-order, type) i. (one-parametric) For each 𝛼 ∈ 𝐶, 𝑅𝑒(𝛼) > 0 (𝛽 ∈

𝐶) the Mittag-Leffler (ML) one (two)-parametric function 𝐸α(𝑧) (𝐸α,β(𝑧)) is an entire 

function of order 𝜌 =
1

𝑅𝑒(𝛼)
 and type 𝜎 = 1.  

Proof. Applying to the coefficients 𝑐𝑛 =
1

Γ(nα+1)
 (see (1), (7)) the Cauchy– 

Hadamard formula for the radius of convergence  

𝑅 = limsup
𝑛

|𝑐𝑛|

|𝑐𝑛+1|
    (11) 

and the asymptotic formula  
Γ(𝑧+𝑎)

Γ(𝑧+𝑏)
= 𝑧𝑎−𝑏(1 +

(𝑎−𝑏)(𝑎−𝑏−1)

2𝑧
) + 0(

1

𝑧2), 𝑧 → ∞, |𝑎𝑟𝑔(𝑧)| < 𝜋  (11) 

one can see that the series (1) converges in the whole complex plane for all 

𝛼 ∈ 𝐶, 𝑅𝑒(𝛼) > 0 and the MLfunction is an entire function. Moreover, it follows from 

the Cauchy inequality for the Taylor coefficients and simple properties of the Gamma function 

that there 𝑁𝜌𝐸𝛼
≠ Φ, 𝐸α(𝑧) is an entire function of finite order. For 𝛼 > 0 by Stirling’s 

asymptotic formula  

Γ(𝑛𝛼 + 1) = √2𝜋(𝑛𝛼)𝑛𝛼+
1

2𝑒−𝑛𝛼(1 + 𝑜(1), 𝑛 → ∞  (12)   

one can see that the MLfunction satisfies the relations 

limsup
𝑛

𝑛𝑙𝑜𝑔𝑛

𝑙𝑜𝑔
1

|𝑐𝑛|

= lim
𝑛

𝑛𝑙𝑜𝑔𝑛

𝑙𝑜𝑔|Γ(𝑛𝛼+1)|
=

1

𝛼
 ,      (13) 

limsup
𝑛

(𝑛
1

𝜌|𝑐𝑛|
1

𝑛) = lim
𝑛

(𝑛
1

𝜌 |Γ(𝑛𝛼 + 1)|−
1

𝑛) = (
𝑒

𝛼
)𝛼.   (14) 

If 𝑅𝑒(𝛼) > 0, 𝐼𝑚(𝛼) ≠ 0 the corresponding result is valid too. This follows 

from formula (11), which in particular means 



0 < 𝐴1 < |
Γ(𝑛𝛼+1)

Γ(𝑛𝛼0+1)
| < 𝐴2 < ∞, 𝐴1, 𝐴2 > 0, 𝑛 ∈ 𝑁 (𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒).  (11’) 

For 𝐸α,β(𝑧) the reasoning is analogous.  

Proposition 2. (k-derivative) For Mittag-Leffler (ML) two-parametric function, its 𝑘-th 

derivative is given by formula 

 

 
𝐸α,β

(𝑘)
(𝑧) = ∑

Γ(𝑘 + 𝑛 + 1)

Γ(𝑛 + 1) ∙ Γ(α𝑛 + α𝑘 + β)

∞

𝑛=0

∙ 𝑧𝑛 = 𝑘! 𝐸𝛼,𝑘𝛼+𝛽
𝑘+1 (𝑧), 𝑘 ≥ 1 

(15) 

 

where α, β, z ∈ ℂ, 𝐸α,β
(𝑘)(𝑧) =

𝑑𝑘

𝑑𝑧𝑘 (𝐸α,β(𝑧)) and 𝐸𝛼,𝑘𝛼+𝛽
𝑘+1  is the Prabhakar function (3).  

Proof. The proof is immediate by using mathematical induction.  

