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Chapter 1.

Introduction to real analysis
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1. Real valued functions and their applications in real life

Theoretical summary

Definition 1.1.1. If f and g are real valued functions defined on R, then

f ◦ g(x) = f
(
g(x)

)
.

Definition 1.1.2. Let C(x) be the total cost of production, where x is the
amount of units.
Let R(x) be the total revenue of production, where x is the amount of units.
Let Π(x) be the total profit of production, where x is the amount of units.

Definition 1.1.3. A firm will choose to implement a shutdown of production
when the revenue received from the sale of the goods or services produced
cannot cover even the variable costs of production. In that situation, which is
called a shutdown point, the firm will experience a higher loss when it produces,
compared to not producing at all.

Remark 1.1.4. Technically, a shutdown point occurs if the average revenue
is below the average variable costs at the profit-maximizing positive level of
output.

Definition 1.1.5. If the unit price of the product is p and p 7→ D(p) is a de-
mand function and p 7→ S(p) is a supply function, then the solution of the
equation D(p) = S(p) is called equilibrium price. If p0 is the equilibrium
price, then D(p0) or equivalently S(p0) is called equilibrium quantity. The
point

(
p0, D(p0)

)
is called equilibrium point.
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Solved exercises

Exercise 1. Let f(x) = sinx and g(x) = x2+7x−3 be real valued functions!
a) Calculate the value f(π)!
b) Calculate the function f ◦ g!
c) Calculate the function g ◦ f !

Solution:

a) The value f(π) is sinπ = 0.

b) The function f ◦ g is

f ◦ g(x) = f
(
g(x)

)
= f(x2 + 7x− 3) = sin(x2 + 7x− 3).

c) The function g ◦ f is

g ◦ f(x) = g
(
f(x)

)
= g(sinx) = (sinx)2 + 7 · sinx− 3

= sin2 x+ 7 · sinx− 3.

Exercise 2. Let f(x) =
√
x and g(x) = x+ 7 be real valued functions!

a) Calculate the function f ◦ g!
b) Calculate the function g ◦ f !
c) Solve the equation f ◦ g(x) = g ◦ f(x)!
Solution:
a) The function f ◦ g is:

f ◦ g(x) = f
(
g(x)

)
= f(x+ 7) =

√
x+ 7.

b) The function g ◦ f is:

g ◦ f(x) = g
(
f(x)

)
= g(
√
x) =

√
x+ 7.

c) We have to solve the equation
√
x+ 7 =

√
x+ 7.

We get that

x+ 7 = (
√
x+ 7)2

x+ 7 = x+ 14 ·
√
x+ 49

−42 = 14 ·
√
x.
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It means, there is a contradiction and so the equation has no solutions.

Exercise 3. Let f(p) = 100 − 10p be a demand function, where p is the unit
price of the product in euros and f(p) is number of pieces measured in thousand
pieces.
a) What is the revenue function?
b) Plot the revenue function!
c) Determine the price which maximizes the revenue!

Solution:

a) The revenue function is:

R(p) = p · f(p) = p · (100− 10p) = 100p− 10p2.

b) If we apply some algebraic manipulations, we get that

R(p) = −10 · (p2 − 10p) = −10 · [(p− 5)2 − 25] =

= −10 · (p− 5)2 + 250.

Thus the graph of the revenue function is as follows:

c) The revenue function has a maximum value at p = 5. It means that it is
attained when the unit price is 5 euros.
In this situation:

q = f(5) = 100− 10 · 5 = 50,
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thus we have to produce 50 products to obtain the maximum revenue. It is

R(5) = 5 · f(5) = p · q = 250.

Exercise 4. The company has a cost function

C(q) = q3 − 4q2 + 10q + 10,

where q is the quantity in thousand pieces and the cost is C(q) thousand euros.
a) Give the fixed cost!
b) Determine the variable cost function!
c) Calculate the average cost function!
d) Determine the average fixed cost function!
e) Calculate the average variable cost function!
f) Give the shutdown point!

Solution:
a) Because

C(0) = 03 − 4 · 02 + 10 · 0 + 10 = 10,

we get that the fixed cost is 10 000 euros.

b) The variable cost function is as follows:

V C(q) = q3 − 4q2 + 10q.

c) The average cost function is as follows:

AC(q) =
C(q)

q
= q2 − 4q + 10 +

10

q
.

d) The average fixed cost function is as follows:

AFC(q) =
10

q
,

e) The average variable cost function is as follows:

AV C(q) = q2 − 4q + 10.

f) We have to find the minimum of the AV C function. Because

AV C(q) = q2 − 4q + 10 = (q − 2)2 + 6,

we get that the minimum of the function is q = 2, thus we have to produce
2 000 products to reach the shutdown point.
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Exercise 5. The demand function of the product is

D(p) = 150− 3p.

The supply function is
S(p) = 2p− 20.

The unit price is measured in euros. Find the equilibrium point.

Solution:

The equilibrium price is the solution of the equation:

D(p) = S(p).

If we substitute the data and solve the equation, we get that

150− 3p = 2p− 20

170 = 5p.

It means that the equilibrium price is p = 34 euro. The equilibrium quantity:

q = D(34) = S(34) = 150− 3 · 34 = 48.

Exercise 6. The cost function is C(q) = 500 + 140q euros. The revenue
function is R(q) = 200q − q2 euros.
a) Sketch the graph of the cost function!
b) Calculate the value C(2)!
c) If C(q) = 1 900 what is the value of q?
d) Find the fixed cost!
e) Calculate the variable cost!
f) Calculate the average cost!
g) Determine the average fixed cost!
h) Determine the average variable cost!
i) Sketch the graph of the revenue function in the same coordinatesystem which

you drew in part a)!
j) What is the revenue if q = 2?
k) Determine the profit function!
l) Calculate the maximum of the profit!
m) Sketch the graph of the profit function!

Solution:

a) The graph of the function C is as follows:
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b) The value of the cost function at q = 2 is as follows:

C(2) = 500 + 140 · 2 = 780.

c) We have to solve the equation

1 900 = 500 + 140q.

We get that

1 900 = 500 + 140q ⇒ 1 400 = 140q ⇒ q = 10.

d) The fixed cost is: FC = 500.

e) The variable cost is:
V C(q) = 140q.

f) The average cost function:

AC(q) =
C(q)

q
= 140 +

500

q
.

g) The average fixed cost function:

AFC =
500

q
.

h) The average variable cost function:

AV C(q) = 140.

i) The graphs of the cost function and the revenue function are:
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j) The revenue at q = 2:

R(2) = 200 · 2− 22 = 396,

k) The profit function is as follows:

Π(q) = R(q)− C(q) = (200q − q2)− (500 + 140q) =

= −q2 + 60q − 500.

l) By applying some algebraic manipulations, we get that

Π(q) = −(q2 − 60q)− 500 = −
(
(q − 30)2 − 900

)
− 500 =

= −(q − 30)2 + 900− 500 = −(q − 30)2 + 400.

The maximum of the profit function is attained at q = 30.

m) The graph of the profit function is as follows:
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Exercise 7. The motion equation of the simple harmonic motion is

y(t) = 4 · sin(2t).

Sketch the graph of the function describing the motion on the interval [0; 5π].

Solution:

The graph of the function is as follows:
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2. Sequences, series and their applications

Theoretical summary

Definition 1.2.1. A function
a : N→ R

is called a (real) sequence. We denote the sequence a by an.

Definition 1.2.2. The sequence an is
• monotonically increasing if an ≤ an+1 for all n ∈ N;
• monotonically decreasing if an ≥ an+1 for all n ∈ N;
• stricly monotonically increasing if an < an+1 for all n ∈ N;
• stricly monotonically decreasing if an > an+1 for all n ∈ N.

Example 1.2.3. Consider the sequence an =
1

n
. Since

an+1 − an =
1

n+ 1
− 1

n
=
n− (n+ 1)

n · (n+ 1)
=

−1

n · (n+ 1)
< 0

for all n ∈ N, we get that an+1 − an < 0, thus an+1 < an. It means that the
sequence is stricly monotonically decreasing.

Definition 1.2.4. The sequence an is
• bounded from above, if there exists a real numberK such that an ≤ K

for all n ∈ N. In this case, the range of an is bounded from above and
nonempty, so it has a supremum, which is called the supremum of an.
• bounded from below, if there exists a real number k such that an ≥ k

for all n ∈ N. In this case, the range of an is bounded from below and
nonempty, so it has an infimum, which is called the infimum of an.
• bounded, if it is bounded from above and bounded from below.

Definition 1.2.5. A sequence of real numbers an converges to a real number a
if for all ε > 0, there exists a number n0 ∈ N such that in case n ≥ n0, we have
|an − a| < ε. Notation: an → a or lim

n→∞
an = a.

A sequence is divergent if it is not convergent.

Example 1.2.6. The sequence an = 1
n is convergent. The limit is 0.
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Theorem 1.2.7. (connection between operations and limit)
If the sequences an and bn are convergent and the limit of an is a, the limit of
bn is b and λ ∈ R, then

• an + bn is convergent and its limit is a+ b;
• an · bn is convergent and its limit is a · b;
• λ · an is convergent and its limit is λ · a;

• if bn 6= 0 (for n ∈ N) and b 6= 0, then
an
bn

is convergent and its limit

is
a

b
;

• if an, a > 0, then abnn is convergent and its limit is ab.

Example 1.2.8. The limit of the sequence an = 2
n + 1 is 2 · 0 + 1 = 1.

Theorem 1.2.9. The limit of convergent monotonically increasing (decreas-
ing) sequences (which are known to be bounded from above (below)) is their
supremum (infimum).

Theorem 1.2.10. If an, bn and cn are sequences such that

an ≤ bn ≤ cn
and an is convergent and its limit is a and cn is convergent and its limits is also
a, then the sequence bn is convergent and its limit is a.

Example 1.2.11. Since

− 1

n
≤ sinn

n
≤ 1

n
,

and − 1
n → 0 and 1

n → 0, we get that the sequence sinn
n is convergent and its

limit is 0.

Theorem 1.2.12.
• The limit of the sequence an = n

√
a (a > 0) is 1.

• The limit of the sequence an = n
√
n is 1.

• The limit of the sequence an = qn (−1 < q < 1) is 0.
• The limit of the sequence an = qn (q > 1) is infinity.

• The limit of the sequence an =

(
1 +

1

n

)n
is the number e (e ≈

2.718).

• The limit of the equence an =
(

1 +
a

n

)n
(a ∈ R) is ea.
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• For all unbounded monotonically increasing or decreasing sequences

bn, the limit of the sequence an =

(
1 +

1

bn

)bn
is e.

• The limit of the sequence an = an

n! (a ∈ R) is 0.

Definition 1.2.13. A series is the sum of the terms of a sequence. Let an be a
real sequence. The sum

a1 + a2 + . . .+ an + . . .

is a series. The notation for this expression is
∞∑
n=1

an

or simply
∑
an. The n-th partial sum of the latter series is

Sn = a1 + a2 + . . .+ an.

Definition 1.2.14. The series
∑
an is convergent, if the sequence of its n-th

partial sums is convergent.

Theorem 1.2.15. If the series
∑
an is convergent then

lim
n→∞

an = 0.

Example 1.2.16. The series
∞∑
n=1

2 + n

is not convergent because the limit of an = 2 + n is not zero.

Theorem 1.2.17. The sum
∞∑
n=1

1

nk

is convergent if k > 1, not convergent if k ≤ 1.

Theorem 1.2.18. Let
∑
an be a series.

• If n
√
|an| is convergent and lim

n→∞
n
√
|an| < 1, then

∑
an is conver-

gent;

• If n
√
|an| is convergent and lim

n→∞
n
√
|an| > 1, then

∑
an is not con-

vergent.
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Theorem 1.2.19. If q is a real number such that |q| < 1 then the series
∑
qn is

convergent and ∑
an = a · 1

1− q
,

where a is the first term of the series.

Example 1.2.20.
∞∑
n=1

(
1

2

)n
=

1

2
· 1

1− 1
2

= 1.
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Solved exercises

Exercise 8. Let’s represent the first four terms of the sequence an = n2 − 1 in
a coordinate system in the plane!

Solution:

The fist four terms are:

a1 = 0, a2 = 3, a3 = 8, a4 = 15.

In a coordinate sytem:

Exercise 9. Let an = 2 +
6

n
! What are the first four terms of the sequence?

Describe the monotonicity, boundedness and limit properties of an!

Solution:
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The first four elements are:

a1 = 8, a2 = 5, a3 = 4, a4 = 3,5.

The sequence
• is stricly monotonically decreasing;
• is convergent, the limit is 2;
• has an infimum, 2; and a supremum, 8;
• is bounded;
• has no minimum value; has a maximum value, 8.

Exercise 10. Let an = n
n+1 !

a) Prove that the sequence is stricly monotonically increasing!
b) Determine the limit if exists!
c) Prove that the sequence is bounded!
d) What is the minimum value and maximum value of the sequence if exists?

Solution:

a) Since

an+1 =
n+ 1

(n+ 1) + 1
=
n+ 1

n+ 2
,

we get that

an+1 − an =
n+ 1

n+ 2
− n

n+ 1
=

(n+ 1)2 − n · (n+ 2)

(n+ 1) · (n+ 2)
=

=
n2 + 2n+ 1− n2 − 2n

(n+ 1) · (n+ 2)
=

1

(n+ 1) · (n+ 2)
> 0.

The difference an+1 − an is positive for all n ∈ N, hence we get that

an+1 − an > 0 ⇒ an+1 > an.

It means that the sequence is stricly monotonically increasing.

b) Since

an =
n

n+ 1
=
n+ 1− 1

n+ 1
= 1− 1

n+ 1
,

the limit of the sequence is

lim
n→∞

an = 1.

c) Since an is monotonically increasing and convergent, it is bounded.
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d) The minimum value is

a1 =
1

1 + 1
=

1

2
.

The maximum value would be the supremum, i.e. the limit which is 1.
However

an = 1− 1

n+ 1
< 1,

so 1 is not attained by an, therefore it has no maximum value.

Exercise 11. Calculate the limit of the sequence

an =
n2 + 3n+ 5

4n2 − 7n+ 6
.

Solution:

If we apply some algebraic manipulations, we get that

an =
n2 + 3n+ 5

4n2 − 7n+ 6
=

n2

n2 + 3n
n2 + 5

n2

4n2

n2 − 7n
n2 + 6

n2

=
1 + 3

n + 5
n2

4− 7
n + 6

n2

.

It means that the limit of the sequence is

lim
n→∞

an =
1 + 0 + 0

4− 0 + 0
=

1

4
.

Exercise 12. Calculate the limit of the sequence

an =
(n+ 3)3 − (n+ 1)2

2n3 + n− 1
.

Solution:

Apply the identity

(n+ 3)3 = n3 + 9n2 + 27n+ 27,

and the identity
(n+ 1)2 = n2 + 2n+ 1

to get that

an =
n3 + 9n2 + 27n+ 27− n2 − 2n− 1

2n3 + n− 1
=
n3 + 8n2 + 25n+ 26

2n3 + n− 1
=

=
1 + 8

n + 25
n2 + 26

n3

2 + 1
n2 − 1

n3

→ 1

2
.
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Exercise 13. Calculate the limit of the sequence an =
√

9n2 + 7n+ 3− 3n.

Solution:

Since

an =
√

9n2 + 7n+ 3− 3n =

=
(√

9n2 + 7n+ 3− 3n
)
·
√

9n2 + 7n+ 3 + 3n√
9n2 + 7n+ 3 + 3n

,

we get that

an =
9n2 + 7n+ 3− 9n2√

9n2 + 7n+ 3 + 3n
=

7n+ 3√
9n2 + 7n+ 3 + 3n

.

So

an =
7 + 3

n√
9 + 7

n + 3
n2 + 3

→ 7 + 0√
9 + 0 + 0 + 3

=
7

6
.

Exercise 14. Calculate the limit of the sequence

an =

(
2n+ 1

2n+ 5

)3n+2

.

Solution:

Since

lim
n→∞

(
1 +

1

n

)n
= e,

we get that

an =

(
2n+ 1

2n+ 5

)3n+2

=

(
2n+ 5− 4

2n+ 5

)3n+2

=

(
1− 4

2n+ 5

)3n+2

=

=

(
1 +

−4

2n+ 5

)3n+2

=

(1 +
1

2n+5
−4

) 2n+5
−4


−4

2n+5
·(3n+2)

→ e−6 =
1

e6
.

Exercise 15. Calculate the sum
∞∑
n=0

2n + 3n

6n
.

Solution:
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We write another form of the series:
∞∑
n=0

2n + 3n

6n
=
∞∑
n=0

2n

6n
+

3n

6n
=
∞∑
n=0

(
1

3

)n
+

(
1

2

)n
.

