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Last time we saw that in many cases logic helps to make a good de-
cision. It helped us many times with the Wumpus puzzle. Logical
thinking also helps to solve the puzzles from Simon Tathems collection
or https://www.brainbashers.com. However, sometimes logic is not
enough like we mentioned last time. There are cases where the future
cannot be inferred/calculated. But even then we have to find a way to
make a decision. Were bringing another branch of math to facilitate this:
probability theory.

This may not sound too good at first. But the success of artificial intelli-

gence from the 1990s is based on probability. The meaningful search about

a mistyped query, voice-controlled mobile phones, smart speakers, smart-

clocks, the translation of subtitles into a foreign language use probabilistic

inference. All of these are based on probability theory, so at first, we will

look at some definitions and theorems.

https://www.brainbashers.com
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One-third of the AIMA book fits into this semester. The parts with more
complex maths are just touched on, giving an insight into whats under the
hood. For those interested in the topic, I suggest you take a look at the
remaining chapters of the book!
Today’s schedule is as follows:

• First, we address the concept of uncertainty: why it is needed and
how can we deal with it.

• Then, as one such tool, we present the probability theory.

• This can also be thought of as some formal language, so it has a
formalism (syntax) and has an underlying meaning (semantics).

• As we have already indicated, for us the goal is probabilistic
inference, so we also deal with the concept of consequence.

• Next time we will talk about Bayesian networks, to substantiate this
we will look at the concept of independence (conditional
independence) of probability variables and the related Bayesian rule.



Uncertainty

Let action At = leave for airport t minutes before flight.

Will At get me there on time?

Problems:

1 partial observability (road state, other drivers’ plans, etc.)
2 noisy sensors (KCBS traffic reports)
3 uncertainty in action outcomes (flat tire, etc.)
4 immense complexity of modelling and predicting traffic

Hence a purely logical approach either

1 risks falsehood: “A25 will get me there on time” or
2 leads to conclusions that are too weak for decision making: “A25 will

get me there on time if there’s no accident on the bridge and it doesn’t
rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time but I’d have
to stay overnight in the airport . . .)
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Uncertainty

Lets see a real life example. You want to go home by plane from the

Debrecen Airport. How much earlier do you have to leave? This depends

on your travel method: normal bus, airport shuttle or by taxi, and it depend

on time: early morning or rush hour. If the radio or an application that

provides you with live road updates indicates that an accident has occurred

on the road, your personal experience cannot be reliable used, although an

alternative route may help. If the accident happens when you are already

on the road, we may be in more trouble. Similarly, the same can happen

if a friend offers to drive us, but then it turns out that his car wont start,

or it has a flat tire. Then again, we may miss the plane. The problem is

that transport has a lot of participants, whose goals we dont know, and as

such we cant anticipate them.
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Uncertainty

How to deal with this?

• According to the blindfold solution, we do not anticipate any
accidental events and start at the planned time.

• The other takes into account all the conditions that occur, but
several hypothesis are not known, so this approach cannot be used
in practice.

To be sure of catching the flight we may need to start much earlier, but

who wants to spend their time at the airport?



Methods for handling uncertainty

Default or nonmonotonic logic:

Assume my car does not have a flat tire

Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors

A25 7→0.3 AtAirportOnTime

Sprinkler 7→0.99 WetGrass

WetGrass 7→0.7 Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain?

Probability

Given the available evidence, A25 will get me there on time with
probability 0.04

Mahaviracarya (9th C.), Cardamo (1565) theory of gambling
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Methods for handling uncertainty

What tools can we use to work with these uncertainties, join them, and
draw conclusions?

The first is a variant of the logic you know. Here we use our our assump-

tions in case of missing information. For example, if we know that Tux is

a bird, we are almost certain that Tux can fly since it is a bird. (The basic

assumption is that every bird can fly.) Then if we find out that this bird is

a penguin, we can already say that it cant fly because penguins dont fly.