Observation 3.i. (recurrence relation) A recurrence relation for ML two-parametric function is 

𝐸𝛼,𝛽(𝑧) =
1

Γ(𝛽)
+ 𝑧𝐸𝛼,𝛼+𝛽(𝑧);    (16)  

                             ii. (differential and recurrence relations) A term-by-term differentiation allows us to 

verify in an easy way that  

𝐸𝛼,𝛽(𝑧) =  𝛽𝐸𝛼,𝛽+1(𝑧) + 𝛼𝑧
𝑑

𝑑𝑧
𝐸𝛼,𝛽+1(𝑧),   (17) 

𝑑

𝑑𝑧
𝐸𝛼,𝛽(𝑧) =

𝐸𝛼,𝛽−1(𝑧)+(1−𝛽)𝐸𝛼,𝛽(𝑧)

𝛼𝑧
, 𝑧 ≠ 0.   (18) 

Proof. Is left for the reader as Exercise.  

 

3. FRACTIONAL DERIVATIVES AND INTEGRALS 

 

3.1. The Riemann-Liouville (RL) Fractional Calculus  

 

Observation 1. (motivation) Fractional integrals are usually defined (see [Pod99],              

[Gor et al20]) as a generalization of the repeated integral formula  

(𝐽𝑎+
𝑛 𝑓)(𝑡) = ∫ 𝑑𝑡1

𝑡

𝑎 ∫ 𝑑𝑡2
𝑡1

𝑎
. . . ∫ 𝑓(𝑡𝑛)𝑑𝑡𝑛

𝑡𝑛

𝑎
=

1

(𝑛−1)!
∫ 𝑓(𝜏)(𝑡 − 𝜏)𝑛−1𝑑𝜏

𝑡

𝑎
, 𝑛 ∈ 𝑁∗, 𝑎, 𝑡 ∈

𝑅, 𝑡 > 𝑎    (1) 

namely                                                                                                                         

(𝐽𝑎+
α 𝑓)(𝑡) =

1

Γ(α)
∙ ∫ 𝑓(τ)(𝑡 − τ)α−1𝑑𝜏 ,

𝑡

𝑎
 𝛼, 𝑎, 𝑡 ∈ 𝑅, 𝛼 > 0, 𝑡 > 𝑎.      (1’)  

Definition 1. (Riemann-Liouville (RL) fractional integrals) Let be a function f ∈ 

L1(a,b) existing almost everywhere and 𝛼 > 0. The Riemann-Liouville (RL) left-sided 

fractional integral is given by the formula  

(𝐽𝑎+
α 𝑓)(𝑡) =

1

Γ(α)
∙ ∫ 𝑓(τ)(𝑡 − τ)α−1𝑑𝜏 

𝑡

𝑎
     (2)  

and the (RL) right-sided fractional integral is given by the formula  

(𝐽𝑏−
α 𝑓)(𝑡) =

1

Γ(α)
∙ ∫ 𝑓(τ)(𝜏 − t)α−1𝑑𝜏 .

𝑏

𝑡
     (3)  

Observation 2. i. (improper case) For a function f ∈L1(R) the (RL) fractional integrals are given 

respectively by the formulas  

(𝐽+
α𝑓)(𝑡) =

1

Γ(α)
∙ ∫ 𝑓(τ)(𝑡 − τ)α−1𝑑𝜏 

𝑡

−∞
,     (2’)  

(𝐽−
α𝑓)(𝑡) =

1

Γ(α)
∙ ∫ 𝑓(τ)(𝜏 − t)α−1𝑑𝜏 .

