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6. Programming with piecewise linear 
objective function 
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In economic practice there are also problems
whose mathematical models have linear constraints,
but in which the objective function has different
expressions on certain subsets of the set of
admissible solutions, but each expression is linear.

The general form of a such model is :
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where:
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with the additional condition :
cj1 < cj2 < cj3 < … < cj, r

for the case opt = min, respectively,
cj1 > cj2 > cj3 > … > cj, r

for the case opt = max.
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Remarks:
1) The index r depends on the corresponding va-

riable xj, so the number of intervals used is different
for the terms uj(xj).

2) If for a certain variable xj we have r = 1, then
the expression of the term uj(xj) is reduced to a linear
function.

3) The last interval in the expression of the
function uj(xj) can be infinite (hj,r = +∞).

4) The condition (*) ensures convexity of the
function uj(xj), and the condition (**) ensures conca-
vity of the function uj(xj).
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The below figure shows the graph of the
function uj(xj), for j = 3, if the minimization of the
objective function is required.
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The below figure shows the graph of the
function uj(xj), for j = 3, if the maximization of the
objective function is required.
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The mathematical model of these problems can
be reduced to a linear model by substituting the
variables xj (j = 1,…, n) namely:

xj = xj1 + xj2 +… xj, r-1 + xj, r ,    j = 1,…, n 
where the new variables xj1, xj2 ,…, xj, r satisfy the
following conditions:
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As a result, the general term uj(xj) in the
expression of the objective function becomes

uj(xj) = cj1xj1 + cj2xj2 +… + cj, r xj, r ,    j = 1,…, n
The substitution is also performed in each of

the m constraints of the initial model :
ak1x1 + ak2x2 +… + ak, n xn ≤ (≥)(=) bk ,   k = 1,…, m

The constraints 0 ≤ xj ≤ hj, r (j = 1,…, n), from
the initial model, are obviously satisfied with the
conditions imposed on the new variables.

After solving the obtained linear model, we
return to the initial variables .
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Example. In the manufacture of three types of
products A, B, C, three machine tools M1, M2, M3
participate so that each type of product passes, in its
processing, to all three machines. The required unit
processing times of the products as well as the
available times of each machine (in minutes) are
indicated in the following table:
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It is possible to sell, immediately after manufac-
ture, maximum 50 u. of each type of product, with a
unit profit of 4 m.u., 6 m.u., 7 m.u., for A, B, and C,
respectively.

The maximum manufacturing capacity for each
type of product is 60 u. The quantity manufactured
over 50 u. can bring a unit profit of 3 m.u., 4.5 m.u.,
respectively, 5 m.u., diminished due to the additional
maintenance and storage expenses of the products.

Determine the manufacturing plan of the three
types of products that will bring a maximum total
profit.
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Solution. Let note x1, x2, x3 the quantities to be
manufactured from products A, B and C, respectively.

The mathematical model of the problem has the
form:















=≥
=≤

≤++
≤++
≤++

++=

3 2, 1,    ,0 
3 2, 1,    ,60 

20042   
300223 
320432 

)()()( [max] 

321

321

321

332211

jx
jx

xxx
xxx
xxx

xuxuxuz

j

j





∈−+
∈= 60] (50,    ),50(3200

50] [0,                        ,4)(
11

11
11 xx

xxxu
where:



Applied Mathematics in Optimization Problems - Course 1b

Linear Programming Blăjină Ovidiu 13 33/





∈−+
∈= 60] (50,   ),50(54300

50] [0,                          ,6)(
22

22
22 xx,

xxxu





∈−+
∈= 60] (50,     ),50(5350

50] [0,                         ,7)(
33

33
33 xx

xxxu

It is found that the objective function z can be
written in the form of eight different expressions,
obtained by combining in all possible ways the
expressions attached to the terms u1(x1), u2(x2), u3(x3),
depending on the values of the variables x1, x2 şi x3; all
expressions are, however, linear in the three variables.

The following substitutions are made:
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x1 = x11+ x12 with x11 ∈[0, 50], x12 ∈[0, 10]
x2 = x21+ x22 with x21 ∈[0, 50], x22 ∈[0, 10]
x3 = x31+ x32 with x31 ∈[0, 50], x32 ∈[0, 10]

The associated linear model has the form:
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The previous model is solved and the obtained
optimal solution is:

x11 = 50; x12 = 6; x21 = 50; x22 = 10; x31 = 6; x32 = 0
The corresponding value of the objective

function is zmax = 605.
Therefore, the optimal manufacturing program

consists of 56 u. product A, 60 u. product B and 6 u.
product C, with a maximum total profit of 605 m.u.


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