If we apply the identity
∞∑
n=0

aqn = a · 1

1− q
(a, q ∈ R; |q| < 1),

we get that
∞∑
n=0

(
1

3

)n
=

1

1− 1
3

=
3

2
,

and
∞∑
n=0

(
1

2

)n
=

1

1− 1
2

= 2,

thus the sum is
∞∑
n=0

2n + 3n

6n
=

3

2
+ 2 =

7

2
.

Exercise 16. Calculate the sum
∞∑
n=1

1

n · (n+ 1)
.

Solution:

By definition, we get that
∞∑
n=1

1

n · (n+ 1)
= lim

n→∞

n∑
k=1

1

k · (k + 1)
.

By decomoposing into partial fractions,
1

k · (k + 1)
=
A

k
+

B

k + 1

we get that
1 = A · (k + 1) +B · k.

It means that 1 = (A+B) ·k+A, thus A = 1 and A+B = 0, that is B = −1.
We get that

1

k · (k + 1)
=

1

k
− 1

k + 1
,
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so
∞∑
n=1

1

n · (n+ 1)
= lim

n→∞

n∑
k=1

1

k · (k + 1)
= lim

n→∞

n∑
k=1

(
1

k
− 1

k + 1

)
=

= lim
n→∞

(
1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ . . .+

1

n
− 1

n+ 1

)
=

= lim
n→∞

(
1− 1

n+ 1

)
= 1.

Exercise 17. Consider the region bounded by the midsegments of a regular
triangle with side length 2 and the one obtained by applying the same procedure
to the latter region and so on. Performing the procedure infinitely many times,
determine the sum of the perimeters, resp. areas of the obtained triangles.

Solution:

In the case of the perimeter, that of the original triangle is 6 units, the perimeter
of the first inscribed triangle is 3 units, that of the next inscribed triangle is 1,5
units and so on. So the sum of the perimeters of the obtained triangles:

P = 6 + 3 + 1,5 + . . . = 6

(
1 +

1

2
+

1

4
+ . . .

)
= 6 · 1

1− 1
2

= 6 · 2 = 12.

In the case of the area, that of the original triangle:

22 ·
√

3

4
=
√

3.

The area of the first inscribed triangle is
√

3

4
, that of the next inscribed triangle

is
√

3

16
, and so on. So the sum of the areas of the obtained triangles:

A =
√

3

(
1 +

1

4
+

1

16
+ . . .

)
=
√

3 · 1

1− 1
4

=
√

3 · 4

3
=

4
√

3

3
.
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3. Limits of functions, introduction to differential calculus,
description of motions

Theoretical summary

Definition 2.1.1. Let (X; d) and (Y ; ρ) be metric spaces, D ⊂ X be a set, x0
be a limit point of D and f : D → Y be a function. We say that the limit of
f , as x approaches x0, is L ∈ Y if for each number ε > 0, there is a number
δ > 0 such that ρ(f(x), L) < ε for all x ∈ D with 0 < d(x, x0) < δ. In this
case, we define lim

x→x0
f(x) = L.

In the case of real functions, this definition concerns their limits at finite num-
bers. However, we can define their limits also at infinity as follows.

Definition 2.1.2. Let D ⊂ R be a set which is not bounded from above and
f : D → R be a function. We say that the limit of f , as x approaches∞ is L ∈
R if for each number ε > 0, there is a number T ∈ R such that |f(x)− L| < ε
for all x ∈ D with x > T . In this case, we define lim

x→∞
f(x) = L. Limits of

real functions at −∞ can be defined similarly.

Remark 2.1.3. In the rest of this section I is an open interval.

Definition 2.1.4. Let f : I → R be a function and x1 and x2 be real numbers
such that x1, x2 ∈ I and x1 6= x2. The difference quotient of the function f on
the points x1 and x2 is

f(x2)− f(x1)

x2 − x1
.

Example 2.1.5. Let f(x) = x2 be a real-valued function, x1 = 2 and x2 = 4.
In this case

f(x2)− f(x1)

x2 − x1
=

42 − 22

4− 2
=

16− 4

2
= 6.

Remark 2.1.6. The geometric representation of the difference quotient of the
function f on the points x0 and x is the slope of a secant line.
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Example 2.1.7. The slope of a secant line of the function f(x) = x2 on points
x1 = 2 and x2 = 4 is 6.

Definition 2.1.8. A function f : I → R is differentiable at the point x0 ∈ I if
the limit

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

of difference quotients exists. The value of the limit is the derivative or differ-

ential quotient of the function at the point x0. Notation: f ′(x0),
df

dx
(x0),

ḟ(x0),
d

dx
f(x0). The function f ′ : x 7→ f ′(x) (x ∈ I, f is differentiable at x)

is called the derivative of f . If f is differentiable at each point of I , then we
say that it is differentiable.

Example 2.1.9. The function f(x) = x2 is a differentiable at x0 ∈ R, and the
derivative function at x0 is 2x0, because

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

x2 − x20
x− x0

= lim
x→x0

(x− x0) · (x+ x0)

x− x0
=

= lim
x→x0

x+ x0 = 2x0.

Definition 2.1.10. If f : I → R is a function which is differentiable at the point
x0 ∈ I then the tangent line of the function f is

y = f(x0) + f ′(x0) · (x− x0).
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Example 2.1.11. If f(x) = x2 and x0 = 2, the the tangent line of f at x0 is

y = 4 + 4 · (x− 2),

thus

y = 4x− 4.

Remark 2.1.12. The geometric representation of the differential quotient of
the function f at the point x0 is the slope of a tangent line.

Remark 2.1.13.

difference quotient differential quotient

definition 1 f(x)−f(x0)
x−x0 lim

x→x0
f(x)−f(x0)

x−x0

definition 2 f(x+h)−f(x)
h lim

h→0

f(x+h)−f(x)
h

geometric interpretation slope of the secant line slope of the tangent line

physical interpretation average change instantaneous value

Let r ∈ Q, c ∈ R, 0 < a 6= 1. The derivatives of the elementary functions are
in the next table:
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f(x) Df f ′(x) Df ′

c R 0 R

x R 1 R

xr ]0;∞[ r · xr−1 ]0;∞[

sinx R cosx R

cosx R − sinx R

tanx R \ {π2 + k · π | k ∈ Z} 1
cos2 x

R \ {π2 + k · π | k ∈ Z}

cotx R \ {π + k · π | k ∈ Z} − 1
sin2 x

R \ {π + k · π | k ∈ Z}

ex R ex R

ax R ax · ln a R

lnx ]0;∞[ 1
x ]0;∞[

loga x ]0;∞[ 1
x·ln a ]0;∞[

arcsinx [−1; 1] 1√
1−x2 ]− 1; 1[

arccosx [−1; 1] − 1√
1−x2 ]− 1; 1[
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arctanx R 1
1+x2

R

arccotx R − 1
1+x2

R

sinhx R coshx R

coshx R sinhx R

tanhx R 1
cosh2 x

R

cothx R \ {0} − 1
sinh2 x

R \ {0}

arsinhx R 1√
1+x2

R

arcoshx [1;∞[ 1√
x2−1 ]1;∞[

artanhx ]− 1; 1[ 1
1−x2 ]− 1; 1[

arcothx ]−∞;−1[∪ ]1;∞[ − 1
1−x2 ]−∞;−1[∪ ]1;∞[

Theorem 2.1.14. If the functions f, g : I → R are differentiable at the point
x0 ∈ I then f + g is also differentiable at x0 and

(f + g)′(x0) = f ′(x0) + g′(x0).

Example 2.1.15. If u(x) = x2 + 3, then

u′(x) = (x2 + 3)′ = (x2)′ + 3′ = 2x+ 0 = 2x.

Theorem 2.1.16. If the function f : I → R is differentiable at the point x0 ∈ I
and c ∈ R, then c · f is also differentiable at x0 and

(c · f)′(x0) = c · f ′(x0).

Example 2.1.17. If u(x) = 5 sinx, then

u′(x) = (5 sinx)′ = 5 · (sinx)′ = 5 cosx.
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Theorem 2.1.18. If the functions f, g : I → R are differentiable at the point
x0 ∈ I then f · g is also differentiable at x0 and

(f · g)′(x0) = f ′(x0) · g(x0) + f(x0) · g′(x0).

Example 2.1.19. If u(x) = x2 · sinx, then

u′(x) = (x2)′ · sinx+ x2 · (sinx)′ = 2x · sinx+ x2 · cosx.

Corollary 2.1.20. If the functions f, g, h : I → R are differentiable at the point
x0 ∈ I then f · g · h is also differentiable at x0 and

(f ·g·h)′(x0) = f ′(x0)·g(x0)·h(x0)+f(x0)·g′(x0)·h(x0)+f(x0)·g(x0)·h′(x0).

Example 2.1.21. If u(x) = x2 · sinx · 2x, then

u′(x) = (x2)′ · sinx · 2x + x2 · (sinx)′ · 2x + x2 · sinx · (2x)′ =

= 2x · sinx · 2x + x2 · cosx · 2x + x2 · sinx · 2x · ln 2.

Corollary 2.1.22. If n ∈ N and the functions f1, f2, . . . , fn : I → R are dif-
ferentiable at the point x0 ∈ I then f1 · f2 · . . . · fn is also differentiable at x0
and

(f · f2 · . . . · fn)′(x0) = f ′1(x0) · f2(x0) · . . . · fn(x0)+

+ f1(x0) · f ′2(x0) · . . . · fn(x0) + . . .+ f1(x0) · f2(x0) · . . . · f ′n(x0).

Theorem 2.1.23. If the functions f, g : I → R are differentiable at the point
x0 ∈ I and g(x) 6= 0 (x ∈ I), then f

g is also differentiable at point x0 and(
f

g

)′
(x0) =

f ′(x0) · g(x0)− f(x0) · g′(x0)(
g(x0)

)2 .

Example 2.1.24. If u(x) = x2

sinx , then

u′(x) =
(x2)′ · sinx− x2 · (sinx)′

sin2 x
=

2x sinx− x2 cosx

sin2 x
.

Theorem 2.1.25. If I and J are open intervals and the function g : I → J is
differentiable at the point x0 and the function f : J → R is differentiable at
g(x0) then f ◦ g : I → R is also differentiable at x0 and

(f ◦ g)′(x0) = f ′
(
g(x0)

)
· g′(x0).
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Example 2.1.26. If u(x) = sin(x2 + 1), then u = f ◦ g where:

f(x) = sinx f ′(x) = cosx

g(x) = x2 + 1 g′(x) = 2x.

If we apply the above differentiation rule, we get that

u′(x) = cos(x2 + 1) · 2x.

Definition 2.1.27. If f : I → R is a differentiable function whose derivative
is differentiable at the point x0 ∈ I , then we say that f is twice (or 2 times)
differentiable at x0. In this case, the second derivative of f at the point x0 is
defined by

f ′′(x0) = (f ′)′(x0).

If f is twice differentiable at each point of I , then it is called twice (or 2 times)
differentiable.
If for a number k = 3, 4, . . ., the function f is k − 1 times differentiable,
moreover its (k−1)-th derivative is differentiable at x0 ∈ I , then we say that f
is k times differentiable at x0. In this case, the k-th derivative of f at the point
x0 is defined by

f (k)(x0) =
(
f (k−1)

)′
(x0).

If f is k times differentiable at each point of I , then it is called k times differen-
tiable.

Definition 2.1.28. A function f : I → R is called convex if the region in the
plane bounded from below by the graph of f is convex. We say that f is concave
if −f is convex.

Theorem 2.1.29. If f : I → R is a differentiable function and f ′(x) ≥ 0 (x ∈
I), then f is monotonically increasing.
If f : I → R is a differentiable function and f ′(x) ≤ 0 (x ∈ I), then f is
monotonically decreasing.
If f : I → R is a twice differentiable function and f ′′(x) ≤ 0 (x ∈ I), then f
is convex.
If f : I → R is a twice differentiable function and f ′′(x) ≤ 0 (x ∈ I), then f
is concave.

Definition 2.1.30. Let x0 ∈ I be a point and f : I → R be a function. We say
that f has a local maximum (minimum) at x0 if there is a number δ > 0 such
that f(x) ≤ f(x0) (f(x) ≥ f(x0)) for each number x ∈ I∩ ]x0 − δ;x0 + δ[.
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We say that f has a local extremum at x0 if it has a local maximum or minimum
there.

Theorem 2.1.31. Let x0 ∈ I be a point and f : I → R be a function which
is differentiable at x0. If f has a local extremum at x0, then f ′(x0) = 0. If
f ′(x0) = 0 and there exists a number δ > 0 such that f |]x0−δ;x0[ is mono-
tonically increasing and f |]x0;x0+δ[ is monotonically decreasing (f |]x0−δ;x0[ is
monotonically decreasing and f |]x0;x0+δ[ is monotonically increasing), then f
has a local maximum (minimum) at x0.

Theorem 2.1.32. Let x0 ∈ I, n = 2, 3, . . . be numbers and f be an n times
differentiable function such that

f ′(x0) = . . . = f (n−1)(x0) = 0, f (n)(x0) 6= 0.

If n is odd, then f has no local extremum at x0. If n is even and f (n)(x0) <
0 (f (n)(x0) > 0), then f has a local maximum (minimum) at x0.
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Solved exercises

Exercise 18. A particle is moving in a straight line. Its position-time function
is

s(t) = t3 − 3t [m],

where t is the time in seconds.

a) Find a formula for the particle’s velocity-time function.

b) Find a formula for the particle’s acceleration-time function.

c) Calculate the position, velocity and acceleration of the particle at t = 0.

d) Calculate the position, velocity and acceleration of the particle at t = 1.

e) Calculate the position, velocity and acceleration of the particle at t = 2.

f) Find the position of the particle when it changes the direction of the motion.

g) Give the time interval(s) in which the speed of the particle is increasing.

h) What is the covered distance in the time interval [0; 2]?

i) Find the average velocity in the time interval [0; 1].

j) Find the average acceleration in the time interval [0; 1].

Solution:
a) The velocity-time function is the derivative of the position-time function

v(t) = s′(t) = 3t2 − 3.

b) The acceleration-time function is the derivative of the velocity-time function

a(t) = v′(t) = 6t.

c) If t = 0 then

s(0) = 03 − 3 · 0 = 0 [m]

v(0) = 3 · 02 − 3 = −3
[m

s

]
a(0) = 6 · 0 = 0

[m

s2

]
.
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d) If t = 1 then

s(1) = 13 − 3 · 1 = −2 [m]

v(1) = 3 · 12 − 3 = 0
[m

s

]
a(1) = 6 · 1 = 6

[m

s2

]
.

e) If t = 2 then

s(2) = 23 − 3 · 2 = 2 [m]

v(2) = 3 · 22 − 3 = 12− 3 = 9
[m

s

]
a(2) = 6 · 2 = 12

[m

s2

]
.

f) The solution of the equation v(t) = 0:

3t2 − 3 = 0 ⇒ t = ±1.

Since the sign of the function v(t) changes when t = 1 [s], a change in the
direction of the motion occurs at that instant. In our case

s(1) = 13 − 3 · 1 = −2,

thus when s = −2 [m] the direction of the motion of the particle changes.

g) The speed is increasing when v(t) and a(t) have the same sign. Since a(t) ≥
0 when t ≥ 0 and v(t) ≥ 0 exactly when t ≥ 1, we get that the speed is
increasing when t ≥ 1.

h) The total covered distance is∣∣s(1)− s(0)
∣∣+
∣∣s(2)− s(1)

∣∣ =
∣∣− 2− 0

∣∣+
∣∣2− (−2)

∣∣ = 6 [m].

i) Since s(1) = −2 and s(0) = 0 the average velocity in time interval [0; 1] [s]
is

s(1)− s(0)

1− 0
=
−2− 0

1− 0
= −2

[m

s

]
.

j) Since v(1) = 0 and v(0) = −3 the average acceleration in the time interval
[0; 1] [s] is

v(1)− v(0)

1− 0
=

0− (−3)

1− 0
= 3

[m

s

]
.
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Exercise 19. A particle moves in a straight line according to the position-time
function

s(t) = t3 − 7t2 + 11t− 3 [cm],

where t is the time in seconds.
a) Find a formula for the particle’s velocity-time function.
b) Find a formula for the particle’s acceleration-time function.
c) Find the instant(s) when the velocity is equal to zero.
d) Calculate the position, velocity and acceleration of the particle at t = 0.
e) Calculate the position, velocity and acceleration of the particle at t = 1.
f) Calculate the position, velocity and acceleration of the particle at t = 2.
g) Describe the monotonicity properties of the function s(t).
h) Calculate the covered distance in the time interval [0; 3].

Solution:

a) The velocity-time function is the time derivative of the position-time func-
tion

v(t) = s′(t) = 3t2 − 14t+ 11.

b) The acceleration-time function is the time derivative of the velocity-time
function

a(t) = v′(t) = 6t− 14.

c) We have to solve the equation

3t2 − 14t+ 11 = 0.

Applying the quadratic formula, we get that

t1,2 =
14±

√
196− 132

6
=

14± 8

6
.