∞

𝑡
     (3’)   



                      ii. (commutative monoid structure) The commutative monoid structure relative 

to the Riemann-Liouville (RL) left-sided fractional integrals consists in the structure of 

commutative semigroup with identity  𝐽𝑎+
0 = 𝐼 (by convention) according to the formula  

𝐽𝑎+
𝛼 𝐽𝑎+

𝛽
= 𝐽𝑎+

𝛽
𝐽𝑎+

𝛼 = 𝐽𝑎+
𝛼+𝛽

;    (4)  

The result is also true relative to the (RL) right-sided fractional integrals.  

                     iii. (linearity and continuity in 0) Relative to the Riemann-Liouville (RL) left-

sided fractional integrals the properties of linearity and continuity in 0 are satisfied, i. e. 

(𝐽𝑎+
𝛼 (λ𝑓 + β𝑔))(𝑡) = (λ𝐽α𝑓 + β𝐽α𝑔)(𝑡),    (5)                                                                              

lim
𝛼→0

 (𝐽α𝑓)(𝑡) = 𝑓(𝑡)     (6)  

where f is continuas. The result is also true relative to the (RL) right-sided fractional integrals.  

                      iv. (integration by parts) The integration by parts formula relative to the (RL) 

leftt-sided fractional integral and the (RL) right-sided fractional integral holds true, i.e.  

∫ 𝑔(𝑡)(𝐽𝑎+
𝛼𝑏

𝑎
𝑓)(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡)(𝐽𝑏−

𝛼𝑏

𝑎
𝑔)(𝑡)𝑑𝑡      (6)  

(e.g. for 𝑓 ∈ 𝐿𝑝(𝑎, 𝑏), 𝑞 ∈ 𝐿𝑞(𝑎, 𝑏), 𝑝, 𝑞 ≥ 1,
1

𝑝
+

1

𝑞
=∝ +1).   

Exercises 1. (verification of calculation of the (RL) fractional integrals) i. (for special 

functions) 

(𝐽𝑎+
∝ (𝜏 − 𝑎)𝛽−1)(𝑡) =

Γ(𝛽)

Γ(𝛼+𝛽)
(𝑡 − 𝑎)𝛼+𝛽−1,     (7)   

(𝐽𝑏−
∝ (𝑏 − 𝜏)𝛽−1)(𝑡) =

Γ(𝛽)

Γ(𝛼+𝛽)
(𝑏 − 𝑡)𝛼+𝛽−1;     (7’)  

               ii. (for (ML) one-parametric function)  

𝜆(𝐽𝑎+
𝛼 𝐸𝛼(𝜆𝜏𝛼))(𝑡) = 𝐸𝛼(𝜆𝑡𝛼) − 1, 𝜆 ∈ 𝐶;   (8)       

               iii. (see application 2.1.1)  

(𝐽0+

1

2 )(𝑡) =
1

Γ(
1

2
)

∙ ∫ 𝜏(𝑡 − τ)−
1

2𝑑𝜏 
𝑡

0
=

1

Γ(
1

2
)

∫
𝜏

√𝑡−𝜏

𝑡

0
𝑑𝜏,    (ai1)   

(𝐽0+

1

2 )(𝑡2) =
1

Γ(
1

2
)

∙ ∫ 𝜏2(𝑡 − τ)−
1

2𝑑𝜏 
𝑡

0
=

1

Γ(
1

2
)

∫
𝜏2

√𝑡−𝜏

𝑡

0
𝑑𝜏,  (ai2)  

(𝐽0+

1

2 )(√𝑡) =
1

Γ(
1

2
)

∙ ∫ √𝜏(𝑡 − τ)−
1

2𝑑𝜏 
𝑡

0
=

1

Γ(
1

2
)

∫ √
𝜏

 𝑡−𝜏

𝑡

0
𝑑𝜏.  (ai3) 

 

Definition 2. (Riemann-Liouville (RL) fractional derivatives) Let be 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝐷𝑛 =
𝑑𝑛