Similarly in the example above we assume that a tire of a car cannot be

flat by itself. There are many, many questions that may arise when using

this logic. What we take as a rule, if – as before – a contradiction arises,

which rule do we consider to be stronger, and so on.
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Methods for handling uncertainty

Alternatively, we can use frequencies based on experience. For example,

if for the last ten times we left the our flat 25 minutes before the gate

closed and caught the plane only three times, then a 30 percent success

rate can be considered a factor of 0.3. It is also possible to put together

such factors, we just need to know when and what can be combined. If we

look at the results of the morning waterings around the faculty building,

ten minutes later we can almost always see its results. If there is a crazy

drought, the soil may absorb all the water in a matter of seconds, hence

the 99 percent value here. On the other hand, if we look at why the grass

is wet, – by creating a statistics on it, we get that rain is the reason 70

percent of the time. (If not necessary, why sprinkle?)
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Methods for handling uncertainty

If we consider the relationships (A ⊃ B, B ⊃ C ) as implications, then it
arises that we connect them here as well, similarly to the rule of resolution?
Because in our case, it gives a very strange result (which the garden owners
swear by the way), if we water, it will rain. But how often should we assign
it? (We could similarly replace watering with window cleaning!)A

Probability calculation does not give a frequency, but a chance, and when

we perform enough tests, change gets close to the frequency. Probability

arose from desire of winning in gambling. But its history can be traced

back more than a thousand years.



Methods for handling uncertainty

Fuzzy logic

handles degree of truth

NOT uncertainty

e.g. WetGrass is true to degree 0.2
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Methods for handling uncertainty

Moreover, there is another logical approach that brought us the intelligent

washing machines, intelligent ventilation, subway assembly control as early

as the 1980s. Here, we assign a number between 0 and 1 to each atomic

formula, but this does not mean frequency, but the degree of truth. If, for

example, the question is: what is the truth level of the fact that a 170 cm

high man is tall, we can answer that with 0.3.



Probability

Probabilistic assertions summarize effects of

I laziness: failure to enumerate exceptions, qualifications, etc.
I ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

I Probabilities relate propositions to one’s own state of knowledge
I e.g., P(A25|no reported accidents) = 0.06

These are not claims of a “probabilistic tendency” in the current
situation

I but might be learned from past experience of similar situations

Probabilities of propositions change with new evidence:

I e.g., P(A25|no reported accidents, 5 a.m.) = 0.15
I (Analogous to logical entailment status KB |= α, not truth.)2
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Probability

Let’s get back to the probability! We use probability when we do not have
enough information, or it is too difficult or too expensive to obtain it, or
there is so much information that it is costly to process it all. It is very
common that we only look at a sample (political opinion, preference on
products, etc.) and not the whole population. If the sample is represen-
tative, the results obtained are very close to reality (the same test on the
whole population).

There are facts and there is chance. In case there is an unknown, we are

talking about chance. A card drawn from a regular deck of cards may be

an ace of spades or may be something else. If we accept that all cards can

be drawn with the same chance, then - before we look at the card - we

give a 1/52 chance that this card will be the ace of spades. When will our

opinion change? If we turn the card over and we learn what it is. By then,

it will be clear whether that card is an ace of spades, or not. This is no

longer a chance, but a fact.
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Probability

Accordingly, the idea/probability of our idea and belief gained from experi-
ence is the preliminary/a priori probability. If certain facts are already given
and we are talking about the probabilities associated with them, these will
be conditional probabilities.

Ideally, we can use the results provided by mathematics, but often we dont

have the right tools to calculate the odds, in which case we give them

ourselves and possibly modify them from time to time if they are very

different from what we experienced.



Making decisions under uncertainty

Suppose I believe the following:

P(A25 gets me there on time| . . .) = 0.04

P(A90 gets me there on time| . . .) = 0.70

P(A120 gets me there on time| . . .) = 0.95

P(A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine,
etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Making decisions under uncertainty

We can assign a chance, a probability to reach the plane for each time
period. However, the question of when to start is still open! The answer
depend on the people. It is likely that we will choose a different value for
the plan which has no alternatives than when we have a connecting flight
as well. Additionally, deciding on the latter will depends on how scared we
are of a delayed plane.
Such decisions occur in economic life every day, so the appropriate disci-
pline has also developed. Utility theory explores how the alternatives can
be ranked and how this ranking can be used later. We can add chance
to the alternatives, which in turn gives decision theory. Here, too, several
issues arise, e.g. the issue of successive decisions.