Thus the solutions of the quadratic equation are t = 1 [s] and t = 11
3 [s].

d) If t = 0 then

s(0) = 03 − 7 · 02 + 11 · 0− 3 = −3 [cm];

v(0) = 3 · 02 − 14 · 0 + 11 = 11
[cm

s

]
;

a(0) = 6 · 0− 14 = −14
[cm

s2

]
.
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Thus the particle is at a distance of 3 [cm] from the point O on its left-hand
side and it is moving to the right at a speed of 11

[
cm
s

]
.

e) If t = 1, we get that

s(1) = 13 − 7 · 12 + 11 · 1− 3 = 2 [cm];

v(1) = 3 · 12 − 14 · 1 + 11 = 0
[cm

s

]
;

a(1) = 6 · 1− 14 = −8
[cm

s2

]
.

f) If t = 2, we get that

s(2) = 23 − 7 · 22 + 11 · 2− 3 = −1 [cm];

v(2) = 3 · 22 − 14 · 2 + 11 = −5
[cm

s

]
;

a(2) = 6 · 2− 14 = −2
[cm

s2

]
.

g) The monotonicity properties of the function s(t) are as follows.

t < 1 t = 1 1 < t < 11
3 t = 11

3 t > 11
3

s′(t) + 0 − 0 +
s(t) ↗ loc. max. ↘ loc. min. ↗

h) The total distance covered by the particle in the time interval [0;3] is

s = [s(1)− s(0)] + [s(3)− s(1)] .

Since
s(1)− s(0) = 2− (−3) = 5,

and

s(3)− s(1) = −6− 2 = −8,

consequently the total covered distance is

5 + 8 = 13 [m].

Exercise 20. A particle is moving in a straight line, according to the position-
time function

s(t) = t2 − 4t+ 2 [m],

where t is the time in seconds.
a) Find the average velocity in the time interval [2; 5] [s].
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b) Find a formula for the particle’s velocity-time function.
c) Find the average acceleration in the time interval [2; 5] [s].
d) Find a formula for the particle’s acceleration-time function.
e) Calculate the position, velocity and acceleration of the particle at t = 0 and

describe its motion at the above instant.
f) Calculate the position, velocity and acceleration of the particle at t = 1 and

describe its motion at the above instant.
g) Describe the motion of the particle at t = 2 [s].
h) Find the position of the particle at that moment when its direction of motion

changes.
i) Plot the position-time, velocity-time and acceleration-time functions in the

time interval [0; 6] in the same coordinate system.

Solution:
a) Since

s(5) = 52 − 4 · 5 + 2 = 25− 20 + 2 = 7

and

s(2) = 22 − 4 · 2 + 2 = 4− 8 + 2 = −2

thus the average velocity in the time interval [2; 5] [s] is

s(5)− s(2)

5− 2
=

7− (−2)

3
= 3

[m

s

]
.

b) The velocity-time function is the derivative of the position-time function

v(t) = s′(t) = 2t− 4.

c) Since

v(5) = 2 · 5− 4 = 6

and
v(2) = 2 · 2− 4 = 0

thus the average acceleration in the time interval [2; 5] [s]

v(5)− v(2)

5− 2
=

6− 0

3
= 2

[m

s2

]
.

d) The acceleration-time function is the derivative of the velocity-time function

a(t) = v′(t) = 2.
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e) When t = 0

s(0) = 02 − 4 · 0 + 2 = 2 [m];

v(0) = 2 · 0− 4 = −4
[m

s

]
;

a(0) = 2
[m

s2

]
.

We get that the particle is at a distance of 2 [m] to the right of the point O
and moving to the left at a speed of 4

[
m
s

]
.

f) When t = 1

s(1) = 12 − 4 · 1 + 2 = −1 [m];

v(1) = 2 · 1− 4 = −2
[m

s

]
;

a(1) = 2
[m

s2

]
.

We get that the particle is at a distance of 1 [m] to the left of the point O and
moving to the left at a speed of 2

[
m
s

]
.

g) When t = 2

s(2) = 22 − 4 · 2 + 2 = −2 [m];

v(2) = 2 · 2− 4 = 0
[m

s

]
;

a(2) = 2
[m

s2

]
.

We get that the particle is at a distance of 2 [m] to the left of the point O and
it is not moving.

h) The solution of equation v(t) = 0:

2t− 4 = 0 ⇒ t = 2.

The function v(t) changes sign when t = 2 [s], and

s(2) = −2,

so the particle changes direction at a distance of 2 [m] to the left of the point
O.

i) The position-time function is

s(t) = t2 − 4t+ 2 = (t− 2)2 − 4 + 2 = (t− 2)2 − 2.
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Thus the graph of the function s(t) is a parabola.
The velocity-time function is

v(t) = 2t− 4.

Thus the graph of the function v(t) is a line.
The acceleration-time function is a constant function.
The position-time, velocity-time and acceleration-time functions are
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4. Applications of the least squares method

Theoretical summary

Remark 2.2.1. The least squares method is usually credited to Carl Friedrich
Gauss but it was first published by Adrien-Marie Legendre.

The first clear and concise exposition of the method of least squares was pub-
lished by Legendre in 1 805. The technique is described as an algebraic pro-
cedure for fitting linear equations to data and Legendre demonstrated the new
method by analyzing the same data as Laplace for the shape of the Earth. The
value of Legendre’s method of least squares was immediately recognized by
leading astronomers and geodesists of the time.

The least squares method has a wide range of applications for the regression
of data point series. The model function, which is applied for the regression
usually has theoretical basis.

In the following we deal with the simplest case, where there is only one un-
known parameter in the model function, so it can be written in the following
form:

f(x) = f(x, a).

When applying the procedure our aim is to determine that value of the param-
eter a at which the model function gives the best fit to the given series of data
points.

In the method the aim is to find the minimum of the following function:

H(a) =
n∑
k=1

(
yk − f(xk, a)

)2
for given data points

(x1; y1), (x1; y1), . . . , (xn; yn).

This method is called the least squares method.

The minimum value can be found by applying the methods that were presented
in the section about the calculation of extreme values of real functions.
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Solved exercises

Exercise 21. The propagation of bacteria can be modelled by the function

N(t) = N(t, a) = a · 2t.

To determine the number of bacteria, we perform measurements on consecutive
days. The results are summarized in the table:

t[day] 1 2 3 4

N[thousand pieces] 2.1 4 7.9 16.1

Applying the least squares method determine the unknown parameter a and plot
the function.

Solution:

The function H is

H(a) = (2.1− 2a)2 + (4− 4a)2 + (7.9− 8a)2 + (16.1− 16a)2.

The derivative of the function H is

H ′(a) = 2 · (2.1− 2a) · (−2) + 2 · (4− 4a) · (−4)+

+ 2 · (7.9− 8a) · (−8) + 2 · (16.1− 16a) · (−16).

Simplifying the formula above, we get that

H ′(a) = 680a− 682.

We can determine the value of the parameter a from the equation:

680a− 682 = 0 ⇒ a =
682

680
= 1.0029.

Since
H ′′(a) = 680 > 0,

therefore the function H has a minimum at the above value, thus the model
function N is

N(t) = 1.0029 · 2t.

The figure below shows the function and the points:
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Exercise 22. The annual profit of a dynamically developing company has been
registered in the first four years after its establishment. The obtained data are
summarized in the table:

t[year] 1 2 3 4

P[m $] 2 3 6 9

The experts are assuming a linear relationship between the profit and time. On
the basis of the above assumption, applying the least squares method, determine
the unknown parameter m in the function below, and then estimate the profit of
the company five years after its establishment:

P (t) = P (t,m) = m · t.
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Plot the model function.

Solution:

By substituting the obtained data, we get that the function H(m) is

H(m) = (2−m)2 + (3− 2m)2 + (6− 3m)2 + (9− 4m)2.

The derivative of the function above is

H ′(m) = 2 · (2−m) · (−1) + 2 · (3− 2m) · (−2)+

+ 2 · (6− 3m) · (−3) + 2 · (9− 4m) · (−4).

Simplifying the above function, we get that

H ′(m) = 60m− 124.

The zero of the function above:

60m− 124 = 0 ⇒ 60m = 124 ⇒ m =
124

60
=

31

15
.

Consequently the value of the unknown parameter m is m = 31
15 , thus function

the P is

P (t) =
31

15
· t.

The graph of the function P is
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If t = 5 years, we get that

P (5) =
31

15
· 5 =

31

3
≈ 10.33.

Thus the estimation of the profit after five years is 10.33 million dollars.

Exercise 23. We intend to measure the electric resistance of the stator coil of
an electric motor. In the course of the measurements electric current is flowing
through the coil with different intensities and the voltage drop across the coil is
measured. The measurement results are summarized in the table:

I[A] 1 2 3 4 5

U[V] 0.1 0.22 0.3 0.41 0.49

Determine the electric resistance of the stator coil applying the least squares
method and Ohm’s law.

Solution:

Ohm’s law can be written in the following form:

U = R · I,
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where I is the intensity of the current flowing through the resistor (coil), U is
the voltage through the resistor (across the coil) and R is the electric resistance
of the resistor (coil). In the given situation the model function can be written
as:

U(I) = U(I,R) = R · I.
Substituting the data, for the function H(R) (see in the theoretical summary),
we get that:

H(R) = (0.1−R)2 + (0.22− 2R)2 + (0.3− 3R)2+

+ (0.41− 4R)2 + (0.49− 5R)2.

The derivative of the function above is:

H ′(R) = −2 · (0.1−R)− 4 · (0.22− 2R)− 6 · (0.3− 3R)−
− 8 · (0.41− 4R)− 10 · (0.49− 5R).

The minimum of the function H(R) can be found where its derivative function
is zero, thus we have to solve the equation

−11.06 + 110R = 0 ⇒ R ≈ 0.1005 [Ω].

Since
H ′′(R) = 110 > 0,

thus the function H has a minimum value at R ≈ 0.1005. Thus the function
U(I) is

U(I) = 0.1005 · I.
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5. Differential calculus in economics, marginal cost, marginal
revenue

Theoretical summary

Remark 2.3.1. Calculus is applied in basic economic theory in marginal anal-
ysis. Economists analyze how small changes, for example increasing the pro-
duction of a product by a single unit, affect profits, and costs. Marginal analysis
quantifies the benefits of performing such an action against the costs.
When the benefits or profits exceed the cost of the action, you can proceed on
this course until this situation changes.

Remark 2.3.2. The break-even point occurs when the production costs and the
total revenue, i.e., the amount of income generated before any deductions are
made, are the same.

Remark 2.3.3. Notation in this section:
• x: number of units produced or sold;
• P (x): demand as a function of amount x in units;
• S(x): supply as a function of amount x in units;
• R(x): total revenue from selling the amount x units;
• FC: fix cost;
• V C(x): variable cost;
• AFC(x) = FC

x : average fix cost;

• AV C(x) = V C(x)
x : average variable cost;

• AC(x) = C(x)
x : average total cost;

• C(x): total cost of producing the amount x units;
• Π(x): profit from selling the amount x units;
• R′(x): marginal revenue, which is the extra revenue for selling one

extra unit;
• MC(x) = C ′(x): marginal cost or marginal cost function, which is

the extra cost for selling one extra unit;
• MΠ(x) = Π′(x): marginal profit or marginal profit function, which

is the extra profit from selling one additional unit;
• MR(x) = R′(x): marginal revenue or marginal revenue function.
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It is clear that
• C(x) = FC + V C(x);
• AC(x) = AFC +AV C(x).

Definition 2.3.4. In economics, demand is the quantity of a commodity or a
service that people are willing or able to buy at a certain price, per unit of time.

In economics, supply is the amount of something that firms, consumers, labour-
ers, providers of financial assets, or other economic agents are willing to pro-
vide to the marketplace.

The market will reach equilibrium, when the quantity demanded and the quan-
tity supplied are the same.

Definition 2.3.5. In economics, elasticity is the measurement of how an eco-
nomic variable responds to a change in another. In economics, elasticity is used
to determine how changes in product demand and supply related to changes in
consumer income or the producer’s price.

Theorem 2.3.6. The formula for elasticity is

E(x) =
x

f(x)
· f ′(x).



Differential calculus in economics, marginal cost, marginal revenue 47

Solved exercises

Exercise 24. The cost of manufacturing fishing poles, measured in thousand
units, is modeled by

C(x) = 3x3 − 30x2 + 60x (0 ≤ x ≤ 10).

The revenue function is modeled by

R(x) = 21x+ 9.

a) Find the fix cost function.
b) Find the variable cost function.
c) Find the profit function.
d) Find the production level that maximize profits.
e) Calculate the marginal cost function.
f) Find the production level, if it exists, that minimizes cost.
g) Find the average cost function.
h) Find the production level, if it exists, that minimizes average cost.

Solution:
a) The fix cost function is 0.

b) The variable cost function is

V C(x) = 3x3 − 30x2 + 60x.

c) The profit function is

Π(x) = R(x)− C(x) = 21x+ 9− (3x3 − 30x2 + 60x) =

= −3x3 + 30x2 − 39x+ 9.

d) We have to solve the equation Π′(x) = 0, that is

−9x2 + 60x− 39 = 0 ⇒ −3x2 + 20x− 13 = 0.

Applying the quadratic formmula, we get that

x1,2 =
−20±

√
400− 12 · 13

−6
.

The solutions of the equation Π′(x) = 0 are x1 ≈ 0.73 and x2 ≈ 5.94. The
second derivative of the function Π(x) is Π′′(x) = −18x+ 60.
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Since Π′′(5.94) < 0, the maximum profit occurs at the production level of
5 490 fishing poles.

e) The marginal cost function is

MC(x) = C ′(x) = 9x2 − 60x+ 60.

f) We have to solve the equation C ′(x) = 0, that is

9x2 − 60x+ 60 = 0 ⇒ 3x2 − 20x+ 20 = 0.

Applying the quadratic formula, we get that

x1,2 =
20±

√
400− 240

6
≈ 20± 12.65

6
.

The solutions of the quadratic equation are x1 ≈ 5.44 and x2 ≈ 1.225.
Since C ′′(x) = 18x− 60 and C ′′(5.44) > 0, thus we get that the minimum
cost occurs at a production level of approximately 5 440 fishing poles.

g) The average cost function is

AC(x) =
C(x)

x
=

3x3 − 30x2 + 60x

x
= 3x2 − 30x+ 60.

h) The derivative function of the average cost is AC ′(x) = 6x − 30. The
solution of the equation 6x − 30 = 0 is x = 5, that is the production level
at which the average cost is minimal is x = 5.

Exercise 25. Suppose that the demand function is

f(x) =
200

x+ 5
.

Find its elasticity function. The price of the product is 5 dollars. By how many
percents does the demand change when we increase the price by 1 percent or
decrease the price by 5 percents.

Solution:

The derivative of the function f is

f ′(x) =
−200

(x+ 5)2
.

The elasticity function is

E(x) =
x

f(x)
f ′(x) =

x
200
x+5

· −200

(x+ 5)2
= x · x+ 5

200
· −200

(x+ 5)2
=
−x
x+ 5

.
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The price of the product is 5 dollars, thus we calculate E(5):

E(5) =
−5

5 + 5
= −1

2
.

If the price increases by 1 percent then the demand decreases by 0.5 percents.
If the price decreases by 5 percent, then the demand inreases by 5 · 0.5 = 2.5
percents.

Exercise 26. The revenue function is R(x) = 8
√
x. The total cost function is

C(x) = x2.

The units are measured in thousand pieces. The revenue and cost are measured
in thousand dollars.

Calculate the number of units, when the profit is maximal. Find the maximum
value of the profit function.

Solution:

The profit function is

Π(x) = R(x)− C(x) = 8
√
x− x2.

The derivative of the function Π(x) is

Π′(x) = 8 · 1

2
· x−

1
2 − 2x =

4√
x
− 2x.

The solution of the equation Π′(x) = 0 is

4√
x
− 2x = 0 ⇒ 4 = 2x ·

√
x.

Applying an algebraic identity, we get that

16 = 4x3 ⇒ x ≈ 1.59.

The second derivative of the function Π(x) is

Π′′(x) = −2x−
3
2 − 2

which is negative at the latter value, thus the company has to produce approxi-
mately 1 590 units. Since

Π(1.59) ≈ 7.5595,

the maximal profit is 7 560 dollars.
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Exercise 27. Consider the revenue function

R(x) = x ·
√

13 800− 0.2x,

where x is the number of units.

Calculate the number of units to be sold to maximize the revenue. Find the
maximum value of the revenue function.

Solution:

The derivative of the function R(x) is

R′(x) =
√

13 800− 0.2x+ x · 1

2
· (13 800− 0.2x)−

1
2 · (−0.2) =

=
√

13 800− 0.2x− 0.1x√
13 800− 0.2x

.

The equation R′(x) = 0 is
√

13 800− 0.2x− 0.1x√
13 800− 0.2x

= 0.

