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Outline

We have already seen that logic is not omnipotent, and there are cases
where we cannot make decisions that produce a sure result. Last time, we
reviewed the basics of probability calculus and the concepts of indepen-
dence and conditional independence.
This week, we will look at how probabilistic inference works. For this we
will use the Bayesian network, which is very widespread and used very
frequently by the industry.

We show how the probability of elementary events can be used to compute

an inference, and how conditional probabilities can be used to obtain these

probabilities. Unfortunately, if there are a lot of elementary events, this

requires exponential work. We are introducing a method that significantly

simplifies the calculation, although special matrix operations must be used.

Here we can omit variables step by step, thus simplifying the task one by

one until we reach the final outcome.



Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:

I a set of nodes, one per variable
I a directed, acyclic graph (link ≈ “directly influences”)
I a conditional distribution for each node given its parents:
P(Xi |Parents(Xi ))

In the simplest case, conditional distribution represented as a
conditional probability table (CPT) giving the distribution over Xi

for each combination of parent values
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Bayesian networks

The Bayesian network is actually a graph, more precisely a directed graph.

The vertices of the graph are the the probability variables in the prob-

lem. The edges of the graph show which probability variables are related

and in what direction (what affects what). Each edge also has probability

information, more precisely, the edges leading to each vertex together de-

termine how the value of the probability variable is influenced by the value

of the parents - probability variables on the other side of the edges. Thus,

probability variables have in a discrete case conditional probability tables.



Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity
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Example

Let’s see the example we examined earlier. Perhaps you still remember that
the probability variable Weather is independent of the probability variables
associated with the dentist. This is now reflected in the fact that there is no
edge between these variables. You may also remember that the probability
variables Toothache and Catch were conditionally independent in case of
the probability variable Cavity, so the probability variables Toothache and
Catch are not connected by an edge, in either direction. However, we have
said that the Cavity may be the cause for the Toothache and the Cavity
may be the cause of the Catch. In these cases, the appropriate edges
are needed and the Cavity will be the parent of the probability variables
Toothache and Catch.

Conditional independence can be read from the figure, and even if there is

no direct relationship between Toothache and Catch, they are in a common

component of a graph.



Example

I’m at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it’s set off by minor
earthquakes. Is there a burglar?

Variables: Burglar , Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

I A burglar can set the alarm off
I An earthquake can set the alarm off
I The alarm can cause Mary to call
I The alarm can cause John to call
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Example

Consider the most typical example of the Bayesian networks! Imagine you

work in Los Angeles and live somewhere in the suburbs. Your neighbours

are John and Mary. They are good neighbours, and if there is something

wrong with your house, they will call you. The apartment has an alarm.

Of course, this will alert if the apartment is broken into. This is Los

Angeles, so earthquakes are frequent here. Of course, the earthquake waves

the chandelier, therefore the alarm may sound again. The neighbours, of

course, do not constantly look at what is happening at your house, but

they pay attention to the alarm signal and notify you.



Example contd.
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Example contd.

Let us see the above, very general description more specifically, with precise
chances. You may have noticed that from the description we can clearly
follow where there exist cause-effect relationships.
As a priori information, we know that houses are broken into on average
once in 1,000 days, which is a relatively good rate. So its odds are 0.1%.
According to the statistics (again a priori), there is a double chance of
having an earthquake in the same place, i.e. the odds are 0.2%. These
probability variables are independent of everything, they can be treated as
the beginning of the graph. Whether the alarm sounds is determined by
the values of these two probability variables. If during a break in there is an
earthquake, the alarm will sound with 95% probability. If during at break
in there is no earthquake, the alarm will sound with a 94% probability. If
there is only an earthquake and no burglary, the alarm will occur with a
29% probability. Eventually, there is also the possibility – that there is
neither an earthquake nor a break in – but for some reason the alarm will
malfunction and sound with a 0.1% probability.



Example contd.
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Example contd.