If anyone is interested in this topic, then Chapters 16 and 17 of the AIMA

book discuss this in more depth.



Probability basics

Begin with a set Ω—the sample space

I e.g., 6 possible rolls of a die.
I ω ∈ Ω is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an
assignment P(ω) for every ω ∈ Ω s.t.

I 0 ≤ P(ω) ≤ 1
I

∑
ω P(ω) = 1

e.g., P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

An event A is any subset of Ω

P(A) =
∑
{ω∈A}

P(ω)

E.g., P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2

2
0
2
0
-0
4
-1
3

AI #9

Probability basics

Let’s refresh our knowledge! The first concept will be the atomic event,

which are events that are mutually exclusive. The set of these atomic

events give us the sample space. If we roll three dice, the atomic events

could be their sum, as 3, 4, ...., 18. We have to assign a probability

(chance) to each of these options. Calculating the probabilities is not so

simple. Therefore choose different atomic events: let us distinguish the

three dice their results separately is an atomic event. Then everything

becomes very simple, the probabilities of atomic events will be the same.

On the other hand, if the question is, what is the chance that we will roll

10 with the three dice, then considering it as one event, and we get its

probability by summing the probabilities of all the atomic events that occur

in it. Often it is up to us to decide which are the atomic events.



Random variables

A random variable is a function from sample points to some range,
e.g., the reals or Booleans

I e.g., Odd(1) = true.

P induces a probability distribution for any r.v. X :

P(X = xi ) =
∑

ω:X (ω)=xi

P(ω)

e.g., P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables

Let us take a function that assigns a value to elementary events. Later,
to exclude the lengthy calculations we usually use logical values. In these
cases these functions are characteristic functions. The function odd is one
such function. It assigns true and false values to the dice roll results (1-6),
assigning true to atomic events 1, 3 and 5.

What is the chance of throwing an even number? We need to take atomic

values ω for which Even(ω) is true, and sum the corresponding probabili-

ties. For a regular dice, the chance of each number are 1/6, and since we

have 3 good atomic events, 1/2 is the result. Similarly, there are only two

numbers greater than four, so the chance of throwing a number greater

than four is 1/3.



Propositions

Think of a proposition as the event (set of sample points) where the
proposition is true

Given Boolean random variables A and B:

I event a = set of sample points where A(ω) = true
I event ¬a = set of sample points where A(ω) = false
I event a ∧ b = points where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined by the values
of a set of random variables, i.e., the sample space is the Cartesian
product of the ranges of the variables

With Boolean variables, sample point = propositional logic model

I e.g., A = true, B = false, or a ∧ ¬b.

Proposition = disjunction of atomic events in which it is true

I e.g., (a ∨ b) = (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
I =⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)
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Propositions

For logical variables, the proposition coincides with the event. This is no
longer true for real-value functions (random variables). The fact that the
temperature is pleasant (20-25◦C), is a statement/proposition that can
include several events.
Events/propositions can be connected with logical connectives you know.
If we have several independent variables (tossing a dice and a coin), the
atomic event is given by a pair of values, e.g. (3, head), i.e., the Cartesian
product of the sets of outcomes should be considered.
If we have logical variables only, then each combination corresponds to an
atomic event. But if we assign a value to each variable, that is we set
what is true and what is not, then we are giving an interpretation.

If a proposition is a set of multiple atomic events (which are considered a

conjunction), a proposition is very similar to DNF.



Why use probability?
The definitions imply that certain logically related events must have
related probabilities
E.g., P(a ∨ b) = P(a) + P(b)− P(a ∧ b)

de Finetti (1931): an agent who bets according to probabilities that
violate these axioms can be forced to bet so as to lose money regardless of
outcome.
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Why use probability?

