Artificial Intelligence

Chapter 13, Uncertainty

Stuart RUSSEL

reorganized by L. Aszalós

May 9, 2016

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Uncertainty

- Let action $A_{t}=$ leave for airport t minutes before flight.
- Will A_{t} get me there on time?
- Problems:
(1) partial observability (road state, other drivers' plans, etc.)
(2) noisy sensors (KCBS traffic reports)
(3) uncertainty in action outcomes (flat tire, etc.)
(9) immense complexity of modelling and predicting traffic
- Hence a purely logical approach either
(1) risks falsehood: " A_{25} will get me there on time" or
(2) leads to conclusions that are too weak for decision making: " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
- (A_{1440} might reasonably be said to get me there on time but l'd have to stay overnight in the airport ...)

Methods for handling uncertainty

Default or nonmonotonic logic:

- Assume my car does not have a flat tire
- Assume A_{25} works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors

- $A_{25} \mapsto_{0.3}$ AtAirportOnTime
- Sprinkler $\mapsto_{0.99}$ WetGrass
- WetGrass $\mapsto_{0.7}$ Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain?

Probability

Given the available evidence, A_{25} will get me there on time with probability 0.04

- Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

Methods for handling uncertainty

Fuzzy logic

- handles degree of truth
- NOT uncertainty
- e.g. WetGrass is true to degree 0.2

Probability

- Probabilistic assertions summarize effects of
- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.
- Subjective or Bayesian probability:
- Probabilities relate propositions to one's own state of knowledge
- e.g., $P\left(A_{25} \mid\right.$ no reported accidents $)=0.06$
- These are not claims of a "probabilistic tendency" in the current situation
- but might be learned from past experience of similar situations
- Probabilities of propositions change with new evidence:
- e.g., $P\left(A_{25} \mid\right.$ no reported accidents, 5 a.m. $)=0.15$
- (Analogous to logical entailment status $K B \models \alpha$, not truth.)

Making decisions under uncertainty

Suppose I believe the following:

$$
\begin{aligned}
P\left(A_{25} \text { gets me there on time } \mid \ldots\right) & =0.04 \\
P\left(A_{90} \text { gets me there on time } \mid \ldots\right) & =0.70 \\
P\left(A_{120} \text { gets me there on time } \mid \ldots\right) & =0.95 \\
P\left(A_{1440} \text { gets me there on time } \mid \ldots\right) & =0.9999
\end{aligned}
$$

Which action to choose?
Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences
Decision theory $=$ utility theory + probability theory

Probability basics

- Begin with a set Ω-the sample space
- e.g., 6 possible rolls of a die.
- $\omega \in \Omega$ is a sample point/possible world/atomic event
- A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.
- $0 \leq P(\omega) \leq 1$
- $\sum_{\omega} P(\omega)=1$
- e.g., $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$.
- An event A is any subset of Ω

$$
P(A)=\sum_{\{\omega \in A\}} P(\omega)
$$

- E.g., $P($ die roll $<4)=P(1)+P(2)+P(3)=1 / 6+1 / 6+1 / 6=1 / 2$

Random variables

- A random variable is a function from sample points to some range, e.g., the reals or Booleans
- e.g., $\operatorname{Odd}(1)=$ true.
- P induces a probability distribution for any r.v. X :

$$
P\left(X=x_{i}\right)=\sum_{\omega: X(\omega)=x_{i}} P(\omega)
$$

- e.g., $P($ Odd $=$ true $)=P(1)+P(3)+P(5)=1 / 6+1 / 6+1 / 6=1 / 2$

Propositions

- Think of a proposition as the event (set of sample points) where the proposition is true
- Given Boolean random variables A and B :
- event $a=$ set of sample points where $A(\omega)=$ true
- event $\neg a=$ set of sample points where $A(\omega)=$ false
- event $a \wedge b=$ points where $A(\omega)=$ true and $B(\omega)=$ true
- Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables
- With Boolean variables, sample point $=$ propositional logic model
- e.g., $A=$ true, $B=$ false, or $a \wedge \neg b$.
- Proposition $=$ disjunction of atomic events in which it is true
- e.g., $(a \vee b)=(\neg a \wedge b) \vee(a \wedge \neg b) \vee(a \wedge b)$
- $\Longrightarrow P(a \vee b)=P(\neg a \wedge b)+P(a \wedge \neg b)+P(a \wedge b)$

Why use probability?

The definitions imply that certain logically related events must have related probabilities

$$
\text { E.g., } P(a \vee b)=P(a)+P(b)-P(a \wedge b)
$$

True

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax for propositions

Propositional or Boolean random variables

- e.g., Cavity (do I have a cavity?)
- Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)

- e.g., Weather is one of 〈sunny, rain, cloudy, snow \rangle
- Weather = rain is a proposition
- Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)

- e.g., Temp $=21.6$; also allow, e.g., Temp <22.0.