By writing the equation in an equvivalent form, we get 13 800− 0.3x = 0, that
is x = 46 000. The table of the signs of the function R′ is as follows:

0 < x < 46 000 x = 46 000 x > 46 000
R′(x) + 0 −
R(x) ↗ loc. max. ↘

We get that the company has to produce 46 000 units. Then the maximal rev-
enue is

R(46 000) = 46 000 ·
√

13 800− 0.2 · 46 000 ≈ 3 119 872.

Exercise 28. The demand function of a product is D(x) = 126 − 0.003x and
the cost function is C(x) = 90x + 3 600, where x is the number of units de-
manded.
a) Give the marginal cost function.
b) Determine the revenue function.
c) Find the marginal revenue function.
d) Give the profit function.
e) Determine the marginal profit function.
f) Calculate the profit for 1 000 units.
g) Calculate the number of units that maximizes the profit.
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Solution:

a) The marginal cost function is

MC(x) = C ′(x) = 90.

b) The revenue function is

R(x) = x ·D(x) = x · (126− 0.003x) = 126x− 0.003x2.

c) The marginal revenue function is MR(x) = R′(x) = 126− 0.006x.

d) The profit function is

Π(x) = R(x)− C(x) = 126x− 0.003x2 − (90x+ 3 600) =

= −0.003x2 + 36x− 3 600.

e) The marginal profit function is Π′(x) = −0.006x+ 36.

f) The profit for 1 000 units is

Π(1 000) = −0.003 · 1 0002 + 36 · 1 000− 3 600 = 29 400.

g) The solution of the equation Π′(x) = 0:

−0.006x+ 36 = 0 ⇒ x = 6 000.

Since Π′′(x) = −0.006 < 0, the profit function attains its maximum when
the company produces 6 000 units. The maximum profit is

Π(6 000) = −0.003 · 6 0002 + 36 · 6 000− 3 600 = 104 400.

Exercise 29. Suppose that the total cost, in dollars, of producing x cell phones
is

C(x) = 12 000− 60x+ 2x3.

Find the minimum average cost.

Solution:

The average cost function is

AC(x) =
12 000

x
− 60 + 2x2.

The derivative of function AC(x) is

AC ′(x) = −12 000

x2
+ 4x.



52 Differential calculus in economics, marginal cost, marginal revenue

The solution of the equation AC ′(x) = 0:

−12 000

x2
+ 4x = 0 ⇒ −12 000 + 4x3 = 0 ⇒ x ≈ 14.42,

furthermore
AC ′′(x) =

24 000

x3
+ 4,

thus
AC ′′(14.42) =

24 000

3 000
+ 4 = 12 > 0,

that is the function AC has a minimum at x ≈ 14.42. Thus the company has
to produce approximately 14 cell phones.

Exercise 30. An apartment complex has 250 apartments to rent. If they rent x
apartments then their monthly profit, in dollars, is given by

P (x) = −16x2 + 6 400x− 160 000.

How many apartments should they rent in order to maximize their profit?

Solution:

All that we are really being asked to do here is to maximize the profit subject to
the constraint that x must be in the range 0 ≤ x ≤ 250. The first derivative of
P is

P ′(x) = −32x+ 6 400.

The zero x of the function P ′ satisfies

−32x+ 6 400 = 0 ⇒ x = 200.

Since the profit function is continuous and we have an interval with finite
bounds we can find the maximum value by simply plugging in the only crit-
ical point that we have and the end points of the range:

P (0) = −16 · 02 + 6 400 · 0− 160 000 = −160 000

P (200) = −16 · 2002 + 6 400 · 200− 160 000 = 480 000

P (250) = −16 · 2502 + 6 400 · 250− 160 000 = 440 000.

The profit function attains its maximum, if they only rent out 200 of the apart-
ments instead of all 250 of them.

Exercise 31. The demand function is

f(x) = x2 · e−x2 .

Calculate its elasticity function at x = 2.
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Solution:

The derivative function of f is

f ′(x) = 2xe−x
2

+ x2 · e−x2 · (−2x) = e−x
2 · (2x− 2x3).

The elasticity function is

E(x) =
x

f(x)
· f ′(x) =

x

x2 · e−x2
· e−x2 · (2x− 2x3) =

=
2x− 2x3

x
= 2− 2x2.

The elasticity function at x = 2 is

E(2) = 2− 2 · 22 = −6.

If we increase the price by one percent, the demand decreases by 6 percents.
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6. Extremum problems in geometry, engineering methods and
economics

Theoretical summary

How can we solve optimization problems?
1. Read the problem. Collect the given data. Identify the quantity to be opti-

mized.
2. In case of a geometric problem, you can make it much simpler by drawing a

figure.
3. Introduce appropriate variables. Formulate all the relevant relations given in

the problem and, in case of a geometric task, the ones that can be deduced
from the mentioned figure as equations for the variables. Using the obtained
equations, express all variables in terms of one of them.

4. Determine a formula for the quantity to be optimized in terms of the latter
variable. In this way, that quantity becomes a single variable function f
defined on an interval [a; b] (a ≤ b).

5. Compute the derivative function of f .
6. Find the critical points of f , i.e., the the solutions of the equation f ′(x) =

0 (a < x < b).
7. Make a table of the value of f at the endpoints of its domain and at the

critical points.
8. Select the largest or the smallest value in the table.

We remark that the last two steps of this procedure form the Closed Interval
Method.

In some optimization problems, the domain of the function f above is not a
bounded and closed interval, so the previous method can not be used in such
cases. However, there is another way to give the extremum point which works
also for that kind of problems.
1. Do the first six steps of the procedure above.
2. Find the second derivative of the function f .
3. Let x0 be a critical point of f . If f ′′(x0) > 0, then x0 is a local minimum.

If f ′′(x0) < 0, then x0 is a local maximum.
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Solved exercises

Exercise 32. A farmer has 1 600 m of fencing and wants to fence off a rectan-
gular field bounded by a straight river. It needs no fence along the river. Among
such fields, what are the dimensions of the one that has the largest area?

Solution:

Let’s denote the sides of the rectangle by x and y.
The total length of the fence is P = 2y + x.
Using the equation P = 1 600, we get

2y + x = 1 600 ⇒ x = 1 600− 2y.

The area of the rectangle is

A = x · y = (1 600− 2y) · y = 1 600y − 2y2.

Thus the function we intend to maximize is

A(y) = 1 600y − 2y2.

Note that y ≥ 0 and y ≤ 800, thus the domain of function A is the interval
[0; 800].
The derivative of the function A is

A′(y) = 1 600− 4y,

thus to find the extreme values we have to solve the equation A′(y) = 0, that is
1 600− 4y = 0.
The solution of the equation is y = 400.

The maximum value of A is attained at 400 or at the endpoints of the domain
of the function A. Since

A(0) = 0 and A(400) = 320 000 and A(800) = 0,

the Closed Interval Method gives that the maximum value is attained at 400 and
it is

A(400) = 320 000.

Hence the dimensions of the field with the largest area are 800 and 400 meters.
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Exercise 33. A farmer has 800 [m] of fencing and wants to fence off a rectan-
gular field bounded by a straight river. It needs no fence along the river. Among
such fields, what are the dimensions of the one that has the largest area?

Solution:

Let’s denote the sides of the rectangle by x and y.
The total length of the fence is

P = 2y + x.

From the previous equation, we get that

2y + x = 800 ⇒ x = 800− 2y.

The area of the rectangle is

A = x · y = (800− 2y) · y = 800y − 2y2.

Thus the function we intend to maximize is

A(y) = 800y − 2y2.

Note that y ≥ 0 and y ≤ 400, thus the domain of function A is the interval
[0; 400].
The derivative of the function A is A′(y) = 800 − 4y, so to find the extrema,
we have to solve the equation A′(y) = 0, that is, 800− 4y = 0.
The solution of the equation above is y = 200.

We computeA′′(y) = −4 < 0 for all y, soA is concave and the local maximum
at y = 200 is an absolute maximum (here we have used the fact that local
maxima of concave functions are global).
Thus the dimensions of the rectangular field with the maximum area are 200
and 400 meters. The maximum area is

A = x · y = 400 · 200 = 80 000 [m2].

Exercise 34. The editor of a publishing house is designing the layout of a book.
The planned margins are 2 cm wide on the top, on the bottom and on the outer
edge of the pages, but the inner margins have to be 4 cm wide because of the
binding. The total area of a page is 600 [cm2]. How should the editor set the
dimensions of the pages in order to have the maximal printing area?

Solution:

Let’s denote the sides of the page by x and y. The area of the paper is x · y =
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600.
Expressing the variable y, we have

y =
600

x
.

The printing area is

f(x) = (x− 6) · (y − 4) = xy − 4x− 6y + 24 =

= 600− 4x− 3600

x
+ 24 = 624− 4x− 3600

x
.

The domain of the function f(x) is [6; 150].

The first derivative of the function f(x) is

f ′(x) = −4 +
3600

x2
.

Solving the equation f ′(x) = 0, we get that

−4 +
3600

x2
= 0 ⇒ 3600

x2
= 4 ⇒ x2 = 900,

The zeros of the function f ′(x) are x = ±30. Since x ∈ [6; 150], the only
solution is x = 30.
The second derivative of the function f(x) is

f ′′(x) = −7200

x3
⇒ f ′′(30) = −7200

303
< 0,

thus at x = 30, there is a maximum. Consequently the side y is

y =
600

30
= 20.

Thus the dimensions of the optimal page are 30 cm and 20 cm, respectively.

Exercise 35. The population of bacteria (P ) in thousands at a time t in hours
can be modelled by

P (t) = 100 + et − 3t (t ≥ 0).

a) Find the initial population of bacteria.
b) Find the function P ′(t).
c) Find the time at which the bacteria are growing at a rate of 6 million per

hour.
d) Find the function P ′′(t) and explain the physical significance of this quan-

tity.
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e) Find the minimum number of bacteria, justifying that it is a minimum.

Solution:

a) Since
P (0) = 100 + e0 − 3 · 0 = 101,

the initial population of bacteria is 101 000.

b) The derivative of the function P (t) is

P ′(t) = et − 3.

c) We have to solve the equation P ′(t) = 6 000, that is,

6 000 = et − 3.

The solution of the equation is t = ln 6 003, that is, t = 8.7.

d) The second derivative of the function P (t) is

P ′′(t) = et,

which is the rate of change of the growth rate of the bacteria.

e) We have to solve the equation P ′(t) = 0, that is,

et − 3 = 0 ⇒ et = 3,

thus t = ln 3 = 1.099.

The second derivative of the function P (t) is positive for all t, thus P has a
minimum at t = 1.099.

Since
P (ln 3) = 100 + eln 3 − 3 · ln 3 = 99.7,

the minimum number of bacteria is 99 700.

Exercise 36. A paper aeroplane of weight w > 1 will travel at a constant speed
of 1 − 1√

w

[
m
s

]
for a time of 6

w [s]. What weight will achieve the maximum
distance travelled?

Solution:

The covered distance is

s(w) =

(
1− 1√

w

)
· 6

w
=

6w
1
2 − 6

w
3
2

.
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The derivative function of s is

s′(w) =
3 · w−

1
2 · w

3
2 −

(
6w

1
2 − 6

)
· 3

2
· w

1
2

w3
.

Applying algebraic identities, we get that

s′(w) =
3 · w − 9w + 9 · w

1
2

w3
=
−6w + 9 ·

√
w

w3
.

We have to solve the equation s′(w) = 0, that is,

−6w + 9 ·
√
w

w3
= 0 ⇒ −6w + 9 ·

√
w = 0.

Factorizing the equation, we have
√
w ·
(
−6
√
w + 9

)
= 0.

Since w 6= 0, thus

−6
√
w + 9 = 0 ⇒

√
w = 1.5,

thus w = 2.25.

The second derivative of the function s is

s′′(w) =

(
−6 + 9

2w
−1/2) · w3 − (−6w + 9

√
w) · 3w2

w6
=

=
−6w + 9

2

√
w + 18w − 27

√
w

w4
=

12w − 45
2

√
w

w4
.

Since s′′(2.25) < 0, the function s has a maximum at w = 2.25.
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7. Partial derivatives, extrema of functions of several variables and
their applications

In the theoretical part of this section, n denotes a natural number, D ⊂ Rn
stands for an open set, P ∈ D denotes a point and f : D → R stands for a
function.

Definition 2.5.1. We say that the function f has a local maximum (relative
maximum) at P if there is a ball in Rn centered at P such that

f(x1; . . . ;xn) ≤ f(P )

for all points (x1; . . . ;xn)∈ D that lie inside the ball.

We say that the function f has a local minimum (relative minimum) at P if there
is a ball in Rn centered at P such that

f(x1; . . . ;xn) ≥ f(P )

for all points (x1; . . . ;xn)∈ D that lie inside the ball. If f has a local minimum
or maximum at P , then we say that it has a local extremum there.

Definition 2.5.2. Let i = 1, . . . , n be a number. We say that the i-th partial
derivative of f exists at the point P =

(
x
(0)
1 ; . . . ;x

(0)
n

)
if there is an open ball

in Rn centered at P with radius r > 0 such that the function

xi 7→ f
(
x
(0)
1 ; . . . ;x

(0)
i−1;xi;x

(0)
i+1; . . . ;x

(0)
n

) (
xi ∈

]
x
(0)
i − r;x

(0)
i + r

[ )
is differentiable at x(0)i . In this case the derivative of this function at x(0)i is
called the i-th partial derivative of f at P and is denoted by f ′xi(P ). If any of
the functions f ′x1 , . . . , f

′
xn : D → R exists, then it is called a (first order) partial

derivative of f .

Definition 2.5.3. Let i, j = 1, . . . , n be numbers. If the j-th partial derivative
of f exists at each point in D and the i-th partial derivative of the function f ′xj
exists at P , then it is denoted by f ′′xixj (P ). If any of the functions

f ′′x1x1 , . . . , f
′′
x1xn , . . . , f

′′
xnx1 , . . . , f

′′
xnxn : D → R

exists, then it is called a second order partial derivative of f .

Definition 2.5.4. We say that the function f is continuously differentiable if all
of its first order partial derivatives exist and they are continuous. The function
f is termed twice continuously differentiable if each of its second order partial
derivatives exists and they are continuous.
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Theorem 2.5.5. If f is continuously differentiable and it has a local extremum
at P , then the partial derivatives of f at P are zero.

Definition 2.5.6. If the second order derivatives of f exist, then its Hessian
matrix at P is

M(P ) =



x1 x2 . . . xn
x1 f ′′x1x1(P ) f ′′x1x2(P ) . . . f ′′x1xn(P )

x2 f ′′x2x1(P ) f ′′x2x2(P ) . . . f ′′x2xn(P )

...
...

...
. . .

...

xn f ′′xnx1(P ) f ′′xnx2(P ) . . . f ′′xnxn(P )

.

Theorem 2.5.7. Suppose that f is twice continuously differentiable and that
the partial derivatives of f at P are zero. Let

Di = det


f ′′x1x1(P ) f ′′x1x2(P ) . . . f ′′x1xi(P )

f ′′x2x1(P ) f ′′x2x2(P ) . . . f ′′x2xi(P )

...
...

. . .
...

f ′′xix1(P ) f ′′xix2(P ) . . . f ′′xixi(P )

 (i = 1, . . . n).

If Di > 0 for all i = 1, 2, . . . , n, then the f has a local minimum at P .

If (−1)i ·Di > 0 for all i = 1, 2, . . . , n, then f has a local maximum at P . If
Di < 0 for an even number i = 2, 3, ..., n, then f has no local extremum at P .

Remark 2.5.8. How can we find a local extremum?

1. We have to calculate the partial derivatives of the function f .

2. We have to solve the system of equations

f ′x1(x1;x2; . . . ;xn) = 0

f ′x2(x1;x2; . . . ;xn) = 0

. . .

f ′xn(x1;x2; . . . ;xn) = 0

 .

The solutions of the system are called the critical points of f .
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3. We have to calculate the second order partial derivatives and we have to
construct the Hessian matrix:

M(x1;x2; . . . ;xn) =



x1 x2 . . . xn
x1 f ′′x1x1 f ′′x1x2 . . . f ′′x1xn

x2 f ′′x2x1 f ′′x2x2 . . . f ′′x2xn

...
...

...
. . .

...

xn f ′′xnx1 f ′′xnx2 . . . f ′′xnxn

.

4. We have to substitute the critical points in the Hessian matrix and apply
Theorem 2.5.7.
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Solved exercises

Exercise 37. Find all critical points of the function

f(x; y) = 10x2 − 20x+ 2y2 − 4y.

Solution:

The first order partial derivatives of the function f are

f ′x(x; y) = 20x− 20

f ′y(x; y) = 4y − 4.

We have to solve the system of equations

20x− 20 = 0

4y − 4 = 0

}
.

The solution of the system is (1; 1). The critical point of the function f is
P = (1; 1).

Exercise 38. The critical point for f(x; y) = x2 − 8x + y2 − 10y + 2 is
P = (4; 5). Determine if the critical point is a local (relative) maximum or
minimum.