So far we looked at the approach from a mathematics point of view, now

lets take logic, and some calculus. If we desire at least one of two events to

be fulfilled, it is a disjunction. This disjunction is inclusive, it enables both

its arguments to be true. If we use probabilities, this common part is used

twice, so we need to subtract its probability from the sum of probabilities.



Syntax for propositions

Propositional or Boolean random variables

e.g., Cavity (do I have a cavity?)

Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)

e.g., Weather is one of 〈sunny , rain, cloudy , snow〉
Weather = rain is a proposition

Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)

e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions2
0
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Syntax for propositions

What do these propositions look like? Although we have seen an example,
let’s look at them systematically! Do I have a cavity? This question
essentially denotes a random variable called Cavity . If the value of this
variable is true (Cavity = true), we get a proposition; which is either
fulfilled or not.
If for weather we have four options (and snow and sunny together is ex-
cluded), then the proposition says the actuals situation, e.g. weather =
rain. For continuous values, we can state that the value of the variable is
a specific value or that it falls within a range.

Of course, such statements can be further transformed with the usual

Boolean connectives.



Prior probability

Prior or unconditional probabilities of propositions

I e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72
I correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of
every atomic event on those r.v.s (i.e., every sample point)

I P(Weather ,Cavity) = a 4× 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Prior probability

If we dont know the facts, we can use experiential (or belief-based) value.
Dentists may say that every tenth person has a cavity, or based on weather
statistics, we get that the chance of a sunny day is 73 percent. With this,
we assigned a specific value (chance, probability) to each proposition. This
called ad prior or unconditional probability.
If we give one value to each propositions, we get a probability distribution.
Of course, we must keep in mind that the sum/integral of the chances
gives 1 (total probability).
If we have several independent propositions, then the atomic events are
given by a Cartesian product. Then a chance must be assigned to each
atomic event; and the sum will also be 1.

Question on probabilities of any event can be answered by probabilities of

its atomic events.



Probability for continuous variables
Express distribution as a parameterized function of value:

P(X = x) = U[18, 26](x) = uniform density between 18 and 26

Here P is a density; integrates to 1.
P(X = 20.5) = 0.125 really means

lim
dx→0

P(20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125

2
0
2
0
-0
4
-1
3

AI #9

Probability for continuous variables

Calculating probabilities for discrete events is usually easy. However, in
the case of continuous random variables, we need to be careful. You may
remember the density and the distribution function. The latter is the
definite integrate of the former. The area under the density function will
be 1, and therefore the value of the distribution function at the end of the
interval is also 1.

In case of the uniform distribution in the example, we will have an 8-wide

rectangle. Its height is therefore 1/8. The probability at a specific value

is given by the density function. The density function gives the limit of

quotient of the probability and the length of the interval, which is now

1/8.



Gaussian density

P(x) = 1√
2πσ

e−(x−µ)
2/2σ2
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Gaussian density

In case of phenomena in nature, the normal distribution is common. It has

this density function.



Conditional probability

Conditional or posterior probabilities

I e.g., P(cavity |toothache) = 0.8
I i.e., given that toothache is all I know
I NOT “if toothache then 80% chance of cavity”

Notation for conditional distributions: P(Cavity |Toothache) =
2-element vector of 2-element vectors

If we know more, e.g., cavity is also given, then we have
P(cavity |toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,
but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,

I P(cavity |toothache, 49ersWin) = P(cavity |toothache) = 0.8
I This kind of inference, sanctioned by domain knowledge, is crucial2
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Conditional probability

Once we know a fact, we cannot rely on our previous be-
liefs. An excellent example of this is the Monty Hall paradox
(https://hu.wikipedia.org/wiki/Monty_Hall-paradoxon), I sug-
gest you to have a look and try to understand it!
Returning to the conditional probability, random variables are on both sides
of the vertical line. Our (relevant) knowledge – the condition – is after the
vertical line.
It is important to address this claim in its place. In case of additional
information, the situation will change.
Pay attention to the letter P. If a probability variable (capital letter) is in-
cluded in the expression, it means a conditional distribution, which includes
several probabilities. In this case we have calligraphic Ps, like P. However,
if we only have lowercase propositions, it gives a probability/chance.

