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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:

I a set of nodes, one per variable
I a directed, acyclic graph (link ≈ “directly influences”)
I a conditional distribution for each node given its parents:
P(Xi |Parents(Xi ))

In the simplest case, conditional distribution represented as a
conditional probability table (CPT) giving the distribution over Xi

for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it’s set off by minor
earthquakes. Is there a burglar?

Variables: Burglar , Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

I A burglar can set the alarm off
I An earthquake can set the alarm off
I The alarm can cause Mary to call
I The alarm can cause John to call
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Example contd.
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Compactness

A CPT for Boolean Xi with k Boolean parents has 2k rows
for the combinations of parent values

Each row requires one number p for Xi = true (the number
for Xi = false is just 1− p)

If each variable has no more than k parents, the complete
network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint
distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs.
25 − 1 = 31)
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Global semantics

Global semantics defines the full joint distribution as the
product of the local conditional distributions

P(x1, . . . , xn) =
n∏

i=1

P(xi |parents(Xi ))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P(j |a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998 ≈ 0.00063
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Inference tasks

Simple queries: compute posterior marginal P(Xi |E = e)

I e.g., P(NoGas|Gauge = empty , Lights = on,Starts = false)

Conjunctive queries:
P(Xi ,Xj |E = e) = P(Xi |E = e)P(Xj |Xi ,E = e)

Optimal decisions: decision networks include utility information

I probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint
without actually constructing its explicit representation

Simple query on the burglary network: P(B|j ,m)

= P(B, j ,m)/P(j ,m) = αP(B, j ,m) = α
∑
e

∑
a

P(B, e, a, j ,m)

Rewrite full joint entries using product of CPT entries:

P(B|j ,m) = α
∑
e

∑
a

P(B)P(e)P(a|B, e)P(j |a)P(m|a) =

αP(B)
∑
e

P(e)
∑
a

P(a|B, e)P(j |a)P(m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Enumeration algorithm

function Enumeration-Ask(X, e, bn): returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables X U E U Y

Q(X) := a distribution over X, initially empty

for each value x_i of X do

extend e with value x_i for X

Q(x_i) := Enumerate-All(Vars[bn], e)

return Normalize(Q(X))

function Enumerate-All(vars, e): a real number

if Empty?(vars) then return 1.0

Y := First(vars)

if Y has value y in e

then return P(y|Parent(Y))*Enumerate-All(Rest(vars), e)

else return sum_y P(y|Parent(Y))*Enumerate-All(Rest(vars), e_y)

where e_y is e extended with Y=y
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Evaluation tree

Enumeration is inefficient: repeated computation

I e.g., computes P(j |a)P(m|a) for each value of e
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Inference by variable elimination
Variable elimination: carry out summations right-to-left, storing
intermediate results (factors) to avoid recomputation

P(B|j ,m) = αP(B)︸ ︷︷ ︸
B

∑
e

P(e)︸︷︷︸
E

∑
a

P(a|B, e)︸ ︷︷ ︸
A

P(j |a)︸ ︷︷ ︸
J

P(m|a)︸ ︷︷ ︸
M

=

αP(B)
∑
e

P(e)
∑
a

P(a|B, e)P(j |a)fM(a)

= αP(B)
∑
e

P(e)
∑
a

P(a|B, e)fJ(a)fM(a)

= αP(B)
∑
e

P(e)
∑
a

fA(a, b, e)fJ(a)fM(a)

= αP(B)
∑
e

P(e)fĀJM(b, e)(sum out A)

= αP(B)fĒ ĀJM(b)(sum out E )

= αfB(b)× fĒ ĀJM(b)
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Variable elimination: Basic operations

Summing out a variable from a product of factors:

I move any constant factors outside the summation
I add up submatrices in pointwise product of remaining factors∑

x

f1 × · · · × fk = f1 × · · · × fi
∑
x

fi+1 × · · · × fk = f1 × · · · × fi × fX̄

assuming f1, . . . , fi do not depend on X

Pointwise product of factors f1 and f2:

f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk , z1, . . . , zl) =

f (x1, . . . , xj , y1, . . . , yk , z1, . . . , zl)

E.g., f1(a, b)× f2(b, c) = f (a, b, c)
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Variable elimination algorithm

function Elimination-Ask(X, e, bn): a distribution over X

inputs: X, the query variable

e, evidence specified as an event

bn, a belief network specifying joint distribution P(X1,...,Xn)

factors:=[], vars:= Reverse(Vars[bn])

for each var in vars do

factors:= [Make-Factor(var, e)| factors]

if var is a hidden variable then factors:= Sum-Out(var, factors)

return Normalize(Pointwise-Product(factors))
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