Artificial Intelligence
 Chapter 14
 Probabilistic reasoning

Stuart RUSSEL

reorganized by L. Aszalós

May 16, 2016

Outline

- Syntax
- Semantics
- Exact inference by enumeration
- Exact inference by variable elimination

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents: $\mathcal{P}\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

- Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example contd.

Compactness

- A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$)
- If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
- I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution
- For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Global semantics

- Global semantics defines the full joint distribution as the product of the local conditional distributions
-

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

$$
\begin{gathered}
=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e) \\
=0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \approx 0.00063
\end{gathered}
$$

Inference tasks

- Simple queries: compute posterior marginal $\mathcal{P}\left(X_{i} \mid \mathbf{E}=e\right)$
- e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=o n$, Starts $=$ false $)$
- Conjunctive queries:

$$
\mathcal{P}\left(X_{i}, X_{j} \mid \mathbf{E}=e\right)=\mathcal{P}\left(X_{i} \mid \mathbf{E}=e\right) \mathcal{P}\left(X_{j} \mid X_{i}, \mathbf{E}=e\right)
$$

- Optimal decisions: decision networks include utility information
- probabilistic inference required for P (outcome|action, evidence)
- Value of information: which evidence to seek next?
- Sensitivity analysis: which probability values are most critical?
- Explanation: why do I need a new starter motor?

Inference by enumeration

- Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation
- Simple query on the burglary network: $\mathcal{P}(B \mid j, m)$

$$
=\mathcal{P}(B, j, m) / P(j, m)=\alpha \mathcal{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathcal{P}(B, e, a, j, m)
$$

- Rewrite full joint entries using product of CPT entries:

$$
\begin{gathered}
\mathcal{P}(B \mid j, m)=\alpha \sum_{e} \sum_{a} \mathcal{P}(B) P(e) \mathcal{P}(a \mid B, e) P(j \mid a) P(m \mid a)= \\
\alpha \mathcal{P}(B) \sum_{e} P(e) \sum_{a} \mathcal{P}(a \mid B, e) P(j \mid a) P(m \mid a)
\end{gathered}
$$

- Recursive depth-first enumeration: $O(n)$ space. $O\left(d^{n}\right)$ time

Enumeration algorithm

```
function Enumeration-Ask(X, e, bn): returns a distribution over X
    inputs: X, the query variable
    e, observed values for variables E
    bn, a Bayesian network with variables X U E U Y
    Q(X) := a distribution over X, initially empty
    for each value x_i of X do
        extend e with value x_i for X
        Q(x_i) := Enumerate-All(Vars[bn], e)
    return Normalize(Q(X))
function Enumerate-All(vars, e): a real number
    if Empty?(vars) then return 1.0
    Y := First(vars)
    if Y has value y in e
        then return P(y|Parent(Y))*Enumerate-All(Rest(vars), e)
        else return sum_y P(y|Parent(Y))*Enumerate-All(Rest(vars), e_y)
            where e_y is e extended with Y=y
```


Evaluation tree

- Enumeration is inefficient: repeated computation
- e.g., computes $P(j \mid a) P(m \mid a)$ for each value of e

Inference by variable elimination

- Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$
\begin{gathered}
\mathcal{P}(B \mid j, m)=\alpha \underbrace{\mathcal{P}(B)}_{B} \sum_{e} \underbrace{P(e)}_{E} \sum_{a} \underbrace{\mathcal{P}(a \mid B, e)}_{A} \underbrace{P(j \mid a)}_{J} \underbrace{P(m \mid a)}_{M}= \\
\alpha \mathcal{P}(B) \sum_{e} P(e) \sum_{a} \mathcal{P}(a \mid B, e) P(j \mid a) f_{M}(a) \\
=\alpha \mathcal{P}(B) \sum_{e} P(e) \sum_{a} \mathcal{P}(a \mid B, e) f_{J}(a) f_{M}(a) \\
=\alpha \mathcal{P}(B) \sum_{e} P(e) \sum_{a} f_{A}(a, b, e) f_{J}(a) f_{M}(a) \\
=\alpha \mathcal{P}(B) \sum_{e} P(e) f_{\bar{A} J M}(b, e)(\text { sum out } A) \\
=\alpha \mathcal{P}(B) f_{\bar{E} \bar{A} J M}(b)(\operatorname{sum} \text { out } E) \\
=\alpha f_{B}(b) \times f_{\bar{E} \bar{A} J M}(b)
\end{gathered}
$$

Variable elimination: Basic operations

- Summing out a variable from a product of factors:
- move any constant factors outside the summation
- add up submatrices in pointwise product of remaining factors

$$
\sum_{x} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \sum_{x} f_{i+1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f_{\bar{X}}
$$

- assuming f_{1}, \ldots, f_{i} do not depend on X
- Pointwise product of factors f_{1} and f_{2} :

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)= \\
f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)
\end{gathered}
$$

- E.g., $f_{1}(a, b) \times f_{2}(b, c)=f(a, b, c)$

Variable elimination algorithm

```
function Elimination-Ask(X, e, bn): a distribution over X
    inputs: X, the query variable
        e, evidence specified as an event
    bn, a belief network specifying joint distribution P(X1,...,Xn)
    factors:=[], vars:= Reverse(Vars[bn])
    for each var in vars do
    factors:= [Make-Factor(var, e)| factors]
    if var is a hidden variable then factors:= Sum-Out(var, factors)
    return Normalize(Pointwise-Product(factors))
```