If we take known facts as a condition, they will surely be fulfilled. Irrelevant

propositions (49ersWin) are not needed, we can omit them.

https://hu.wikipedia.org/wiki/Monty_Hall-paradoxon


Conditional probability

Definition of conditional probability:

P(a|b) =
P(a ∧ b)

P(b)
if P(b) 6= 0

Product rule gives an alternative formulation:

I P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

A general version holds for whole distributions, e.g.

I P(Weather ,Cavity) = P(Weather |Cavity)P(Cavity)

View as a 4× 2 set of equations, not matrix mult.

Chain rule is derived by successive application of product rule:

I P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1)P(Xn|X1, . . . ,Xn−1)} =
P(X1, . . . ,Xn−2) P(Xn−1|X1, . . . ,Xn−2) P(Xn|X1, . . . ,Xn−1) = . . . =∏n

i=1 P(Xi |X1, . . . ,Xi−1)
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Conditional probability

The conditional probability has a formula that can be used if the chance of
the condition is not zero. Then we need to divide the common probability
with the probability of the condition.
To make our rule more general, we multiply it by the probability of the
condition – and this holds even if it is zero – product rule. (These formulae
contains propositions, so we have normal Ps.)
If we write a similar formula for random variables (calligraphic P), it holds
for any values of them. Since the variables can have 4 and 2 values re-
spectively, we will get 4× 2 equations.

Applying this product rule over and over again, we can rewrite the com-

bined probability of n variables to the product of n conditional probabilities

– chain rule.



Inference by enumeration

Start with the joint distribution:

For any proposition φ, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ P(ω)
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Inference by enumeration

Lets see how probability can be used for inference! We have the dentist
example with three boolean random variables. The random variable Cavity
indicates whether the patient has a perforated tooth. The random variable
Toothache refers to whether the patient has a toothache. Finally the
random variable Catch indicates whether the dentist finds a hole with
their dental probe or not.
Of course, its interesting if the dentist find a cavity, although there does
is none, or in reverse if there is a hole and the dentist does not find it.

There is a probability for each atomic event.



Inference by enumeration

Start with the joint distribution:

For any proposition φ, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ P(ω)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

If we need the probability of a particular proposition, we need to summarize

the probabilities associated with it. In the first case, 4 atomic events belong

to the proposition Patient has a toothache, and we sum their chances.



Inference by enumeration

Start with the joint distribution:

For any proposition φ}, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ P(ω)

P(cavity ∨ toothache) =
0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

2
0
2
0
-0
4
-1
3

AI #9

Inference by enumeration

When we have a proposition containing disjunction, it has six atomic

events. We need to sum the corresponding chances.



Inference by enumeration

Start with the joint distribution:

Can also compute conditional probabilities:

P(¬cavity |toothache) =
P(¬cavity ∧ toothache)

P(toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4

2
0
2
0
-0
4
-1
3

AI #9

Inference by enumeration

If we have conditional probabilities, we need to calculate the numerator

and the denominator. The numerator is a joint probability, so we need to

sum the corresponding atomic events. The denominator is a known value

from a former slide.



Normalization

Denominator can be viewed as a normalization constant α

P(Cavity |toothache) = αP(Cavity , toothache)

= α [P(Cavity , toothache, catch) + P(Cavity , toothache,¬catch)]

= α [〈0.108, 0.016〉+ 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable by fixing evidence
variables and summing over hidden variables
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Normalization

If were lazy, we can bypass some of the calculations. The denominator

will have the same value, so we can denote it by a constant. In fact, to

avoid having to write fractions, mark the reciprocal with α! Thus, if we

calculate a conditional distribution (calligraphic P!), we must multiply the

joint distribution by this constant. Since we also have a third variable, we

need to sum it up for both values of the Catch, so we are essentially adding

two vectors. (The vectors come from different values of cavity.) Finally,

we need to determine α, which will be nothing more than the reciprocal

of the sum of the two numbers here (1/0.2 = 5) to finally get 1. Then,

by performing the multiplication, we get the answer.