𝑑𝑡𝑛 , 𝑡 ∈ (𝑎, 𝑏). The Riemann-Liouville (RL) left-sided fractional derivative is given by the 

formula  

( 𝐷𝑎+
𝛼

 
𝑅𝐿 𝑓)(𝑡) = (𝐷𝑛𝐽𝑎+

𝑛−𝛼𝑓)(𝑡)    (9)  

and the (RL) right-sided fractional derivative is given by the formula  



( 𝐷𝑏−
𝛼

 
𝑅𝐿 𝑓)(𝑡) = (−1)𝑛(𝐷𝑛𝐽𝑎+

𝑛−𝛼𝑓)(𝑡).    (10)   

Observation 3. i.( existence) The existence of the fractional derivatives is ensured by the 

condition 

 (𝐽𝑎+
𝑛−𝛼𝑓)(𝑡) ∈ 𝒜𝒞[𝑎,𝑏]

𝑛    (11) 

where 

 𝒜𝒞[𝑎,𝑏]
𝑛 = {𝑔 ∈ 𝒞[𝑎,𝑏]

𝑛−1|𝑔(𝑛−1) ∈ 𝒜𝒞[𝑎,𝑏]
 } (12) 

 (𝒜𝒞 denotes a class of absolutely continuous functions).  Note that the condition (11) follows 

from the condition  

𝑓 ∈ 𝒜𝒞[𝑎,𝑏]
𝑛 .    (11’)  

In this case the Riemann–Liouville fractional derivative exists almost everywhere on the 

interval (a, b).  

                      ii. (improper case) By replacing the interval (a, b) with ℝ the (RL) fractional 

derivatives are given (as Liouville (L) fractional derivatives) respectively by the formulas 

( 𝐷+
𝛼

 
𝐿 𝑓)(𝑡) = (𝐷𝑛𝐽+

𝑛−𝛼𝑓)(𝑡),    (9’)   

( 𝐷−
𝛼

 
𝐿 𝑓)(𝑡) = (−1)𝑛(𝐷𝑛𝐽−

𝑛−𝛼𝑓)(𝑡).    (10’)   

                      iii. (conditioned monoid) Conditioned by 𝛼 ∈ ℝ, 𝛽 < 1 and f an analytic 

function the semigroup relation  

( 𝐷𝑎+
𝛼

 
𝑅𝐿  𝐷𝑎+

𝛽
 

𝑅𝐿 𝑓)(𝑡) = ( 𝐷𝑎+
𝛼+𝛽

 
𝑅𝐿 𝑓)(𝑡)   (13)  

holds true (note that this relation is not valid in general). In addition it is taken by convention 

𝐷𝑎+
0

 
𝑅𝐿 𝑓 = 𝐼.      (13’) 

                       iv. (external inverse) The (RL) fractional derivative is the left-inverse to the 

corresponding (RL) fractional integral, that is, the following (left-sided and analogous right-

sided) relation  

( 𝐷𝑎+ 
𝛼

 
𝑅𝐿 𝐽𝑎+

𝛼 𝑓)(𝑡) = 𝑓(𝑡)  (14)  

holds for any function f ∈L1(a,b). The opposite is not true, i.e. the (RL) fractional derivative is 

not the right-inverse to the corresponding (RL) fractional integral (see Exercise 2.ii).  

                       v. (The Leibniz rule for the Riemann–Liouville fractional derivative can be 

written in different forms, e.g.  

( 𝐷𝑎+
𝛼

 
𝑅𝐿 𝑓. 𝑔)(𝑡) = ∑ (∝

𝑘
)∞

𝑘=0 ( 𝐷𝑎+
𝛼−𝑘

 
𝑅𝐿 𝑓)(𝑡)(𝐷𝑘𝑔)(𝑡), ∝∈ ℝ,  (15)  

( 𝐷𝑎+
𝛼

 
𝑅𝐿 𝑓. 𝑔)(𝑡) = ∑ ( ∝

𝑘+𝛽
)∞

𝑘=−∞ ( 𝐷𝑎+
𝛼−𝛽−𝑘

 
𝑅𝐿 𝑓)(𝑡)( 𝐷𝑎+

𝛽+𝑘
 

𝑅𝐿 𝑔)(𝑡), ∝, 𝛽 ∈ ℝ (𝛼 ∈ ℝ ∖ ℤ 𝑖𝑓 𝛽 ∈

ℤ).  (15’)   