If the alarm sounds, John is 90% likely to hear it and call. John occasionally
confuses the sound of the alarm with something else and has a 5% chance
of calling even if there is no alarm.
The other neighbour is Mary, who listens to music a lot – loudly – so she
often does not hear the alarm. So there is only a 70% chance that she
will notice the alarm and call. He hears slightly better than John, so she
usually doesn’t confuse the sound of the alarm with anything else, so he
has a 1% chance of a false alarm.

The tables only list the chances of something happening. Of course, they

may not happen, and their probabilities are obtained by subtracting the

values in the table from 1.



Compactness

A CPT for Boolean Xi with k Boolean parents has 2k rows
for the combinations of parent values

Each row requires one number p for Xi = true (the number
for Xi = false is just 1− p)

If each variable has no more than k parents, the complete
network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint
distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs.
25 − 1 = 31)2
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Compactness

Lets see why are Bayesian networks so frequently used in practical appli-
cations!

If we consider that a variable has k parents and we only have logical vari-

ables in the given task, then the conditional probability table of the prob-

ability variable must include a probability for all possible values of the

parents. This means 2k cases if we have k parents. As pointed out earlier,

here we give p, the probability that a given probability variable is satisfied

in the given case. Correspondingly, the chance that it will not be satisfied

is 1− p.



Compactness

A CPT for Boolean Xi with k Boolean parents has 2k rows
for the combinations of parent values

Each row requires one number p for Xi = true (the number
for Xi = false is just 1− p)

If each variable has no more than k parents, the complete
network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint
distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs.
25 − 1 = 31)2
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Compactness

If for all probability variables it holds that they have at most k parents,

then the space complexity will be n · 2k , which is linear with respect to

n. If we want to calculate the probabilities of all elementary events, it

means we have 2n cases, which is exponential in n (time complexity).

In our example, we were able to describe the complete problem with 10

probability values. If the combined probabilities had to be described, it

would mean 32 numbers, 31 of which are independent (their sum is 1,

and all but one can be freely entered). Of course, for multiple variables or

multiple values, the difference will be significantly larger.



Global semantics

Global semantics defines the full joint distribution as the
product of the local conditional distributions

P(x1, . . . , xn) =
n∏

i=1

P(xi |parents(Xi ))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P(j |a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998 ≈ 0.000632
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Global semantics

Lets simplify the notation a bit, similar to the one used in the past (e.g.
cavity instead of Cavity=true), i.e. we dont describe the probability vari-
ables, just their values.
Joint probability can be written using the chain rule, and since we can omit
variables that are independent of the given variable, only the parents will
count.

Consider an elementary event – when we have to give the values of all five

probability variables – so that there was no burglary nor an earthquake,

but the alarm sounded, and John and Mary both called. The phonecalls

from John and Mary depend only on the sound of the alarm, so the product

P(j |r) and P(m|r) will be included in the product. The alarm sounded but

there was neither an earthquake nor a burglary, so the term P(r |¬b,¬f )

is included.



Global semantics

Global semantics defines the full joint distribution as the
product of the local conditional distributions

P(x1, . . . , xn) =
n∏

i=1

P(xi |parents(Xi ))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P(j |a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998 ≈ 0.000632
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Global semantics

On the other hand, since there was no earthquake and no burglary, we
have the terms P(¬b) and P(¬f ). If we multiply these, we get the specific
probability of this elementary event.

We see that the probability of this is very small, but not 0. Similarly, the

probabilities of the other 31 elementary events can be calculated.



Inference tasks

Simple queries: compute posterior marginal P(Xi |E = e)

I e.g., P(NoGas|Gauge = empty , Lights = on,Starts = false)

Conjunctive queries:
P(Xi ,Xj |E = e) = P(Xi |E = e)P(Xj |Xi ,E = e)

Optimal decisions: decision networks include utility information

I probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference tasks

Let us also look at how the probability of inference works in reality! We
are given the observed events (which are related to specific probability
variables) and we should give the distribution of a given probability variable
in this case, i.e. the probability of it taking each of its possible values.
If we are sitting in a car and we see that the pointer indicates that the
tank is empty; the lights are on, so there is electricity, but the car still does
not start, then what is the chance that there is no gasoline? (Or maybe
the starter is broken?)