Inference by enumeration, contd.

Let X be all the variables. Typically, we want the posterior joint
distribution of the query variables Y given specific values e for the
evidence variables E
Let the hidden variables be H = X− Y − E
Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E = e) = αP(Y,E = e) = α
∑
h

P(Y,E = e,H = h)

The terms in the summation are joint entries because Y, E, and H
together exhaust the set of random variables
Obvious problems:

1 Worst-case time complexity O(dn) where d is the largest arity
2 Space complexity O(dn) to store the joint distribution
3 How to find the numbers for O(dn) entries?

2
0
2
0
-0
4
-1
3

AI #9

Inference by enumeration, contd.

In the general case, we can classify our variables into three groups:

• There are variables about facts (conditions), their set is denoted by
E (as evidence).

• We have the variables in the question (query variables), their
distribution function is the question (this was the Cavity in the
former example).

• Finally, there are all the other variables that werent mentioned,
these are the hidden variables – the variable Catch before. You need
to summarize on them.

If we have n variables and a variable can take d values, then we need to

take into account cases with exponential complexity (dn), and we need

exponential space to store the partial results.



Inference by enumeration, contd.

Let X be all the variables. Typically, we want the posterior joint
distribution of the query variables Y given specific values e for the
evidence variables E
Let the hidden variables be H = X− Y − E
Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E = e) = αP(Y,E = e) = α
∑
h

P(Y,E = e,H = h)

The terms in the summation are joint entries because Y, E, and H
together exhaust the set of random variables
Obvious problems:

1 Worst-case time complexity O(dn) where d is the largest arity
2 Space complexity O(dn) to store the joint distribution
3 How to find the numbers for O(dn) entries?
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Inference by enumeration, contd.

This doesn’t sound too good. If someone has already taken insurance for
a car on the internet, in Hungary they had to answer nearly 30 questions,
and in each case you had to choose from 5 answers (e.g. Where do you
live? Answers: capital, metropolis, town, village, farm).
According to this, you have 530 options, which is nice, but it will take years
to calculate the value of the insurance!

Insurers would also be in trouble, as they may have no data on accidents

committed by a Porse driven by a retired grandmother living in a small

village, and there are many other rare cases. How can we get the chances

of these options?



Independence

A and B are independent iff

P(A|B) = P(A) or P(B|A) = P(B) or P(A,B) = P(A)P(B)

P(Toothache,Catch,Cavity ,Weather)

= P(Toothache,Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are
independent. What to do?

2
0
2
0
-0
4
-1
3

AI #9

Independence

Fortunately not all the random variables are related to each other, and this
can decrease the complexity. If the product rule holds for every value, then
the variables are independent.
You can check in a previous chance-table that random variables Cavity
and Weather are really independent.
If we have a richer table with the random variables of weather and dentists,
we have 32 atomic events. If we can show the independence between the
Weather and the others, we get two tables with 12 atomic values.
Moreover if we toss coins (they dont have to be fair), then the joint distri-
bution can be triggered by the individual distributions, i.e., we get linear
complexity instead of exponential.

Unfortunately the world is more complicated than this nice mathematical

model.



Conditional independence

P(Toothache,Cavity ,Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t
depend on whether I have a toothache:

1 P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven’t got a cavity:

2 P(catch|toothache,¬cavity) = P(catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity :

I P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:

I P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
I P(Toothache,Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)2
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Conditional independence

We will use a nicer instrument: conditional independence. The table with

the three dental probability variables has 8 fields (slide 18), but since

their sum is fixed (=1), we can only change seven of them freely. We can

assume that in the case of a cavity the probability of catching the hole is not

dependent on a toothache (which is reasonable). We can assume the same

in the case of no cavity. If we can leave out a condition from a conditional

probability, we say the conditional variable conditionally independent of

the missing variable given the other conditions.



Conditional independence contd.