Solution:

The first order partial derivatives of the function f are

f ′x(x; y) = 2x− 8

f ′y(x; y) = 2y − 10.

The second order partial derivatives are

f ′′xx(x; y) = 2 f ′′xy(x; y) = 0

f ′′yx(x; y) = 0 f ′′yy(x; y) = 2,

thus the Hessian matrix is as follows:

M(x; y) =

(x y

x 2 0

y 0 2

)
.
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If we substitute the coordinates of the point P in the Hessian matrix, we get the
same matrix:

M(P ) =

(
2 0
0 2

)
.

Since D1 = 2 and

D2 = det

(
2 0
0 2

)
= 4,

therefore D1 and D2 are positive, thus f has a local minimum at P = (4; 5).

Exercise 39. Let f(x; y) = 2x3 + 2y3 − 6xy + 3 be a two variable function.
Calculate the local extremum of the function.

Solution:

The partial derivative functions of f are:

f ′x(x; y) = 6x2 − 6y

f ′y(x; y) = 6y2 − 6x.

We have to solve the system of equations

6x2 − 6y = 0

6y2 − 6x = 0

}
.

If we simplify the equations, we get that

x2 − y = 0

y2 − x = 0

}
.

From the first equation, we get that y = x2. If we substitute this to the second
equation, we get that

(x2)2 − x = 0 ⇒ x4 − x = 0.

It follows that
x · (x3 − 1) = 0,

thus x1 = 0 and x2 = 1. The values of y are y1 = 0 and y2 = 1. We have two
critical points: P1 = (0; 0) and P2 = (1; 1).

In the general case, the Hessian matrix is as follows:

M(x; y) =

( x y

x f ′′xx(x; y) f ′′xy(x; y)

y f ′′yx(x; y) f ′′yy(x; y)

)
.
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Since

f ′′xx(x; y) = 12x f ′′xy(x; y) = −6

f ′′yx(x; y) = −6 f ′′yy(x; y) = 12y,

therefore in this exercise the Hessian matrix is

M(x; y) =

( x y

x 12x −6

y −6 12y

)
.

If we substitute the point P1 in the Hessian matrix, we get that

M(P1) =

(
0 −6
−6 0

)
.

Since

D2 = det

(
0 −6
−6 0

)
= 0− 36 = −36,

therefore f has no local extremum at the point P1.

If we substitute the point P2 in the matrix M(.), we get that

M(P2) =

(
12 −6
−6 12

)
.

Since D1 = 12 and

D2 = det

(
12 −6
−6 12

)
= 144− 36 = 108,

we get that both values D1 and D2 are positive, thus f has a local minimum at
the point P2. The value of f at the point P2 is

f(1; 1) = 2 · 13 + 2 · 13 − 6 · 1 · 1 + 3 = −2 + 3 = 1.

Exercise 40. Find the local extremum of the function

f(x; y) = x3 − 12x+ y2 − 4y.

Solution:

The partial derivatives of f are

f ′x(x; y) = 3x2 − 12

f ′y(x; y) = 2y − 4.
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The solutions of the system of equations

3x2 − 12 = 0

2y − 4 = 0

}
are P1 = (2; 2) and P2 = (−2; 2).

The second order partial derivatives of the function f are

f ′′xx(x; y) = 6x f ′′xy(x; y) = 0

f ′′yx(x; y) = 0 f ′′yy(x; y) = 2.

The Hessian matrix is

M(x; y) =

( x y

x 6x 0

y 0 2

)
.

The Hessian matrix at the point P1 is

M(P1) =

(
12 0
0 2

)
.

Since D1 = 12 and

D2 = det

(
12 0
0 2

)
= 24,

therefore f has a local minimum at P1. The value of the function f at P1 is

f(2; 2) = 23 − 12 · 2 + 22 − 4 · 2 = −20.

The value of the Hessian matrix at the point P2 is

M(P2) =

(
−12 0

0 2

)
.

Since

D2 = det

(
−12 0

0 2

)
= −24< 0,

thus f has no local extremum at P2.

Exercise 41. The cost function is f(x; y) = ln(x2 + y2 + 1) + 5. Find the
minimum value of the cost.

Solution:
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The partial derivatives of f are

f ′x(x; y) =
2x

x2 + y2 + 1

f ′y(x; y) =
2y

x2 + y2 + 1
.

The solution of the system of equations
2x

x2 + y2 + 1
= 0

2y

x2 + y2 + 1
= 0


is P = (0; 0).

The second order partial derivatives are

f ′′xx(x; y) =
2 · (x2 + y2 + 1)− 4x2

(x2 + y2 + 1)2
=
−2x2 + 2y2 + 2

(x2 + y2 + 1)2

and

f ′′yy(x; y) =
2 · (x2 + y2 + 1)− 4y2

(x2 + y2 + 1)2
=

2x2 − 2y2 + 2

(x2 + y2 + 1)2

and
f ′′yx(x; y) = f ′′xy(x; y) =

−4xy

(x2 + y2 + 1)2
.

The Hessian matrix is

M(x; y) =


x y

x
−2x2 + 2y2 + 2

(x2 + y2 + 1)2
−4xy

(x2 + y2 + 1)2

y
−4xy

(x2 + y2 + 1)2
2x2 − 2y2 + 2

(x2 + y2 + 1)2

.
The Hessian matrix at the point P is

M(P ) =

(
2 0
0 2

)
.

The value of D1 is 2, and

D2 = det

(
2 0
0 2

)
= 4− 0 = 4.
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Since D1 and D2 are positive real numbers, we get that f has a local minimum
at the point P . The value of the function f at the point P is:

f(0; 0) = ln(02 + 02 + 1) + 5 = 5.

Exercise 42. In a certain office, the computersA,B andC are used for a, b and
c hours, respectively. If the daily output f is a function of a, b and c, namely

f(a; b; c) = 23a+ 29b− 2a2 − 4b2 − ab− c2 + 2c+ 100,

find the values of a, b and c that maximize f .

Solution:

The partial derivatives of the function f are

f ′a(a; b; c) = 23− 4a− b
f ′b(a; b; c) = 29− 8b− a
f ′c(a; b; c) = −2c+ 2.

We have to solve the system

23− 4a− b = 0

29− 8b− a = 0

−2c+ 2 = 0

 .

The solution of the system is P = (5; 3; 1).

The second order partial derivatives are

f ′′aa(a; b; c) = −4 f ′′ab(a; b; c) = −1 f ′′ac(a; b; c) = 0

f ′′ba(a; b; c) = −1 f ′′bb(a; b; c) = −8 f ′′bc(a; b; c) = 0

f ′′ca(a; b; c) = 0 f ′′cb(a; b; c) = 0 f ′′cc(a; b; c) = −2,

hence the Hessian-matrix is

M(a; b; c) =


a b c

a −4 −1 0

b −1 −8 0

c 0 0 −2

.
The Hessian-matrix at the point P is

M(P ) =

 −4 −1 0
−1 −8 0
0 0 −2

 .
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Since D1 = −4 and

D2 = det

(
−4 −1
−1 −8

)
= 32− 1 = 31,

and

D2 = det

 −4 −1 0
−1 −8 0
0 0 −2

 = −2 · 31 = −62,

thus the function f has a maximum at P .

The value of the function at the point P is

f(5; 3; 1) = 23 · 5 + 29 · 3− 2 · 52 − 4 · 32 − 15− 12 + 2 · 1 + 100 = 202.
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Integral calculus and its
applications
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8. Techniques for the calculation of primitive functions,
applications in economical problems

Theoretical summary

Remark 3.1.1. In this section, I is an open interval.

Definition 3.1.2. A primitive function of a function f : I → R is a differen-
tiable function F : I → R whose derivative is equal to the original function f .
Notation:

∫
f = F ,

∫
f(x) dx = F (x).

Theorem 3.1.3. If f, F are as above and F is a primitive function of f , then
F + c is also a primitve function of F for all c ∈ R.

Example 3.1.4. If f(x) = 5x4 then∫
5x4 dx = x5 + c

for all c ∈ R.

Theorem 3.1.5. If f, g : I → R are functions having primitive functions, then
f + g has primitive functions and∫ (

f(x) + g(x)
)

dx =

∫
f(x) dx+

∫
g(x) dx.

Example 3.1.6.∫
5x4 + 4x3 dx =

∫
5x4 dx+

∫
4x3 dx = x5 + x4 + c.

Theorem 3.1.7. If f : I → R is a function having primitive functions, then
λ · f has primitive functions and∫

λ · f(x) dx = λ ·
∫
f(x) dx,

for all λ ∈ R.

Example 3.1.8. ∫
3x dx = 3

∫
x dx = 3 · x

2

2
+ c
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The primitive functions of some basic elementary functions are given in the
table below.
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f(x) Df

∫
f(x) dx

α R α · x+ c

1 R x+ c

xr (r ∈ R \ {−1}) ]0;∞[ xr+1

r+1 + c

sinx R − cosx+ c

cosx R sinx+ c

1
cos2 x

R \ {π2 + k · π | k ∈ Z} tanx+ c

− 1
sin2 x

R \ {π + k · π | k ∈ Z} cotx+ c

ex R ex + c

ax (a > 0) R ax

ln a + c

1
x ]0;∞[ ln |x|+ c

1
x·ln a ]0;∞[ loga x+ c

1√
1−x2 ]− 1; 1[ arcsinx+ c

− 1√
1−x2 ]− 1; 1[ arccosx+ c

1
1+x2

R arctanx+ c

sinhx R coshx+ c
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coshx R sinhx+ c

1
cosh2 x

R tanhx+ c

− 1
sinh2 x

R \ {0} cothx+ c

1√
1+x2

R arsinhx+ c

1√
x2−1 [1;∞[ arcoshx+ c

1
1−x2 ]− 1; 1[ artanhx+ c

− 1
1−x2 ]−∞;−1[∪ ]1;∞[ arcothx+c

Theorem 3.1.9. If F : I → R is a primitive function of the function f : I → R,
then ∫

f(ax+ b) dx =
1

a
· F (ax+ b) + c

for all a, b, c ∈ R, a 6= 0.

Example 3.1.10. ∫
cos(2x+ 4) dx =

sin(2x+ 4)

2
+ c.

Theorem 3.1.11. If f : I → R is a nowhere 0 differentiable function, then the
primitive function of the function f ′(x)

f(x) exists and

∫
f ′(x)

f(x)
dx = ln

∣∣f(x)
∣∣+ c.

Example 3.1.12. ∫
3x2

x3 + 6
dx = ln |x3 + 6|+ c
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Theorem 3.1.13. Let n ∈ R \ {−1} and f : I → ]0,∞[ be a differentiable
function. Then the primitve function of the function fn(x) · f ′(x) exists and∫

fn(x) · f ′(x) dx =
fn+1(x)

n+ 1
+ c.

Example 3.1.14. ∫
sin5 x · cosx dx =

sin6 x

6
+ c

Theorem 3.1.15 (Integration by parts). If f, g : I → R are continuously differ-
entiable functions, then f ′g, fg′ have primitive functions and∫

f ′g = fg −
∫
fg′.

Example 3.1.16. We compute ∫
x cosx dx.

Using the notation of the previous theorem, let f, g : R → R be such that
f ′(x) = cosx, g(x) = x (x ∈ R). Then f(x) = sinx and∫

x cosx dx = x sinx−
∫

1 · sinx dx = x sinx+ cosx+ c.

Remark 3.1.17. If the marginal revenue function for a manufacturer’s product
is MR, then by integrating this function and using the initial condition R(0) =
0, we can find the revenue function.
The revenue function is given by the general relationship

R(q) = p · q,
where p is the price per unit.

If the marginal cost function for a manufacturer’s product is MC, then by in-
tegrating this function and using the initial condition C(0) = FC, we can find
the cost function.
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Solved exercieses

Exercise 43. Compute the integrals below:

a)
∫

3x2 + 6x+ 5 dx

b)
∫

1

x2
dx

c)
∫

3
√
x dx

d)
∫
x2 + x

x
dx

e)
∫

4x + 5x dx

f)
∫
x2 − 16

x− 4
dx

g)
∫
x2 + 4x+ 4

x+ 2
dx

Solution:

a) ∫
3x2 + 6x+ 5 dx = 3 ·

∫
x2 dx+ 6 ·

∫
x dx+

∫
5 dx =

= 3 · x
3

3
+ 6 · x

2

2
+ 5x+ c = x3 + 3x2 + 5x+ c

b) Since
1

x2
= x−2,

we get that ∫
1

x2
dx =

∫
x−2 dx =

x−1

−1
+ c = −1

x
+ c.

c) Since 3
√
x = x

1
3 , we get that∫

3
√
x dx =

∫
x

1
3 dx =

x
4
3

4
3

=
3

4
· 3
√
x4 + c.

d) ∫
x2 + x

x
dx =

∫
x2

x
+
x

x
dx =

∫
x+ 1 dx =

x2

2
+ x+ c.
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e) ∫
4x + 5x dx =

4x

ln 4
+

5x

ln 5
+ c.

f) Since x2 − 16 = (x− 4) · (x+ 4), we get that∫
x2 − 16

x− 4
dx =

∫
(x− 4) · (x+ 4)

x− 4
dx =

∫
x+ 4 dx =

x2

2
+ 4x+ c.

g) Since x2 + 4x+ 4 = (x+ 2)2, we get that∫
x2 + 4x+ 4

x+ 2
dx =

∫
(x+ 2)2

x+ 2
dx =

∫
x+ 2 dx =

x2

2
+ 2x+ c.

Exercise 44. Let

f(x) =
x2 − 4

x− 2
(x ∈ R \ {2}).

Determine the primitve function F of f satisfying F (3) = 20.

Solution:

Since x2 − 4 = (x− 2) · (x+ 2), we obtain that

x2 − 4

x− 2
=

(x− 2) · (x+ 2)

x− 2
= x+ 2,

therefore ∫
x2 − 4

x− 2
dx =

∫
x+ 2 dx =

x2

2
+ 2x+ c.

We get that

F (x) =
x2

2
+ 2x+ c.

Since F (3) = 20, thus

20 =
32

2
+ 2 · 3 + c ⇒ c = 9.5.

The desired primitve function is

F (x) =
x2

2
+ 2x+ 9.5.
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Exercise 45. Let f(x) = (3x + 1)2. Find the primitive function F of f satis-
fying F (2) = 10.

Solution:

Since
(a+ b)2 = a2 + 2ab+ b2

thus
(3x+ 1)2 = 9x2 + 6x+ 1.

We get that

F (x) =

∫
9x2 + 6x+ 1 dx =

9x3

3
+

6x2

2
+ x+ c = 3x3 + 3x2 + x+ c.

Since F (2) = 10, therefore

24 + 12 + 2 + c = 10 ⇒ c = −28,

thus the primitve function is

F (x) = 3x3 + 3x2 + x− 28.

Exercise 46. Calculate the inetgrals below:

a)
∫

x

x2 + 5
dx

b)
∫

x+ 2

x2 + 4x+ 7
dx

c)
∫

ex

ex + 2
dx

d)
∫

e2x

e2x + 1
dx

e)
∫

5 · cosx

sinx
dx

Solution:

a) If f(x) = x2 + 5, then f ′(x) = 2x, thus∫
x

x2 + 5
dx =

1

2
·
∫

2x

x2 + 5
dx =

1

2
· ln(x2 + 5) + c.

b) ∫
x+ 2

x2 + 4x+ 7
dx =

1

2
·
∫

2x+ 4

x2 + 4x+ 7
dx =

1

2
· ln |x2 + 4x+ 7|+ c.
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c) If f(x) = ex + 2, then f ′(x) = ex, thus∫
ex

ex + 2
dx = ln(ex + 2) + c.

d) ∫
e2x

e2x + 1
dx =

∫
1

2
· 2e2x

e2x + 1
dx =

1

2
·
∫

2 · e2x

e2x + 1
dx =

=
1

2
· ln(e2x + 1) + c.

e) ∫
5 · cosx

sinx
dx = 5 ·

∫
cosx

sinx
dx = 5 · ln | sinx|+ c.

Exercise 47. Calculate the integrals below:

a)
∫

sin6 x · cosx dx

b)
∫

cos3 x · sinx dx

c)
∫

sinx

cos5 x
dx

d)
∫

cosx
4
√

sin3 x
dx

Solution:

a) ∫
sin6 x · cosx dx =

sin7 x

7
+ c.

b) ∫
cos3 x · sinx dx = −

∫
cos3 x · (− sinx) dx = −cos4 x

4
+ c.

c) ∫
sinx

cos5 x
dx =

∫
sinx · cos−5 x dx = −

∫
− sinx · cos−5 x dx =

= −cos−4 x

−4
+ c =

1

4 · cos4 x
+ c.

d)∫
cosx

4
√

sin3 x
dx =

∫
cosx · (sinx)−

3
4 dx =

sin
1
4 x
1
4

+ c = 4 · 4
√

sin x+ c.