Exercises 2. (verification) i. (see Observation 3.i)  

( 𝐷𝑎+
𝛼 𝑓 

𝑅𝐿 )(𝑡) = ∑ (
(𝐷𝑘𝑓)(𝑎)

Γ(𝑘+1−𝛼)
𝑛−1
𝑘=0 (𝑡 − 𝑎)𝑘−𝛼 + (𝐽𝑎+

𝑛−𝛼𝐷𝑘𝑓)(𝑡);   (16)  



                     𝑖𝑖. (𝐽𝑎+
𝛼 𝐷𝑎+

𝛼
 

𝑅𝐿 𝑓)(𝑡) = 𝑓(𝑡) − ∑
(𝐷𝑛−𝑘−1𝐽𝑎+

𝑛−𝛼𝑓)(𝑡)

Γ(α−k)
𝑛−1
𝑘=0 (𝑡 − 𝑎)𝛼−𝑘−1,     (17)  

where f ∈L1(a,b) such that (11) works and there exists a function g ∈L1(a,b) such that  

𝑓(𝑡) = (𝐽𝑎+
𝛼 𝑔)(𝑡).   

                   iii. (and calculation, see application 2.1.1 and exercise 1.iii) 

( 𝐷0+

1

2
 

𝑅𝐿 )(𝑡) = (𝐷 𝐽0+

1

2 )(𝑡),      (ad1)   

( 𝐷0+

1

2
 

𝑅𝐿 )(𝑡2) = (𝐷 𝐽0+

1

2 )(𝑡2),      (ad2)  

( 𝐷0+

1

2
 

𝑅𝐿 )(√𝑡) = (𝐷 𝐽0+

1

2 )(√𝑡).      (ad3)  

 

 

 

 

3.2. The Caputo (C) fractional derivatives  

 

Definition 1. (Caputo (C) fractional derivatives) Let be 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝐷𝑛 =
𝑑𝑛

𝑑𝑡𝑛 , 𝑡 ∈ (𝑎, 𝑏). 

The Caputo (C) left-sided fractional derivative is given by the formula  

( 𝐷𝑎+
𝛼

 
𝐶 𝑓)(𝑡) = (𝐽𝑎+

𝑛−𝛼𝐷𝑛𝑓)(𝑡)    (1)  

and the (RL) right-sided fractional derivative is given by the formula  

( 𝐷𝑏−
𝛼

 
𝐶 𝑓)(𝑡) = (−1)𝑛(𝐽𝑏−

𝑛−𝛼𝐷𝑛𝑓)(𝑡).    (2)  

Observation 1. i.( existence as regularization of the (RL) fractional derivatives) The existence 

of the (C) fractional derivatives (known also as the Caputo–Dzherbashian or Caputo– 

Gerasimov fractional derivatives) is ensured by the condition 3.1.11’ (see observation 3.1.3.i). 

They are regularizations of the (RL) fractional derivatives according to the following formulas 

( 𝐷𝑎+
𝛼

 
𝐶 𝑓)(𝑡) = ( 𝐷𝑎+

𝛼
 

𝑅𝐿 (𝑓(𝜏) − ∑ (
(𝐷𝑘𝑓)(𝑎)

k!
𝑛−1
𝑘=0 (𝜏 − 𝑎)𝑘)(t),    (1’)   

( 𝐷𝑏−
𝛼

 
𝐶 𝑓)(𝑡) = ( 𝐷𝑏−

𝛼
 

𝑅𝐿 (𝑓(𝜏) − ∑ (
(𝐷𝑘𝑓)(𝑏)

k!
𝑛−1
𝑘=0 (𝑏 − 𝜏)𝑘)(t),    (2’)  

and with an interchanging of the order of integration and differentiation for 𝛼 ∉ ℕ∗.  