Write out full joint distribution using chain rule:

I P(Toothache,Catch,Cavity)
I = P(Toothache|Catch,Cavity)P(Catch,Cavity)
I = P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
I = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove
2)

In most cases, the use of conditional independence reduces the size of
the representation of the joint distribution from exponential in n to
linear in n.

Conditional independence is our most basic and robust form of
knowledge about uncertain environments.2
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Conditional independence contd.

The joined probability of these variables can be written using the chain rule
as a triple product, and the first term can be simplified. We have three
tables of conditional probabilities with 4, 4 and 4 values, of which 2, 2,
and 1 are independent – the others can be calculated from these. Thus,
the previous seven independent values are reduced to five. This is not a
great result, but it is often possible to reduce the exponential complexity
to linear, which allows us calculations in the real life problem.

Furthermore, the more general conditional probabilities are more easier to

deal with them, there are already statistics on accident with a sports car,

how often villagers crash, and so on.



Bayes’ Rule
Product rule P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

=⇒ Bayes’ rule P(a|b) =
P(b|a)P(a)

P(b)

or in distribution form

P(Y |X ) =
P(X |Y )P(Y )

P(X )
= αP(X |Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(m|s) =
P(s|m)P(m)

P(s)
=

0.8× 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule

The product rule can be written two ways, and equating them then dividing
both sides by a probability we get the Bayes rule for propositions. Similarly,
we can get the Bayes rule for probability variables (calligraphic P).
That doesn’t sound too exciting when put that way. However, if we take
the chances of certain words occurring in our emails and in the spams
(e.g. V1agra), the new incoming messages can be clustered using these
probabilities (Bayesian spam-filter).

In fact, we want to infer the cause (spam) from a characteristic (the pres-

ence of a particular word). It can be determined from the empirical con-

ditional probability in the reverse direction and the probability of cause or

effect(s).



Bayes’ Rule
Product rule P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

=⇒ Bayes’ rule P(a|b) =
P(b|a)P(a)

P(b)

or in distribution form

P(Y |X ) =
P(X |Y )P(Y )

P(X )
= αP(X |Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(m|s) =
P(s|m)P(m)

P(s)
=

0.8× 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule

Let’s take a medical example. If we wake up in the morning with a stiff

neck, should we suspect meningitis, or just that we have fallen asleep in

the wrong position? The fact is that meningitis is a very common feature

of the rigid neck (80 percent). Moreover, a rigid neck is highly likely to

occur (10 percent). Which can be reassuring, however, that the chance of

meningitis is very low. Substituting all this into the formula also gives a

very small probability for the conditional probability.



Bayes’ Rule and conditional independence

P(Cavity |toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)
∏
i

P(Effecti |Cause)

Total number of parameters is linear in n
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Bayes’ Rule and conditional independence

We can combine the methods. The probability of the cavity in the case

of toothache can be calculated from the probability of the cavity and the

conditional probabilities with condition Cavity. This gives a linear formula,

so the calculation will not be complicated.



Wumpus World

Pij = true iff [ i , j ] contains a pit

Bij = true iff [ i , j ] is breezy

Include only B1,1,B1,2,B2,1 in the probability model2
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Wumpus World

Let us take the example where logic does not help! The starting position

is safe, but you can feel the breeze in the neighbors. It is not possible to

calculate which of the three yellow rooms has a pit and which does not.

Maybe there is only one in the middle. But if the others have a pit, we

get the same outcome. Even if each of them has a pit, we get the same.



Specifying the probability model

The full joint distribution is P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1)
Apply product rule: P(B1,1,B1,2,B2,1 |P1,1, . . . ,P4,4)P(P1,1, . . . ,P4,4)
(Do it this way to get P(Effect|Cause).)
First term: 1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . ,P4,4) =

4,4∏
i ,j=1,1

P(Pi ,j) = 0.2n × 0.816−n

for n pits.
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Specifying the probability model

The entire maze consists of 16 rooms and there are three questionable
fields where there can be a pit. This means 19 logical variables, i.e. nearly
half a million cases.
The joint distribution can be rewritten into conditional distribution. In the
first half of this, the rule of the game applies, if the breeze is next to the
pit, it is okay; otherwise the probability is 0.