Exercise 48. Calculate the integrals below:
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a)
∫

cos(6x+ 3) dx

b)
∫

sin(6x+ 3) dx

c)
∫

e4x+5 dx

d)
∫

(2x+ 1)20 dx

Solution:

a) Since (sinx)′ = cosx, we get that∫
cos(6x+ 3) dx =

sin(6x+ 3)

6
+ c.

b) ∫
sin(6x+ 3) dx = −cos(6x+ 3)

6
+ c

c) Since (ex)′ = ex, we get that∫
e4x+5 dx =

e4x+5

4
+ c.

d) Since ∫
x20 dx =

x21

21
+ c,

therefore∫
(2x+ 1)20 dx =

(2x+ 1)21

21 · 2
+ c =

(2x+ 1)21

42
+ c.

Exercise 49. If the marginal revenue function for a manufacturer’s product is

MR(q) = 3 000− 20q − 3q2,

find the revenue function.

Solution:

By integrating the marginal revenue function and using the initial condition
R(0) = 0, we can find the revenue function. Since

R(q) =

∫
3 000− 20q − 3q2 dq =

=

∫
3 000 dq −

∫
20q dq −

∫
3q2 dq =

= 3 000q − 10q2 − q3 + c
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and R(0) = 0, thus

3 000 · 0− 10 · 02 − 03 + c = 0,

so we get that c = 0. Consequently, the revenue function is

R(q) = −q3 − 10q2 + 3 000q.
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9. Riemann integral, its economical applications and the center of
mass

Theoretical summary

Definition 3.2.1. Let a ≤ b be real numbers and f : [a; b] → R be a bounded
function. We say that f is Riemann integrable if there is a unique number I ∈ R
such that for each sequence mn ∈ N of integers and corresponding sequence of
points

tn0 = a ≤ ξn0 ≤ tn1 ≤ . . . ≤ tnmn−1 ≤ ξ
n
mn−1 ≤ t

n
mn = b (n ∈ N)

satisfying max
i=0,...,mn−1

(tni+1 − tni )→ 0 (n→∞), one has

mn−1∑
i=0

(tni+1 − tni )f(ξni )→ I (n→∞).

In this case, I is called the Riemann integral of f and is denoted by
b∫
a
f or

b∫
a
f(x) dx.

It is worth noting that the terms of the last displayed sum are the areas of
the rectangles with vertices

(tni ; 0); (tni+1, 0); (tni+1; f(ξni )); (tni ; f(ξni )) (i = 0, . . . ,mn − 1).

Moreover, I is the signed area of the region bounded by the graph of f and the
lines y = 0, x = a, x = b.

Theorem 3.2.2 (Newton-Leibniz). If a, b, f are as above and f is continuous,
then it is Riemann integrable. Moreover, if F is a primitive function of f , then

b∫
a

f(x) dx = [F (x)]ba=̇F (b−)− F (a+).
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Definition 3.2.3. If D(p) is a demand function, S(p) is a supply function and(
p0; q0

)
is the equlibrium point then the producers’ surplus is

p0∫
pmin

S(p) dp,

and the consumers’ surplus is

pmax∫
p0

D(p) dp.

Definition 3.2.4. IfD−1(q) is an inverse demand function and S−1(q) is an in-
verse supply function, and

(
p0; q0

)
is the equlibrium point, then the producers’

surplus is

p0 · q0 −
q0∫
0

S−1(q) dq,

and the consumers’ surplus is

q0∫
0

D−1(q) dq − p0 · q0.
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Theorem 3.2.5. If the mass distribution of a plane sheet is homogeneous and
it is bounded by the lines x = a, x = b, y = 0 and by the graph of a function
f : [a; b] → R (a, b ∈ R, a < b), then the center of mass of the sheet is
M = (xs; ys), where

xs =

b∫
a
x · f(x) dx

b∫
a
f(x) dx

; ys =

1
2 ·

b∫
a

(
f(x)

)2
dx

b∫
a
f(x) dx

.
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Solved exercieses

Exercise 50. The demand function for a product is

D(p) =
180

p
− 4 (1 ≤ p ≤ 45)

the supply function is

S(p) = 2p− 2 (1 ≤ p ≤ 45).

The variable p is given in dollars.

a) Calculate the equilibrium price and quantity.
b) Find the consumers’ surplus.
c) Calculate the producers’ surplus.

Solution:
a) The equilibrium price is the solution of the equation D(p) = S(p), that is,

180

p
− 4 = 2p− 2.

Applying algebraic transformations, we get that

2p2 + 2p− 180 = 0 ⇒ p2 + p− 90 = 0.

Applying the quadratic formula, we have

p1,2 =
−1±

√
1 + 360

2
=
−1± 19

2
.

Since p > 0, we get that p = 9.

The equilibrium quantity is

D(9) =
180

9
− 4 = 16 units.

b) Since
45∫
9

180

p
− 4 dp = [180 ln p− 4p]459 =

= 180 ln 45− 180− (180 ln 9− 36) ≈ 145.7,

the consumers’ surplus is $145.7.
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c) Since
9∫

1

2p− 2 dp =

[
1

2
· 2p2 − 2p

]9
1

=

= 81− 18− (1− 2) = 64,

the producers’ surplus is $64.

Exercise 51. Suppose the demand function for a product is

D(p) = 4 000− 40p (10 ≤ p ≤ 100),

and the supply function is

S(p) = 20p− 200 (10 ≤ p ≤ 100).

The variable p is given in dollars.

a) Calculate the equilibrium price and quantity.
b) Find the consumers’ surplus.
c) Calculate the producers’ surplus.

Solution:
a) The equilibrium price is the solution of the equation D(p) = S(p).

Since
20p− 200 = 4 000− 40p ⇒ p = 70,

then the equilibrium price is $70.
The equilibrium quantity is

D(70) = 20 · 70− 200 = 1 200 units.

b) Since
100∫
70

4 000− 40p dp = [4 000p− 20p2]10070 =

= 4 000 · 100− 20 · 1002 − (4 000 · 70− 20 · 702) = 18 000,

the consumers’ surplus is $18 000.
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c) Since
70∫

10

20p− 200 dp = [10p2 − 200p]7010 =

= 10 · 702 − 200 · 70− (10 · 102 − 200 · 10) = 36 000,

the producers’ surplus is $36 000.

Exercise 52. A manufacturer’s marginal cost function is

MC(q) = 1.2q + 4.

If the production is presently set at q = 80 units per week, how much more
would it cost to increase the production to 100 units per week?

Solution:

We have to calculate the value of the difference

C(100)− C(80).

According to Newton-Leibniz theorem, we get that

C(100)− C(80) =

100∫
80

C ′(q) dq =

100∫
80

MC(q) dq =

=

100∫
80

1.2q + 4 dq = [0.6q2 + 4q]10080 =

= (0.6 · 1002 + 4 · 100)− (0.6 · 802 + 4 · 80) =

= 6 400− 4 160 = 2 240.

The cost of increasing the production from 80 to 100 units is $2 240.

Exercise 53. Calculate the center of mass of the plane sheet bounded by the
graph of the function f(x) =

√
x (x ∈ [0; 4]) and the lines y = 0, x = 0, x =

4.

Solution:

Since∫ 4

0

√
x dx =

∫ 4

0
x

1
2 dx =

[
2

3
· x

3
2

]4
0

=

[
2

3
·
√
x3
]4
0

=

(
2

3
· 8
)

=
16

3
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and ∫ 4

0
x ·
√
x dx =

∫ 4

0
x · x

1
2 dx =

∫ 4

0
x

3
2 dx =

[
2

5
· x

5
2

]4
0

=

=

[
2

5
·
√
x5
]4
0

=
2

5
· 32 =

64

5
,

therefore

xs =
64
5
16
3

=
64

5
· 3

16
=

12

5
.

On the other hand ∫ 4

0
x dx =

[
x2

2

]4
0

= 8,

thus
ys =

4
16
3

=
3

4
.

The center of mass is

M =

(
12

5
;
3

4

)
.
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10. Geometric applications of the Riemann integral

Theoretical summary

Theorem 3.3.1. If f(x) and g(x) are continuous real functions on an interval
[a; b] (a, b ∈ R, a ≤ b) such that f(x) ≤ g(x) (x ∈ [a; b]), then the area of the
region bounded by their graphs and by the lines x = a, x = b can be calculated
as follows:

A =

b∫
a

(
g(x)− f(x)

)
dx.

Before applying the formula above it is useful to sketch the graphs of the func-
tions. This way we can see which one is the upper

(
g(x)

)
and which is the

lower
(
f(x)

)
function. If we have to determine the area of the region bounded

by the graphs of two real functions f and g, sketching them also helps to find
the limits of integration. To be able to do that, it is necessary to find the inter-
section points of the graphs of the functions f and g, thus we have to solve the
equation f(x) = g(x). Then we have to integrate the function g − f between
the minimum and the maximum of the x coordinates of the intersections, and
finally we get the area in question by taking the absolute value of the obtained
integral.

Definition 3.3.2. The solid generated by rotating a region on a plane about an
axis in that plane is called a solid of revolution.

Theorem 3.3.3. If we rotate the graph of a continuous function f(x) (x ∈
[a; b]; a, b ∈ R, a ≤ b), then the volume of the obtained solid of revolution is:

V = π ·
b∫
a

(
f(x)

)2
dx.

Definition 3.3.4. A surface of revolution is formed when a curve is rotated
about a line.

Theorem 3.3.5. If a function f(x) (x ∈ [a; b]; a, b ∈ R, a < b) is continuously
differentiable, then the surface area of the surface obtained by rotating the graph
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of the function f(x) about the x-axis equals

S = 2π ·
b∫
a

f(x) ·
√

1 +
(
f ′(x)

)2
dx.
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Solved exercieses

Exercise 54. Find the area of the region enclosed by the functions f(x) =
2− x2 and g(x) = −x.

Solution:

The limits of integration are found by solving the equation

2− x2 = −x.

Applying an algebraic transformation, we get that:

x2 − x− 2 = 0.

By the quadratic formula, we get that:

x1,2 =
1±
√

1 + 8

2
=

1± 3

2
.

Thus the solutions of the equation above: x1 = −1 or x2 = 2.
Consequently, the x coordinates of the leftmost and rightmost points of the
region are x = −1 and x = 2, thus the limits of integration are −1 and 2.
The area between the curves is:

A =

∫ 2

−1
2− x2 − (−x) dx =

[
2x− x3

3
+
x2

2

]2
−1

=

=

(
4− 8

3
+ 2

)
−
(
−2 +

1

3
+

1

2

)
=

= 6− 8

3
+ 2− 5

6
=

9

2
.

Exercise 55. Find the area of the region enclosed by the functions f(x) = x2

and g(x) = 4x.

Solution:

The limits of integration are found by solving the equation f(x) = g(x):

x2 = 4x

x2 − 4x = 0

x · (x− 4) = 0.
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Thus the solutions of the equation above are x = 0 and x = 4. The area
between the curves is:

T =

∫ 4

0
4x− x2 dx =

[
2x2 − x3

3

]4
0

=

= 32− 64

3
=

32

3
.

Exercise 56. Find the area of the region enclosed by the functions f(x) = 2x2

and g(x) = 2x+ 4.

Solution:

The limits of integration are found by solving the equation f(x) = g(x):

2x2 = 2x+ 4.

If we write the equation above in another form, we get that:

2x2 − 2x− 4 = 0 ⇒ x2 − x− 2 = 0.

Applying the quadratic formula, we get that:

x1,2 =
1±
√

1 + 8

2
=

1± 3

2
,

thus x1 = −1 and x2 = 2.
The area is:

T =

∫ 2

−1
2x+ 4− 2x2 dx =

[
x2 + 4x− 2x3

3

]2
−1

=

=

(
22 + 4 · 2− 2 · 23

3

)
−
(

(−1)2 + 4 · (−1)− 2 · (−1)3

3

)
= 9.

Exercise 57. Find the area of the region enclosed by the functions f(x) =
x2 − 4 and g(x) = 4− x2.

Solution:

The limits of integration are found by solving the equation f(x) = g(x):

x2 − 4 = 4− x2

x2 = 4,
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thus x = −2 or x = 2. The area is:

T =

∫ 2

−2
(4− x2)− (x2 − 4) dx =

∫ 2

−2
(8− 2x2) dx =

=

[
8x− 2x3

3

]2
−2

=

=

(
8 · 2− 2 · 23

3

)
−
(

8 · (−2)− (−2)3

3

)
=

=
32

3
−
(
−32

3

)
=

64

3
.

Exercise 58. The region bounded by the graph of the function f(x) = 2x+ 1
(x ∈ [0; 2]) and the lines x = 0, x = 2 is revolved about the x-axis to generate
a solid. Find its volume.

Solution:

The volume is:

V = π ·
∫ 2

0
(2x+ 1)2 dx = π ·

[
(2x+ 1)3

6

]2
0

=

= π ·
(

(2 · 2 + 1)3

6

)
− π ·

(
(2 · 0 + 1)3

6

)
=

= π · 124

6
=

62

3
· π.

Exercise 59. The region bounded by the graph of the function f(x) = 2x+ 6
(x ∈ [0; 2]) and the lines x = 0, x = 2 is rotated about the x-axis to generate a
geometric body. Find its surface area.

Solution:

The surface area of the surface of revolution is

S = 2π ·
∫ 2

0
(2x+ 6) ·

√
5 dx = 2π ·

√
5

[
(2x+ 6)2

2 · 2

]2
0

=

= 2π·
√

5 ·
(

(2 · 2 + 6)2

4
− (2 · 0 + 6)2

4

)
=

= 2π ·
√

5 · (25− 18) = 14π ·
√

5.
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11. Complex numbers and their applications

The reason for the introduction of complex numbers is that on the set of real
numbers, one cannot take nth roots of negative numbers provided that n ∈ N is
an even number, thus the question arises: can we construct a set of numbers for
which this is possible?
In certain engineering computations, one has to take such roots of negative
numbers.
For example, notice that an engineering problem can occur in which one should
solve the equation x2 + 1 = 0. During the solution, the square root of the
number -1 should be taken, which though is not possible on the set of real
numbers, since there are no real numbers whose square is negative.
One can define such a complex number whose square is negative.
The elements of the set of real numbers correspond to the points of the number
line. The elements of the set of complex numbers correspond to the points
of the Cartesian plane (R × R). In this case, the plane is called complex (or
Gauss) plane, the horizontal axis is termed real axis, the vertical one is referred
to as imaginary axis. Let us denote the point (0; 1) on the complex plane by i.
This number is called the imaginary unit. The numbers of the form (a; 0) (a ∈
R) are lying on the real number line, thus these numbers correspond to real
numbers. Therefore we denote the complex number (a; 0) simply by a.

Definition 4.1.1. Let us introduce two operations, an addition and a multipli-
cation on the set C = R× R in the following way:

(a; b) + (c; d) = (a+ c; b+ d)

(a; b) · (c; d) = (ac− bd; bc+ ad).

We call the set C equipped with the two operations defined so the set of complex
numbers.

Theorem 4.1.2. The structure (C,+, ·) is a field.

Definition 4.1.3. The quotient z1z2 (z1, z2 ∈ C; z2 6= 0) is defined by
z1
z2

= z1 · z−12 .

Definition 4.1.4. A complex number is a number of the form z =a+b·i, where
a and b are real numbers, and i satisfies i2 = −1. The real number a is called
the real part Re z of the complex number z and the real number b is called its
imaginary part Im z.
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Definition 4.1.5. The conjugate of the complex number z = a+b ·i (a, b ∈ R)
is z = a− b · i.

Definition 4.1.6. The absolute value or modulus of the complex number z =
a+ b · i (a, b ∈ R) is |z| =

√
a2 + b2.

Example 4.1.7. The modulus of the complex number z = 1 + i is

|z| =
√

12 + 12 =
√

2.

Definition 4.1.8. The trigonometric form of the nonzero complex number z =
a+ b · i (a, b ∈ R) is

z = |z| · (cosϕ+ i · sinϕ),

where ϕ ∈ [0, 2π[ is the unique number satisfying this equality. This number is
called the argument of z.

The number ϕ is 0 if z ∈ R, z > 0, it is π if z ∈ R, z < 0 and it satisfies
tanϕ = b

a otherwise.

Theorem 4.1.9. If z1, z2 ∈ C; ϕ1, ϕ2 ∈ R are such that

z1 = |z1| · (cosϕ1 + i · sinϕ1)

and
z2 = |z2| · (cosϕ2 + i · sinϕ2)

then
z1 · z2 = |z1| · |z2| ·

(
cos(ϕ1 + ϕ2) + i · sin(ϕ1 + ϕ2)

)
.

Theorem 4.1.10. If z1, z2 ∈ C; z2 6= 0; ϕ1, ϕ2 ∈ R are such that

z1 = |z1| · (cosϕ1 + i · sinϕ1)

and
z2 = |z2| · (cosϕ2 + i · sinϕ2)

then
z1
z2

=
|z1|
|z2|
·
(

cos(ϕ1 − ϕ2) + i · sin(ϕ1 − ϕ2)
)
.