In a more complex case, we are interested in the joint distribution of not

one, but several probability variables, but we can trace that back to this

to simpler tasks, i.e. the distribution of one probability variable.



Inference tasks

Simple queries: compute posterior marginal P(Xi |E = e)

I e.g., P(NoGas|Gauge = empty , Lights = on,Starts = false)

Conjunctive queries:
P(Xi ,Xj |E = e) = P(Xi |E = e)P(Xj |Xi ,E = e)

Optimal decisions: decision networks include utility information

I probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference tasks

We can assign utility values to each event, and then the Bayesian network
can be thought of as a decision tree. This can help us make more complex
decisions and see the expected values for each decision. These decisions
can be parallel decisions or sequential decisions, where we can get extra
information from each step. (Send the second-hand car you want to buy
to a service center for inspection, or buy it without a survey? Or have it
checked by a familiar car mechanic first? All actions have a price!)

What should we check for when looking at a second-hand car? For exam-

ple, there are model-specific defects that are quite expensive to fix. For a

given type of car, its probably worth addressing this, instead of only con-

sidering how worn is the steering wheel or whether the odometer has been

rewound.



Inference tasks

Simple queries: compute posterior marginal P(Xi |E = e)

I e.g., P(NoGas|Gauge = empty , Lights = on,Starts = false)

Conjunctive queries:
P(Xi ,Xj |E = e) = P(Xi |E = e)P(Xj |Xi ,E = e)

Optimal decisions: decision networks include utility information

I probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference tasks

With a similar approach, we can narrow down the weakest links, i.e., what

failures are most likely to happen; what should we prepare for and poten-

tially procure spare parts in advance, also taking into account how easy

and fast it is to find each product. I hope that this example shows that

it is worth learn this subject with those involved in control and operation,

because you can get rid of a lot of inconveniences.



Inference by enumeration

Slightly intelligent way to sum out variables from the joint
without actually constructing its explicit representation

Simple query on the burglary network: P(B|j ,m)

= P(B, j ,m)/P(j ,m) = αP(B, j ,m) = α
∑
e

∑
a

P(B, e, a, j ,m)

Rewrite full joint entries using product of CPT entries:

P(B|j ,m) = α
∑
e

∑
a

P(B)P(e)P(a|B, e)P(j |a)P(m|a) =

αP(B)
∑
e

P(e)
∑
a

P(a|B, e)P(j |a)P(m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Inference by enumeration

Lets go back to our burglar example. You are at work and all you know
is that both Mary and John called you because of the alarm. What is the
chance of a break in?
We need to calculate a conditional probability. More specifically, a condi-
tional probability distribution because we want to calculate this conditional
probability for both values of Burglary.

The conditional probability of the product rule is equal to the quotient of

the combined probability and the probability of the condition. Denoting

the reciprocal of the denominator by a constant alpha, we only need to deal

with one joint distribution. We now get this by listing all possible cases and

summarizing their probabilities. This is why all possible values of the hidden

variables (Earthquake and Alarm) are included in the sum. Naturally, each

joint probability can be decomposed into a product of conditional proba-

bilities using the chain rule, and the sum-independent/constant terms can

be moved out front of the sum to facilitate the calculation.



Inference by enumeration

Slightly intelligent way to sum out variables from the joint
without actually constructing its explicit representation

Simple query on the burglary network: P(B|j ,m)

= P(B, j ,m)/P(j ,m) = αP(B, j ,m) = α
∑
e

∑
a

P(B, e, a, j ,m)

Rewrite full joint entries using product of CPT entries:

P(B|j ,m) = α
∑
e

∑
a

P(B)P(e)P(a|B, e)P(j |a)P(m|a) =

αP(B)
∑
e

P(e)
∑
a

P(a|B, e)P(j |a)P(m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Inference by enumeration

However, all elementary events that correspond to evidence (John and

Mary call) should be considered. If we go through the possibilities like

depth search, we only need to store some conditional probabilities (linear

storage complexity), but all combinations have to be taken into account

(exponential time complexity).