In addition is fulfilled the following condition 

lim
𝛼→𝑛

𝐷𝑎
𝐶

𝑡
𝛼𝑓(𝑡) = (𝐷𝑛𝑓)(𝑡)    (3)  

which follows by applying integration by parts and taking the limit for α →  𝑛.   

ii. (improper case) By replacing the interval (a, b) with ℝ the (C) fractional derivatives are 

given respectively by the formulas 



( 𝐷+
𝛼

 
𝐶 𝑓)(𝑡) = (𝐽+

𝑛−𝛼𝐷𝑛𝑓)(𝑡),    (1”)   

( 𝐷−
𝛼

 
𝐶 𝑓)(𝑡) = (−1)𝑛(𝐽−

𝑛−𝛼𝐷𝑛𝑓)(𝑡).    (2”) 

iii. (external inverse) The (C) fractional derivative is the left-inverse to the corresponding (RL) 

fractional integral, that is, the following (left-sided and analogous right-sided) relation  

( 𝐷𝑎+ 
𝛼

 
𝐶 𝐽𝑎+

𝛼 𝑓)(𝑡) = 𝑓(𝑡)  (4)  

holds for any function f which satisfies the condition 3.1.11’.  The opposite is not true, i.e. the 

(C) fractional derivative is not the right-inverse to the corresponding (RL) fractional integral 

(see exercise 1.vi).  

Exercises 1. (verification of calculation of the (C) fractional derivatives) i. (for special 

functions, see exercises 3.1.1.i) For all 𝛽 > 𝑛 − 1, 

( 𝐷 
𝐶

𝑎+
∝ (𝜏 − 𝑎)𝛽)(𝑡) =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑡 − 𝑎)𝛽−𝛼,     (5)   

( 𝐷 
𝐶

𝑏−
∝ (𝑏 − 𝜏)𝛽)(𝑡) =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑏 − 𝑡)𝛽−𝛼;     (6)   

                   ii. (on the integer power monomials) For all 𝑘 ∈ [𝑛 − 1] = {0, 1, . . . , 𝑛 − 1}  

( 𝐷 
𝐶

𝑎+
∝ (𝜏 − 𝑎)𝑘)(𝑡) = 0,     (5’)  

( 𝐷 
𝐶

𝑏−
∝ (𝑏 − 𝜏)𝑘)(𝑡) = 0       (6’)  

and in particular  

( 𝐷 
𝐶

𝑎+
∝ 1)(𝑡) = 0,     (5”)  

( 𝐷 
𝐶

𝑏−
∝ 1)(𝑡) = 0       (6”);  

                 iii. (improper case for exponential function) 

( 𝐷+
𝛼

 
𝐶 𝑒𝜆𝑡)(𝑡) = 𝜆𝛼𝑒𝜆𝑡,       (7)  

( 𝐷−
𝛼

 
𝐶 𝑒−𝜆𝑡)(𝑡) = 𝜆𝛼𝑒−𝜆𝑡.     (8)   

                  iv. ((ML) one-parametric function)  

( 𝐷 
𝐶

𝑎+
∝ 𝐸𝛼(𝜆(𝜏 − 𝑎)𝛼))(𝑡) = 𝜆𝐸𝛼(𝜆(𝑡 − 𝑎)𝛼)).    (9)  

                  v. (improper case for (ML) two-parametric function)  

( 𝐷−
𝛼

 
𝐶 𝜏𝛼−1𝐸𝛼(𝜆𝜏−𝛼))(𝑡) =

1

𝑡
𝐸𝛼,1−𝛼  (𝜆𝜏−𝛼).         (10)  