Theorem 4.1.11. If z ∈ C, ϕ ∈ R, n ∈ N are such that z = |z| · (cosϕ + i ·
sinϕ) then

zn = |z|n ·
(

cos(nϕ) + i · sin(nϕ)
)
.

Definition 4.1.12. An nth (n ∈ N) root of the complex number z is a number
w∈ C satisfying wn = z.
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Theorem 4.1.13. The nth (n ∈ N) roots of the complex number z = |z| ·
(cosϕ+ i · sinϕ) (ϕ ∈ R):

wk = n
√
|z| ·

(
cos

ϕ+ k · 2π
n

+ i · sin ϕ+ k · 2π
n

)
, (k = 0, . . . , n− 1).

Let z = a+ i · b (a, b ∈ R) be a number. We define ez = ea(cos b+ i · sin b).

Definition 4.1.14. The exponential form of the nonzero complex number z =
|z| · (cosϕ+ i · sinϕ) (ϕ ∈ [0, 2π[) is

z = |z| · eiϕ.
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Solved exercises

Exercise 60. Let z1 = 2 + 3i and z2 = 3− 4i be complex numbers! Calculate
the complex numbers below:

a) z1 + z2
b) z1 · z2
c) z1
d) z2
e) |z1|
f)
z1
z2

g)
z2
z1

h) Re

(
z1
z2

)
i) Im

(
z1
z2

)
j) z1 + 5z2 + 6

k) z21

l) z22

Solution:

a)
z1 + z2 = (2 + 3i) + (3− 4i) = 2 + 3i+ 3− 4i = 5− i.

b)

z1 · z2 = (2 + 3i) · (3− 4i) = 6− 8i+ 9i− 12i2 =

= 6 + i− 12 · (−1) = 18 + i.

c)
z1 = 2− 3i.

d)
z2 = 3 + 4i.

e)
|z1| =

√
22 + 32 =

√
4 + 9 =

√
13.

f)

z1
z2

=
2 + 3i

3− 4i
=

2 + 3i

3− 4i
· 3 + 4i

3 + 4i
=

(2 + 3i) · (3 + 4i)

(3− 4i) · (3 + 4i)
=

=
6 + 8i+ 9i+ 12i2

9− 16i2
=

6 + 17i− 12

9 + 16
=
−6 + 17i

25
= − 6

25
+

17

25
i.
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g)
z2
z1

=
3− 4i

2 + 3i
=

3− 4i

2 + 3i
· 2− 3i

2− 3i
=

(3− 4i) · (2− 3i)

(2 + 3i) · (2− 3i)
=

=
6− 8i− 9i+ 12i2

4− 9i2
=

6− 17i− 12

4 + 9
=
−6− 17i

13
= − 6

13
− 17

13
i.

h)

Re

(
z1
z2

)
= − 6

25
.

i)

Im

(
z1
z2

)
=

17

25
.

j)

z1 + 5z2 + 6 = 2 + 3i+ 5 · (3 + 4i) + 6 = 2 + 3i+ 15 + 20i+ 6 =

= 23 + 23i

k) Since (a+ b)2 = a2 + 2ab+ b2, we get that

z21 = (2 + 3i)2 = 4 + 12i+ 9i2 = 4 + 12i− 9 = −5 + 12i.

l) Since (a− b)2 = a2 − 2ab+ b2, we get that

z22 = (3− 4i)2 = 9− 24i+ 16i2 = 9− 24i− 16 = −7− 24i.

Exercise 61. Give the trigonometric form of the complex number z = −3+3i.

Solution:

Since a =Re(z) = −3 and b =Im(z) = 3 then the modulus of the complex
number is

r =
√

(−3)2 + 32 =
√

18.

Since
tg(ϕ) =

b

a
=

3

−3
= −1

we get that ϕ = 135◦, thus the trigonometric form is

z =
√

18 · (cos 135◦ + i · sin 135◦) ,

that is

z =
√

18 ·
(

cos
3π

4
+ i · sin 3π

4

)
.
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Exercise 62. Calculate the 4th roots of 1.

Solution:

Since in the general case

wk = n
√
r ·
(

cos
ϕ+ 2kπ

n
+ i · sin ϕ+ 2kπ

n

)
(k = 0, . . . , n− 1)

are the nth (n ∈ N) roots of r · (cosϕ+ i · sinϕ) (r ∈ R, r ≥ 0; ϕ ∈ R), thus
the 4th roots of 1 are

w0 =
4
√

1 ·
(

cos
0 + 2 · 0 · π

4
+ i · sin 0 + 2 · 0 · π

4

)
=

= cos 0 + i · sin 0 = 1;

w1 =
4
√

1 ·
(

cos
0 + 2 · 1 · π

4
+ i · sin 0 + 2 · 1 · π

4

)
=

= cos
π

2
+ i · sin π

2
= i;

w2 =
4
√

1 ·
(

cos
0 + 2 · 2 · π

4
+ i · sin 0 + 2 · 2 · π

4

)
=

= cosπ + i · sinπ = −1

w3 =
4
√

1 ·
(

cos
0 + 2 · 3 · π

4
+ i · sin 0 + 2 · 3 · π

4

)
=

= cos
3π

2
+ i · sin 3π

2
= −i.

Exercise 63. Solve the equation z2 + 2z + 2 = 0.

Solution:

If we apply the quadratic formula, we get that

z1,2 =
−2±

√
4− 8

2
=
−2±

√
−4

2
=
−2± 2i

2
= −1± i.

The solutions of the equation are z1 = −1− i and z2 = −1 + i.

Exercise 64. Find the exponentinal form of the complex number 1 + i.

Solution:

The modulus of the complex number z = 1 + i is

|z| =
√

12 + 12 =
√

2
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and its argument is
ϕ =

π

4
.

The exponential form is
z =
√

2 · ei·
π
4 .

Exercise 65. A 120 Ω resistor and a capacitor whose capacitance is 10 µF
are connected in parallel to a 100 Hz sinusoidal voltage source with an RMS
voltage of 100 V. Compute the total complex impedance of the circuit!

Solution:

The angular frequency:

ω = 2π · f = 628.32
1

s
.

The effective resistance of the capacitor: 0. The reactance:

XC = ω · L =
1

ω · C
=

1

628.32 · 10 · 10−6
= 159.15 Ω,

hence ZC = 159.15i. The total impedance satisfies
1

Z
=

1

ZC
+

1

R
=

R · ZC
R+ ZC

=

=
19 098i

120 + 159.15i
=

19 098i

120 + 159.15i
· 120− 159.15i

120− 159.15i
=

=
2291760i+ 3 039446.7

39 728.72
= 76.51 + 57.69i.
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12. Analytic functions, Cauchy-Riemann equations

From now on, we consider C as a metric space equipped with the Euclidean
distance.

Definition 4.2.1. Let D ⊂ C be an open set, z0 ∈ D be a point and f : D → C
be a function. We say that f is differentiable at z0 if the limit

lim
z→z0

f(z)− f(z0)

z − z0
exists. In this case, it is called the derivative of f at z0 and denoted by f ′(z0).
The function f is called analytic, holomorphic or differentiable if it is differen-
tiable at each point of D. In this case, the function f ′ : D → C is termed the
complex derivative function of f .

With the notation and conditions above, we define the real and imaginary parts
u and v, resp. of f by

u, v : D → R, u(x; y) = Ref(x; y), v(x; y) = Imf(x; y) ((x; y) ∈ D).

Theorem 4.2.2. Let D ⊂ C be an open set. Then the complex function

f(z) = f(x+ i · y) = u(x; y) + i · v(x; y) (z = (x; y) ∈ D)

is differentiable if and only if its real and imaginary parts are continuously
differentiable and they satisfy the Cauchy-Riemann equations:

∂u

∂x
(x; y) =

∂v

∂y
(x; y) and

∂v

∂x
(x; y) = −∂u

∂y
(x; y).

Moreover, the complex derivative function of f is then given by

f ′(z) =
∂u

∂x
(x; y) + i · ∂v

∂x
(x; y).
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Solved exercises

Exercise 66. Prove that that the function f(z) = z2 (z ∈ C) is differentiable.

Solution:

Let z = x+ i · y (x, y ∈ R). Then

f(z) = f(x+ i · y) = (x+ i · y)2 = x2 + 2xy · i− y2.
Let u(x; y) = x2 − y2 and v(x; y) = 2xy. Since

∂u

∂x
(x; y) = 2x and

∂v

∂y
(x; y) = 2x

and
∂v

∂x
(x; y) = 2y and

∂u

∂y
(x; y) = −2y

thus the Cauchy-Riemann equations hold.

Exercise 67. Prove that the function f(z) = z3 (z ∈ C) is differentiable.

Solution:

Let z = x+ i · y (x, y ∈ R). Then

f(z) = f(x+ i · y) = (x+ i · y)3 =

= x3 + 3x2y · i+ 3xy2 · i2 + i3 · y3 =

= x3 + 3x2y · i− 3xy2 − y3 · i.

Let u(x; y) = x3 − 3xy2 and v(x; y) = 3x2y − y3. Since
∂u

∂x
(x; y) = 3x2 − 3y2 and

∂v

∂y
(x; y) = 3x2 − 3y2

and
∂v

∂x
(x; y) = 6xy and

∂u

∂y
(x; y) = −6xy

thus the Cauchy-Riemann equations hold.
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13. Fourier series and transformation and their applications in
digital signal processing

In mathematical analysis, the Fourier series and transformation are usually de-
fined for so-called Lebesgue integrable functions. However their theory is not
covered by this textbook, therefore we chose to define that series and transfor-
mation only for Riemann integrable and GR-integrable functions, respectively.

Definition 4.3.1. Let f : R→ R be a function with period 2π such that f |[−π,π]
is Riemann integrable. Then the real numbers

am =
1

π

π∫
−π

f(x) cos(mx) dx,

bn =
1

π

π∫
−π

f(x) sin(mx) dx (m ∈ N ∪ {0}, n ∈ N)

are called the Fourier coefficients of f . Moreover, the Fourier series of f is
defined by the formal expression

a0
2

+

∞∑
n=1

an cos(nx) + bn sin(nx) (x ∈ R).

We emphasize that the series in the last displayed sum is not necessarily con-
vergent for each number x ∈ R. Indeed, one of the main objectives of Fourier
theory, an area of mathematical analysis, is to provide conditions for the con-
vergence of Fourier series of functions. The series of the squared Fourier coef-
ficients of a so-called square integrable function with period 2π is convergent
by the next statement.

Theorem 4.3.2 (Parseval’s identity). Let f : R → R be a function with period
2π such that f2|[−π,π] is Riemann integrable. Then

a20
2

+
∞∑
n=1

a2n + b2n =
1

π

π∫
−π

f2(x) dx.

Fourier series have a crucial role in the investigation of discrete signals. In the
case of continuous ones, that role is played by the so-called Fourier transforms.
In order to define them, we will need the following notions.
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Definition 4.3.3. Let a, b ∈ R be real numbers and f : [a,∞[→ R
(f : ]−∞, b]→ R) be a function. We say that f is GR-integrable if f |[a,x]
(f |[x,b]) is Riemann integrable for all numbers x ∈ [a,∞[ (x ∈] −∞, b]) and

the limit lim
x→∞

x∫
a
f

(
lim

x→−∞

b∫
x
f

)
exists. In this case, the latter limit is denoted

by
∞∫
a

f =

∞∫
a

f(t) dt

 b∫
−∞

f =

b∫
−∞

f(t) dt


and is called the improper integral of f .

Definition 4.3.4. We say that a function f : R→ R is GR-integrable if
f |]−∞,0], f |[0,∞[ are GR-integrable. In this case, we define the improper inte-
gral of f by

∞∫
−∞

f =

∞∫
−∞

f(t) dt =

0∫
−∞

f +

∞∫
0

f.

We remark that the latter sum equals limr→∞
r∫
−r
f .

Definition 4.3.5. Let a, b ∈ R be numbers, D be one of the sets [a,∞[,
]−∞, b],R and f : D → C be a function. Then we say that f is GR-integrable
if the functions u, v : D → R defined by

u(t) = Re f(t), v(t) = Im f(t) (t ∈ D)

are GR-integrable. In this case, we define the improper integral of f by I(u) +
i · I(v) where I(u) and I(v) is the improper integral of u and v, respectively.
Moreover, according to the domain of f , its improper integral is denoted by the
corresponding symbols appearing in the previous two definitions.

Notice that if f : R → R is a GR-integrable function and λ ∈ R is a
number, then f(t)e−iλt is also GR-integrable.

Definition 4.3.6. Let f : R→ R be a GR-integrable function. Then the Fourier
transform of f is the function F(f) : R→ C defined by

F [f ](λ) =

∞∫
−∞

f(t)e−iλt dt (λ ∈ R).
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The map f 7→ F [f ] (f : R → R is GR-integrable) is called the Fourier trans-
formation.

Theorem 4.3.7. If f : R→ R is a GR-integrable function, then F [f ] is contin-
uous, bounded and

lim
λ→±∞

F [f ](λ) = 0.

Theorem 4.3.8. If f, g : R→ R are GR-integrable functions, then f+g is also
GR-integrable and

F [f + g] = F [f ] + F [g].

Proof: Since

F [f + g](λ) =

∞∫
−∞

(f + g)(t) · e−iλt dt =

∞∫
−∞

f(t) · e−iλt dt+

+

∞∫
−∞

g(t) · e−iλt dt = F [f ](λ) + F [g](λ) (λ ∈ R),

therefore the proof is complete.

Theorem 4.3.9. If f : R → R is a GR-integrable function and α ∈ R is a
number, then α · f is also GR-integrable and

F [α · f ] = α · F [f ].

Proof: Since

F [α · f ](λ) =

∞∫
−∞

(α · f)(t) · e−iλt dt = α ·
∞∫
−∞

f(t) · e−iλt dt = α · F [f ](λ)

(λ ∈ R), therefore the proof is complete.

Corollary 4.3.10. If f, g : R → R are GR-integrable functions and α, β ∈ R
are numbers, then α · f + β · g is also GR-integrable and

F [α · f + β · g] = α · F [f ] + β · F [g].

Proof: Since

F [α · f + β · g] = F [α · f ] + F [β · g] = α · F [f ] + β · F [g] (λ ∈ R),

therefore the proof is complete.

Theorem 4.3.11. The Fourier transformation is injective.
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Theorem 4.3.12. If f is a differentiable function such that f and f ′ are GR-
integrable, then

F [f ′](λ) = iλ · F [f ](λ) (λ ∈ R).

Theorem 4.3.13. If f : R → R is a GR-integrable function and α ∈ R is a
number, then eiα·t · f(t) is also GR-integrable and

F
[
eiα·t · f(t)

]
(λ) = F [f ](λ− α) (λ ∈ R).

Proof: Since

F
[
eiα·t · f(t)

]
(λ) =

∞∫
−∞

eiα·t · f(t) · e−iλt dt =

∞∫
−∞

f(t) · e−i(λ−α)·t dt =

= F [f ](λ− α) (λ ∈ R),

thus the proof is complete.
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Solved exercises

Exercise 68. Let a > 0 be a number and f : R→ R be the function defined by
f(t) = 1 if t ∈ R, |t| ≤ a and f(t) = 0 otherwise. Compute F [f ].

Solution:

F [f ](λ) =

∞∫
−∞

f(t) · e−iλt dt =

a∫
−a

ei(−λ)t dt =

a∫
−a

cos(−λt) dt+ i

a∫
−a

sin(−λt) dt

=

[
sin(λt)

λ

]a
−a

+ i

[
cos(λt)

λ

]a
−a

= 2
sin(aλ)

λ
(λ ∈ R \ {0})

The first two equalities above are valid also when λ = 0, hence we get

F [f ](0) =

a∫
−a

1 dt = 1 · (a− (−a)) = 2a.

Exercise 69. Let f : R → R be the function defined by f(t) = 1 − |t| if
t ∈ [−1, 1] and f(t) = 0 otherwise. Compute F [f ].

Solution:

F [f ](λ) =

1∫
−1

(1− |t|)ei(−λ)t dt =

1∫
−1

(1− |t|) cos(−λt) dt

+i

1∫
−1

(1− |t|) sin(−λt) dt.

The function in the last integral is odd, so that integral is 0. The one preceding
it is

2

1∫
0

(1− |t|) cos(−λt) dt = 2

1∫
0

(1− t) cos(λt) dt,
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since the function in it is even. To determine the latter integral, for an arbitrary
number λ ∈ R \ {0}, we compute∫

(1− t) cos(λt) dt =

∫
((1/λ) sin(λt))′(1− t) dt

= (1/λ) sin(λt) · (1− t)−
∫

(1/λ) sin(λt) · (−1) dt

= (1/λ)(sin(λt) · (1− t)− (1/λ) cos(λt)) + c.