Enumeration algorithm

function Enumeration-Ask(X, e, bn): returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables X U E U Y

Q(X) := a distribution over X, initially empty

for each value x_i of X do

extend e with value x_i for X

Q(x_i) := Enumerate-All(Vars[bn], e)

return Normalize(Q(X))

function Enumerate-All(vars, e): a real number

if Empty?(vars) then return 1.0

Y := First(vars)

if Y has value y in e

then return P(y|Parent(Y))*Enumerate-All(Rest(vars), e)

else return sum_y P(y|Parent(Y))*Enumerate-All(Rest(vars), e_y)

where e_y is e extended with Y=y

2
0
2
0
-0
4
-1
8

AI #9

Enumeration algorithm

Let’s see the algorithm of this solution method. We need the probability
variable whose distribution should be returned, as well as the evidence. In
addition to this data, we also use the Bayesian network.
All we have to do is take all the values of the probability variable in question
and add them to the evidence one by one. We then look at the probability
values for each combination of the missing hidden variables and normalize
them so that their sum yields one.

The routine Enumerate-All initially receives all the variables as well as the

evidence. If the variables run out due to the recursive calls, 1 is returned

so as not to affect the final result. If there are still unprocessed variables,

consider the one closest to the beginning of the Bayesian graph (take a

topological sort). In other words, its parents (if any) are already known.



Enumeration algorithm

function Enumeration-Ask(X, e, bn): returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables X U E U Y

Q(X) := a distribution over X, initially empty

for each value x_i of X do

extend e with value x_i for X

Q(x_i) := Enumerate-All(Vars[bn], e)

return Normalize(Q(X))

function Enumerate-All(vars, e): a real number

if Empty?(vars) then return 1.0

Y := First(vars)

if Y has value y in e

then return P(y|Parent(Y))*Enumerate-All(Rest(vars), e)

else return sum_y P(y|Parent(Y))*Enumerate-All(Rest(vars), e_y)

where e_y is e extended with Y=y
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Enumeration algorithm

We have two options.

1. This variable also belongs to the evidence, so its value is known.
Then the condition belonging to the other variables must be
multiplied by the conditional probability for it (recursive call).

2. This variable is not yet part of the evidence, so we need to work
with all its possible values. Therefore, we multiply the function
values of the other variables and the evidence extended by them by
the conditional probabilities associated with each of their values,
and then sum them up.



Evaluation tree

Enumeration is inefficient: repeated computation

I e.g., computes P(j |a)P(m|a) for each value of e2
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Evaluation tree

The calculation for a specific problem can also be thought of as a tree.

Here, the conditional probabilities in the problem belong to the edges. For

vertices marked with empty circles, these values must be multiplied, whilst

for vertices marked with a cross, we must sum the products, i.e. the partial

results.



Inference by variable elimination
Variable elimination: carry out summations right-to-left, storing
intermediate results (factors) to avoid recomputation

P(B|j ,m) = αP(B)︸ ︷︷ ︸
B

∑
e

P(e)︸︷︷︸
E

∑
a

P(a|B, e)︸ ︷︷ ︸
A

P(j |a)︸ ︷︷ ︸
J

P(m|a)︸ ︷︷ ︸
M

=

αP(B)
∑
e

P(e)
∑
a

P(a|B, e)P(j |a)fM(a)

= αP(B)
∑
e

P(e)
∑
a

P(a|B, e)fJ(a)fM(a)

= αP(B)
∑
e

P(e)
∑
a

fA(a, b, e)fJ(a)fM(a)

= αP(B)
∑
e

P(e)fĀJM(b, e)(sum out A)

= αP(B)fĒ ĀJM(b)(sum out E )

= αfB(b)× fĒ ĀJM(b)
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Inference by variable elimination

If we have many variables and they have multiple values, then the method

described earlier is accurate but very slow. So let us look at another ap-

proach that achieves the same result with far fewer calculations, albeit

is a little more complicated. The starting point is the same conditional

distribution function. Its value is given by the product and sum of condi-

tional probabilities as seen above. However, instead of starting to count

them separately, count them all at once! At the end of the formula is

the term P(m|r), which is not constant, because r can indicate that the

alarm sounds, but also that it does not. So this term can be considered a

function of r , which is why the fM(r) notation is used, but it can also be

considered as a two-element vector instead of a function. Similarly, P(j |r)

can be considered as a function fJ(r) or a two-element vector (with two

conditional probabilities in it). For P(r |B, f ), P is calligraphic because we

have to work with both values of B.