Let us assume that the pits are distributed randomly, i.e. there is a certain

probability of a pit in a given room. (this should now be 20 percent). The

fact that there are a n pits total in the maze can be written based on the

binomial theorem.



Observations and query

We know the following facts:

I b = ¬b1,1 ∧ b1,2 ∧ b2,1

I known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)

Define Unknown = Pijs other than P1,3 and Known

For inference by enumeration, we have

P(P1,3|known, b) = α
∑

unknown

P(P1,3, unknown, known, b)

Grows exponentially with number of squares!
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Observations and query

We are sure that in three rooms there is no pit (known), and we have
information about breeze in these rooms (b).
We want to know what is the chances of a pit in Room (1, 3) in the case
of public information (known and b).
We can call the variables of pits in the other rooms together as unknown.

Thus, the former conditional probability can be decomposed, it gives an

exponential result which is almost unmanageable.



Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

Define Unknown = Fringe ∪ Other

P(b|P1,3,Known,Unknown) = P(b|P1,3,Known,Fringe)

Manipulate query into a form where we can use this!
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Using conditional independence

Now conditional independence comes into play because the known fields

are largely unrelated to the unknowns. Therefore, we treat separately those

with which they are not really related (other)! And we have a fringe, which

is close to the known rooms.



Using conditional independence contd.

P(P1,3|known, b) = α
∑

unknown

P(P1,3, unknown, known, b) =

α
∑

unknown

P(b|P1,3, known, unknown)P(P1,3, known, unknown) =

α
∑
fringe

∑
other

P(b|known,P1,3, fringe, other)P(P1,3, known, fringe, other) =

α
∑
fringe

∑
other

P(b|known,P1,3, fringe)P(P1,3, known, fringe, other) =

α
∑
fringe

P(b|known,P1,3, fringe)
∑
other

P(P1,3, known, fringe, other) =

α
∑
fringe

P(b|known,P1,3, fringe)
∑
other

P(P1,3)P(known)P(fringe)P(other) =2
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Using conditional independence contd.

To calculate the conditional probability we need to summarize over the

unknown variables. The joint distribution behind the summa can rewritten

into a product. We can separate the unknown variables into two. The

others are conditionally independent from proposition b in the case known,

P13 and fringe, so we can omit them. This enable us to take the first part

out from the second sum. The position of pits is independent, so we can

break the joint probability into products. (An error in the presentation, we

need to use calligraphic Ps here.



Using conditional independence contd.

α
∑
fringe

P(b|known,P1,3, fringe)
∑
other

P(P1,3)P(known)P(fringe)P(other) =

αP(known)P(P1,3)
∑
fringe

P(b|known,P1,3, fringe)P(fringe)
∑
other

P(other) =

α′ P(P1,3)
∑
fringe

P(b|known,P1,3, fringe)P(fringe)
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Using conditional independence contd.

We can pull out the constants from the sum.



Using conditional independence contd.

P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉2
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Using conditional independence contd.

Let us see the cases corresponding to the perceptions. In the first three

cases, there is a pit at (1, 3). Here in the first case there are two more pits

(with chance 0.2× 0.2), in the second case there is only one (with chance

0.2×0.8) and so on. Substituting these into the formula from before gives

around 31 percent chance. There is 86 percent chance of pit the middle

yellow room based a similar calculation. Therefore, it is worth continuing

along the sides of the labyrinth.



Summary

Probability is a rigorous formalism for uncertain knowledge
Joint probability distribution specifies probability of every atomic event
Queries can be answered by summing over atomic events
For nontrivial domains, we must find a way to reduce the joint size
Independence and conditional independence provide the tools
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Summary

Probability theory is part of mathematics with stable and accurate meth-
ods. This can be used to determine probabilities for uncertain environ-
ments.
If we have several statements, their combined distribution gives the prob-
ability of each individual event.
If we need the probability of a particular event, we need to look at the
atomic events of it and summarize their probability.

This approach is often exponential, so the size must be reduced for manage-

ability. Through independence and conditional independence, calculations

can be simplified and performed separately.