We obtain that

F [f ](λ) = 2[(1/λ)(sin(λt) · (1− t)− (1/λ) cos(λt))]10 = (2/λ2)(1− cosλ).

Finally

F [f ](0) = 2

1∫
0

(1− t) dt = 2 · [t− t2/2]10 = 1.
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14. Laplace transformation and its applications in the theory of
differential equations

Definition 4.4.1. Let f be a function satisfying the following property:

(*) f : [0,∞[→ R is such that f(t)eγt (t ∈ [0,∞[) is GR-integrable for
some number γ ∈ R.

The Laplace-transform of f is the complex-valued function

L[f ](s) =

∞∫
0

f(t) · e−st dt.

The map f 7→ L[f ] is called the Laplace transformation.

Theorem 4.4.2. If f, g are functions satisfying (*), then f + g also satisfies it
and

L[f + g] = L[f ] + L[g].

Proof: Since

L[f + g](s) =

∞∫
0

(f + g)(t) · e−st dt =

∞∫
0

f(t) · e−st dt+

+

∞∫
0

g(t) · e−st dt = L[f ](s) + L[g](s),

therefore the proof is complete.

Theorem 4.4.3. If f is a function satisfying (*) and α ∈ R is a number, then
α · f also satisfies (*) and

L[α · f ] = α · L[f ].

Proof: Since

L[α · f ](s) =

∞∫
0

(α · f)(t) · e−st dt = α ·
∞∫
0

f(t) · e−st dt = α · L[f ](s),

therefore the proof is complete.
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Corollary 4.4.4. If f, g are functions satisfying (*) and α, β ∈ R are numbers,
then α · f + β · g also satisfies (*) and

L[α · f + β · g] = α · L[f ] + β · L[g]

Proof: Since

L[α · f + β · g] = L[α · f ] + L[β · g] = α · L[f ] + β · L[g],

therefore the proof is complete.

Theorem 4.4.5. The Laplace transformation is injective.

Theorem 4.4.6. If f is a continuously differentiable function satisfying (*),
then f ′ also satisfies it and

L[f ′](s) = s · L[f ](s)− f(0).

Theorem 4.4.7. If f is a function satisfying (*) and λ ∈ R is a number, then
eλ·t · f(t) also satisfies it and

L
[
eλ·t · f(t)

]
(s) = L[f ](s− λ).

Proof: Since

L
[
eλ·t · f(t)

]
(s) =

∞∫
0

eλ·t · f(t) · e−st dt =

∞∫
0

f(t) · es−(λ)·t dt =

= L[f ](s− λ),

therefore the proof is complete.

Theorem 4.4.8.
L[1] =

1

s
.

Proof: Since

L[1] =

∞∫
0

e−st dt = lim
c→∞

c∫
0

e−st dt =

= lim
c→∞

[
e−s·t

−s

]c
0

= lim
c→∞

e−s·c

−s
+

1

s
=

1

s
,

therefore the proof is complete.

Theorem 4.4.9.
L[t] =

1

s2
.



Laplace transformation and its applications in the theory of differential equations 113

Proof: We compute

L[t](s) =

∞∫
0

t · e−st dt = lim
c→∞

c∫
0

t · e−st dt =

= lim
c→∞

[
t · e−s·t

−s

]c
0

− lim
c→∞

c∫
0

e−st

−s
dt =

= lim
c→∞

[
t · e−s·t

−s
− e−st

s2

]c
0

=

= lim
c→∞

(
c · e−s·c

−s
− e−s·c

s2

)
+

1

s2
,

and

lim
c→∞

e−s·c

s2
= 0.

We apply L’Hôpital’s rule to get that

lim
c→∞

c · e−s·c

−s
= lim

c→∞
− c

es·c · s
=

= lim
c→∞

− 1

es·c · s2
= 0,

and hence we conclude that the theorem holds.

Theorem 4.4.10. Let n ∈ N. Then

L[tn] =
n!

sn+1
.

Example 4.4.11. If

f(t) = t3 − t2 + 5t+ 2,

then

L[f ](s) = L[t3 − t2 + 5t+ 2](s) = L[t3](s)− L[t2](s) + 5L[t](s) + L[2](s) =

=
3!

s4
− 2!

s3
+ 5 · 1

s2
+

2

s
=

=
6− 2s+ 5s2 + 2s3

s4
=

2s3 + 5s2 − 2s+ 6

s4
.
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Theorem 4.4.12. Let a ∈ R. The Laplace transform of f(t) = ea·t is

L[eat](s) =
1

s− a
.

Proof: Since

L[eat](s) =

∞∫
0

eat · e−st dt =

∞∫
0

eat · e−st dt =

=

∞∫
0

e(a−s)·t dt = lim
c→∞

c∫
0

e(a−s)·t dt = lim
c→∞

[
e(a−s)·t

a− s

]c
0

=

= lim
c→∞

e(a−s)·c

a− s
− 1

a− s
=

1

s− a
,

therefore the proof is complete.

Example 4.4.13. The Laplace transform of the function

f(t) = e2t + e−3t

is

L[f ](s) = L[e2t + e−3t](s) = L[e2t](s) + L[e−3t](s) =

=
1

s− 2
+

1

s+ 3
=

s+ 3 + s− 2

(s− 2) · (s+ 3)
=

2s+ 1

s2 + s− 6
.

Theorem 4.4.14. Let ω ∈ R. The Laplace transform of f(t) = sin(ω · t) is

L[sin(ω · t)](s) =
ω

s2 + ω2
.

Proof:

L[sin(ω · t)](s) =

∞∫
0

sin(ω · t) · e−st dt

Applying integration by parts we get that∫
sin(ω · t) · e−st dt = sin(ω · t) · e−st

−s
−
∫
ω · cos(ω · t) · e−st

−s
dt =

= sin(ω · t) · e−st

−s
−
(
ω · cos(ω · t) · e−st

s2
+

∫
ω2 · sin(ω · t) · e−st

s2
dt

)
.



Laplace transformation and its applications in the theory of differential equations 115

Thus(
ω2

s2
+ 1

)
·
∫

sin(ω · t) · e−st dt =

(
sin(ω · t)
−s

− ω · cos(ω · t)
s2

)
· e−st,

therefore ∫
sin(ω · t) · e−st dt =

=
s2

ω2 + s2
·
(

sin(ω · t)
−s

− ω · cos(ω · t)
s2

)
· e−st + c.

We get that
∞∫
0

sin(ω · t) · e−st dt =

=
s2

ω2 + s2
· lim
c→∞

[(
sin(ω · t)
−s

− ω · cos(ω · t)
s2

)
· e−st

]c
0

=

=
s2

ω2 + s2
·
(

lim
c→∞

(
sin(ω · c)
−s

− ω · cos(ω · c)
s2

)
· e−sc +

ω

s2

)
=

=
s2

ω2 + s2
· ω
s2

=
ω

ω2 + s2
,

therefore the proof is complete.

Theorem 4.4.15. Let ω ∈ R. The Laplace transform of the function f(t) =
cos(ω · t) is

L[cos(ω · t)](s) =
s

ω2 + s2
.

Proof: By definition

L[cos(ω · t)](s) =

∞∫
0

cos(ω · t) · e−st dt.

Applying integration by parts, we get that∫
cos(ω · t) · e−st dt = cos(ω · t) · e−st

−s
+

∫
ω · sin(ω · t) · e−st

−s
dt =

= cos(ω · t) · e−st

−s
+

(
ω · sin(ω · t) · e−st

s2
−
∫
ω2 · cos(ω · t) · e−st

s2
dt

)
.
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Thus(
ω2

s2
+ 1

)
·
∫

cos(ω · t) · e−st dt =

(
cos(ω · t)
−s

+
ω · sin(ω · t)

s2

)
· e−st,

therefore ∫
cos(ω · t) · e−st dt =

=
s2

ω2 + s2
·
(

cos(ω · t)
−s

+
ω · sin(ω · t)

s2

)
· e−st + c.

We get that
∞∫
0

cos(ω · t) · e−st dt =

=
s2

ω2 + s2
· lim
c→∞

[(
cos(ω · t)
−s

+
ω · sin(ω · t)

s2

)
· e−st

]c
0

=

=
s2

ω2 + s2
·
(

lim
c→∞

(
cos(ω · c)
−s

+
ω · sin(ω · c)

s2

)
· e−sc +

1

s

)
=

=
s2

ω2 + s2
· 1

s
=

s

ω2 + s2
,

therefore the proof is complete.

Theorem 4.4.16. Let n ∈ N and a ∈ R. The Laplace transform of the function

f(t) = tn · eat

is
L[f ](s) =

n!

(s− a)n+1
.
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Solved exercise

Exercise 70. Let t ≥ 0. Solve the initial value problem

y′′(t)− 3y′(t) + 2y(t) = e2t, y(0) = 0, y′(0) = 0,

i.e., determine all twice differentiable functions y : [0,∞[→ R satisfying the
equalities above.

Solution:

It is known that functions satisfying equations like the first one above have the
property (*). Let y : [0,∞[→ R be a twice differentiable function fulfilling all
of the last displayed equalities. If we apply the Laplace transformation to both
sides of the first one, we get that

L[y′′(t)− 3y′(t) + 2y(t)] = L[e2t].

The Laplace transformation is linear, thus

L[y′′]− 3L[y′] + 2L[y] = L[e2t].

Since
L[y′′](s) = s2 · L[y](s)− s · y(0)− y′(0),

and
L[y′](s) = s · L[y]− y(0),

moreover
L[e2t](s) =

1

s− 2
,

we get that

s2 · L[y](s)− s · y(0)− y′(0)− 3 ·
(
s · L[y](s)− y(0)

)
+ 2L[y](s) =

1

s− 2
.

Since y(0) = 0 and y′(0) = 0, therefore

s2 · L[y](s)− 3s · L[y](s) + 2L[y](s) =
1

s− 2
.

By applying an algebraic identity, we get that

L[y](s) · (s2 − 3s+ 2) =
1

s− 2
,

thus
L[y](s) =

1

(s2 − 3s+ 2) · (s− 2)
.
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The root(s) of the polynomial s2 − 3s+ 2 are s1 = 1 and s2 = 2, thus

s2 − 3s+ 2 = (s− 1) · (s− 2),

therefore
L[y](s) =

1

(s− 1) · (s− 2)2
.

If we apply partial fraction decomposition, we get that
1

(s− 1) · (s− 2)2
=

A

s− 1
+

B

s− 2
+

C

(s− 2)2
.

Thus
1 = A · (s− 2)2 + (s− 2) · (s− 1) ·B + (s− 1) · C,

therefore

(A+B) · s2 + (−4A− 3B + C) · s+ 4A+ 2B − C = 1.

From the previous equation, we get the system of equations below

A + B = 0
−4A − 3B + C = 0

4A + 2B − C = 1

 .

If we solve it by Gaussian elimination, we get that 1 1 0
−4 −3 1

4 2 −1

∣∣∣∣∣∣
0
0
1

→
 1 1 0

0 1 1
0 −2 −1

∣∣∣∣∣∣
0
0
1

→
→

 1 1 0
0 1 1
0 0 1

∣∣∣∣∣∣
0
0
1

 .

Thus we get the system of equations below

A + B = 0
B + C = 0

C = 1.


The solution of the system is (A;B;C) = (1;−1; 1), thus

L[y](s) =
1

s− 1
− 1

s− 2
+

1

(s− 2)2
.

The solution of the initial value problem is

y(t) = et − e2t + t · e2t.
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Miscellaneous exercises without
solution
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15. Miscellaneous exercises without solution

Exercise 71. The demand function of a product is

D(p) = 300− 6p.

The supply function of this product is

S(p) = 4p− 40.

a) Find the equilibrium point!
b) Sketch the graph of the demand function and the supply function and mark

the equilibrium point!

Exercise 72. The motion equation of the simple harmonic motion is

y(t) = 16 · sin(4t).

Sketch the graph of the function describing the motion on the interval [0; 2π].

Exercise 73. Represent the first five terms of the sequence

an = n2 − 6n+ 5

in a coordinate system in the plane!

Exercise 74. Represent the first four terms of the sequence

an = (−1)n ·
(
2n − n+ 2

)
in a coordinate system in the plane!

Exercise 75. Calculate the limit of the sequence

an =
2n+1 + n

3n
.

Exercise 76. A particle moves in a straight line according to the position-time
function

s(t) = 16t− t2 [cm],

where t is the time in seconds.
a) Find a formula for the particle’s velocity-time function.
b) Find a formula for the particle’s acceleration-time function.
c) Find the instant(s) when the velocity is equal to zero.
d) Calculate the position, velocity and acceleration of the particle at t = 0.
e) Calculate the position, velocity and acceleration of the particle at t = 1.
f) Describe the monotonicity properties of the function s(t).
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Exercise 77. The annual profit of a dynamically developing company has been
registered in the first four years after its establishment. The obtained data are
summarized in the table:

t[year] 1 2 3 4

P[m $] 3 5 10 15

The experts are assuming a linear relationship between the profit and time. On
the basis of the above assumption, applying the least squares method, determine
the unknown parameter m in the function below, and then estimate the profit of
the company five years after its establishment.

P (t) = P (t,m) = 2t.

Plot the model function.

Exercise 78. The cost of manufacturing fishing poles, measured in thousand
units, is modeled by

C(x) = 9x3 − 90x2 + 180x (0 ≤ x ≤ 10).

The revenue function is modeled by

R(x) = 63x+ 27.

a) Find the fix cost function.
b) Find the variable cost function.
c) Find the profit function.
d) Find the production level that maximize profits.
e) Calculate the marginal cost function.
f) Find the production level, if it exists, that minimizes cost.
g) Find the average cost function.
h) Find the production level, if it exists, that minimizes average cost.

Exercise 79. The population of bacteria (P ) in thousands at a time t in hours
can be modelled by

P (t) = 2t + 20t (t ≥ 0).

a) Find the initial population of bacteria.
b) Find the time at which the bacteria are growing at a rate of 6 million per

hour.



122 Miscellaneous exercises without solution

Exercise 80. Find the local extremum of the function

f(x; y) = x2 − 2y2 + 6x+ 8y − 4.

Exercise 81. Find the local extremum of the function

f(x; y) = x3 + y3 − 9xy.

Exercise 82. Find the local extremum of the function

f(x; y; z) = x3 + y3 − 3xy + 10z2 − 10z + 2.

Exercise 83. In a certain office, the computersA,B andC are used for a, b and
c hours, respectively. If the daily output f is a function of a, b and c, namely

f(a; b; c) = 46a+ 58b− 4a2 − 8b2 − 2ab− 2c2 + 4c+ 600,

find the values of a, b and c that maximize f .

Exercise 84. Compute the integrals below:

a)
∫
x3 + 2x+ 1 dx

b)
∫

1

x2 + 4
dx

c)
∫

6
√
x2 dx

d)
∫
x4 + x+ 1

x
dx

e)
∫

2x + 3x dx

Exercise 85. If the marginal revenue function for a manufacturer’s product is

MR(q) = 10 000− 50q − 6q2,

find the revenue function.

Exercise 86. Suppose the demand function for a product is

D(p) = 4 000− 40p (10 ≤ p ≤ 100),

and the supply function is

S(p) = 20p− 200 (10 ≤ p ≤ 100).

The variable p is given in dollars.

a) Calculate the equilibrium price and quantity.
b) Find the consumers’ surplus.
c) Calculate the producers’ surplus.
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Exercise 87. Find the area of the region enclosed by the functions f(x) =
x2 + 1 and g(x) = 2x+ 1.

Exercise 88. The region bounded by the graph of the function f(x) = 4− 2x,
where x ∈ [0, 2], the lines x = 0, x = 2 and the x-axis is rotated about the
x-axis to generate a geometric body. Find its surface area.

Exercise 89. The region bounded by the graph of the function f(x) = x2 + 1,
where x ∈ [0, 3], the lines x = 0, x = 3 and the x-axis is rotated about the
x-axis to generate a geometric body. Find its volume.

Exercise 90. Find the complex numbers z, which fulfill the equation z2 +2z+
2 = 0.

Exercise 91. Find the complex numbers z, which fulfill the equation z3 + 8 =
0.

Exercise 92. Prove that the function f : C → C, f(z) = z2 + 2z + 6 is
differentiable.

Exercise 93. Let f : R → R be the function defined by f(t) = 2 − 2|t| if
t ∈ [−1, 1] and f(t) = 0 otherwise. Compute F [f ].

Exercise 94. Let t ≥ 0. Solve the initial value problem

y′′(t)− 4y′(t) = 3t+ 2, y(0) = 0, y′(0) = 0,

that is, determine all twice differentiable functions y : [0,∞[→ R satisfying the
equalities above.

Exercise 95. Let t ≥ 0. Solve the initial value problem

y′′(t)− 9y′(t) + 20y(t) = t2 + 2t+ 1, y(0) = 0, y′(0) = 0,

that is, determine all twice differentiable functions y : [0,∞[→ R satisfying the
equalities above.
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