Inference by variable elimination
Variable elimination: carry out summations right-to-left, storing
intermediate results (factors) to avoid recomputation
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Inference by variable elimination

But r and f also mean two possibilities, since they both belong to a sum.

That is, P(r |B, f ) contains 8 values as a 2 × 2 × 2 three-dimensional

matrix. Next is the sum according to r, so we have to take the parts of the

corresponding matrices where r is satisfied and perform the multiplication

between the 2×2 matrix and two constants; then take the parts where r is

not satisfied and perform a similar multiplication. The two 2× 2 matrices

obtained by these multiplications need to be added together. This is called

point multiplication. The same needs to be done for the two values of

f , and in the end there is only one ambiguous vector left, which after

normalization gives the previously calculated values.



Variable elimination: Basic operations

Summing out a variable from a product of factors:

I move any constant factors outside the summation
I add up submatrices in pointwise product of remaining factors∑

x

f1 × · · · × fk = f1 × · · · × fi
∑
x

fi+1 × · · · × fk = f1 × · · · × fi × fX̄

assuming f1, . . . , fi do not depend on X

Pointwise product of factors f1 and f2:

f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk , z1, . . . , zl) =

f (x1, . . . , xj , y1, . . . , yk , z1, . . . , zl)

E.g., f1(a, b)× f2(b, c) = f (a, b, c)
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Variable elimination: Basic operations

As we said before summing out r , we need to multiply the results for
different values of r , and sum them.

Since we deal with very simple tasks in the exams, it is sufficient to calculate

the probabilities associated with the elementary event. Moreover I am not

interested in the specific values, but in the process of the calculation.



Variable elimination algorithm

function Elimination-Ask(X, e, bn): a distribution over X

inputs: X, the query variable

e, evidence specified as an event

bn, a belief network specifying joint distribution P(X1,...,Xn)

factors:=[], vars:= Reverse(Vars[bn])

for each var in vars do

factors:= [Make-Factor(var, e)| factors]

if var is a hidden variable then factors:= Sum-Out(var, factors)

return Normalize(Pointwise-Product(factors))
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Variable elimination algorithm

Let us see the algorithm! Whilst at first we worked from the beginning of

the graph, here we explain our probability variables backwards. We first

create the matrices for the given variables, and if it is a hidden variable, we

perform the point-by-point multiplication accordingly. Finally, if we have

processed all the variables, we normalize the values of the obtained vector.



Variable elimination algorithm
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Variable elimination algorithm

Outlook. It is nice to have an accurate definition of each probability, but
very often it is not necessary. If there are many probability variables, each
variable has not only two but several values if the number of parents is
high, which significantly complicates the calculations. Therefore, in such
cases approximation by random sampling is widely used. For example, we
start in the topological order of the variables and generate the value of
the next probability variable according to the values of the parents and the
matching conditional probability.
If we have generated a larger sample using this method, we can see how
many cases satisfy our conditions, thus obtaining a relative frequency that
converges towards the theoretical probability.

We can choose to only retain those cases from the random sample that

correspond to the given evidence. However, if the evidence is at the back

of the topological order, we have to discard a lot of cases.



Variable elimination algorithm

function Elimination-Ask(X, e, bn): a distribution over X

inputs: X, the query variable

e, evidence specified as an event

bn, a belief network specifying joint distribution P(X1,...,Xn)
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Variable elimination algorithm

Outlook cont. However, we can also start from the evidence and generate
the values of the other variables based on them (probability weighting). In
this case, just like in the previous, the individual samples are created from
scratch.

The MCMC algorithm wanders randomly in the Bayesian network, chang-

ing the value of a probability variable in each case, taking into account the

additional variables associated with that variable (Markov cover). Thus,

for each sample, only the value of one variable needs to be recalculated.

The decision is made similarly to the above from the relative frequency.