                  𝑣𝑖. (𝐽𝑎+
𝛼 𝐷𝑎+

𝛼
 

𝐶 𝑓)(𝑡) = 𝑓(𝑡) − ∑
(𝐷𝑘𝑓)(𝑎)

k!
𝑛−1
𝑘=0 (𝑡 − 𝑎)𝑘     (11) 

where 𝑓 ∈ 𝒜𝒞[𝑎,𝑏]
𝑛 ;    (3.1.11’)   

                  vii. (see application 2.1.1 and exercises 3.1.1.iii, 3.1.2.iii)  

( 𝐷0+

1

2
 

𝐶 )(𝑡) = (𝐽0+

1

2 𝐷 )(𝑡),    (ad’1)   

( 𝐷0+

1

2
 

𝐶 )(𝑡2) = (𝐽0+

1

2 𝐷 )(𝑡2),    (ad’2)  



( 𝐷0+

1

2
 

𝐶 )(√𝑡) = (𝐽0+

1

2 𝐷 )(√𝑡).    (ad’3)   

 

    

 

 

  
 

 

 

 

  

   

 

  

 

 

  

 

 

   

    

     

 

 

 

 

  

 

 

 

 

   

 

 

 

 



 

 

Appendix A. Podlubny I., talk „Matrix-based approaches as an emerging framework for 

numerical solution of initial and boundary value problems for ordinary and partial differential 

equation of arbitrary real order”, International Symposium on Fractional PDEs- Theory, 

Numerics and Applications, june 3-5, 2013 (Newport, RI, USA) – selection:   

 A1(8). Main idea of FC: Interpolation of operators; 

 A2(9). From integer to non-integer; 

 A3(10). FC:a response to S&T needs;  

 A4(11). FC:136 subject areas (applications); 

 A5(12). The current map of the FC; 

 A6(15). RL-derivative; 

 A7(16). C-derivative; 

 A8(17). GL-derivative; 

 A9(18). Conditional equivalence; 

 A10(20). Left-sided „flavor”;  

 A11(21). Right-sided „flavor”; 

 A12(22). Symmetric „flavor”; 

 A13(24). Constant (non-integer) order (CO) „grade”; 

 A14(25). Variable order (VO) „grade”; 

 A15(26). Distributed order (DO) „grade”; 

 A16(27). Combinations grades-definitions-flavor; 

 A17(28). Intelligent fitting of date with the help of solutions of differential equations; 

 A18(29). The Mittag-Leffler (ML) function; 

 A19(33). ML-function as Queen function of FC; 

 A20(30). Fitting data using ML-function;  

 A21(34). ML-function – a complete replacement for the exponential function;  

 A22(49). Exact solution with C-derivative; 

 A23(50). Graph relative to A22;  

 A24(69). Exact solution for two-term ordinary FDE; 

 A25(67). Fractional integrals of sin;  

 A26(68). Fractional derivatives of sin;  

 A27(70). Bagley-Torvik equation;  

 A28(71). Variable-order fractional differentiation and integration (VO-FD, VO-FI); 

 A29(72). C-VO-FD; 

 A30(74). VO-FD of y(t)=t; 

 A31(75). VO-fractional relaxation equation (1); 

 A32(76). VO-fractional relaxation equation (3); 

 A33(77). DO-fractional derivatives; 

 A34(78). Interpretation of DO operators; 

 A35(84). CO-fractional relaxation equation; 

 A36(85). VO-fractional relaxation equation; 

 A37(86). DO-fractional relaxation equation; 

 A38(87). CO-order Bagley-Torvic equation; 

 A39(88). DO-order Bagley-Torvic equation: 

 A40(101). The Matrix Approach.   

 

 



Appendix B. Table of (higher order) (C) derivatives of particular power functions (see 

[Ish05]) 

 

 
 

 

 

Appendix C. Table of (C) derivatives of the most used elementary functions (see [Ish05]) 

 

 
 

 

 

 

 

 

 

 



 

 

Appendix D. Table of comparison between (RL) and (C) derivatives (see [Ish05])  
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