Arbitrary Boolean combinations of basic propositions

Prior probability

- Prior or unconditional probabilities of propositions
- e.g., $P($ Cavity $=$ true $)=0.1$ and $P($ Weather $=$ sunny $)=0.72$
- correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments $\mathcal{P}($ Weather $)=\langle 0.72,0.1,0.08,0.1\rangle$ (normalized, i.e., sums to 1)
- Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
- $\mathcal{P}($ Weather, Cavity $)=$ a 4×2 matrix of values:

Weather $=$	sunny	rain	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

- Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Probability for continuous variables

Express distribution as a parameterized function of value:

- $P(X=x)=U[18,26](x)=$ uniform density between 18 and 26

Here P is a density; integrates to 1 . $P(X=20.5)=0.125$ really means

$$
\lim _{d x \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125
$$

Gaussian density
$P(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$

Conditional probability

- Conditional or posterior probabilities
- e.g., $P($ cavity \mid toothache $)=0.8$
- i.e., given that toothache is all I know
- NOT "if toothache then 80% chance of cavity"
- Notation for conditional distributions: \mathcal{P} (Cavity \mid Toothache $)=$ 2-element vector of 2-element vectors
- If we know more, e.g., cavity is also given, then we have $P($ cavity \mid toothache, cavity $)=1$
- Note: the less specific belief remains valid after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification, e.g.,
- $P($ cavity \mid toothache, 49 ersWin $)=P($ cavity \mid toothache $)=0.8$
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

- Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \text { if } P(b) \neq 0
$$

- Product rule gives an alternative formulation:
- $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$
- A general version holds for whole distributions, e.g.
- $\mathcal{P}($ Weather, Cavity $)=\mathcal{P}($ Weather \mid Cavity $) \mathcal{P}($ Cavity $)$
- View as a 4×2 set of equations, not matrix mult.
- Chain rule is derived by successive application of product rule:
- $\left.\mathcal{P}\left(X_{1}, \ldots, X_{n}\right)=\mathcal{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathcal{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)\right\}=$ $\mathcal{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathcal{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathcal{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=\ldots=$ $\prod_{i=1}^{n} \mathcal{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

- $P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

- $P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$
- $P($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition $\phi\}$, sum the atomic events where it is true:

- $P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$
- $P($ cavity \vee toothache $)=$

$$
0.108+0.012+0.072+0.008+0.016+0.064=0.28
$$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Normalization

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

$$
\begin{aligned}
& \mathcal{P}(\text { Cavity } \mid \text { toothache })=\alpha \mathcal{P}(\text { Cavity, toothache }) \\
& \quad=\alpha[\mathcal{P}(\text { Cavity }, \text { toothache }, \text { catch })+\mathcal{P}(\text { Cavity, toothache }, \neg \text { catch })] \\
& \quad=\alpha[\langle 0.108,0.016\rangle+\langle 0.012,0.064\rangle] \\
& \quad=\alpha\langle 0.12,0.08\rangle=\langle 0.6,0.4\rangle
\end{aligned}
$$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Let \mathbf{X} be all the variables. Typically, we want the posterior joint distribution of the query variables \mathbf{Y} given specific values \mathbf{e} for the evidence variables E
Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathcal{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathcal{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \sum_{\mathbf{h}} \mathcal{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

The terms in the summation are joint entries because \mathbf{Y}, \mathbf{E}, and \mathbf{H} together exhaust the set of random variables Obvious problems:
(1) Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
(2) Space complexity $O\left(d^{n}\right)$ to store the joint distribution
(3) How to find the numbers for $O\left(d^{n}\right)$ entries?

Independence

- A and B are independent iff
- $\mathcal{P}(A \mid B)=\mathcal{P}(A)$ or $\mathcal{P}(B \mid A)=\mathcal{P}(B) \quad$ or $\quad \mathcal{P}(A, B)=\mathcal{P}(A) \mathcal{P}(B)$

- $\mathcal{P}($ Toothache, Catch, Cavity, Weather)
- $=\mathcal{P}$ (Toothache, Catch, Cavity) \mathcal{P} (Weather)
- 32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- \mathcal{P} (Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$
- The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- $\mathcal{P}($ Catch \mid Toothache, Cavity $)=\mathcal{P}($ Catch \mid Cavity $)$
- Equivalent statements:
- $\mathcal{P}($ Toothache \mid Catch, Cavity $)=\mathcal{P}($ Toothache \mid Cavity $)$
- $\mathcal{P}($ Toothache, Catch \mid Cavity $)=\mathcal{P}($ Toothache \mid Cavity $) \mathcal{P}($ Catch \mid Cavity $)$

Conditional independence contd.

- Write out full joint distribution using chain rule:
- \mathcal{P} (Toothache, Catch, Cavity)
- $=\mathcal{P}$ (Toothache \mid Catch, Cavity) $\mathcal{P}($ Catch, Cavity)
- $=\mathcal{P}($ Toothache \mid Catch, Cavity) $\mathcal{P}($ Catch \mid Cavity) \mathcal{P} (Cavity)
- $=\mathcal{P}($ Toothache \mid Cavity $) \mathcal{P}($ Catch \mid Cavity $) \mathcal{P}$ (Cavity)
- l.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$

$$
\Longrightarrow \text { Bayes' rule } \quad P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

or in distribution form

$$
\mathcal{P}(Y \mid X)=\frac{\mathcal{P}(X \mid Y) \mathcal{P}(Y)}{\mathcal{P}(X)}=\alpha \mathcal{P}(X \mid Y) \mathcal{P}(Y)
$$

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid \text { Effect })=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

\mathcal{P} (Cavity \mid toothache \wedge catch $)$
$=\alpha \mathcal{P}$ (toothache \wedge catch \mid Cavity $) \mathcal{P}$ (Cavity)
$=\alpha \mathcal{P}($ toothache \mid Cavity $) \mathcal{P}($ catch \mid Cavity $) \mathcal{P}$ (Cavity)
This is an example of a naive Bayes model:

$$
\mathcal{P}\left(\text { Cause }, \text { Effect }_{1}, \ldots, \text { Effect }_{n}\right)=\mathcal{P}(\text { Cause }) \prod_{i} \mathcal{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

Total number of parameters is linear in n

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
\mathbf{B}	2,2	3,2	4,2
OK			
1,1	2,1	\mathbf{B}	3,1
OK	OK	4,1	

- $P_{i j}=$ true iff $[i, j]$ contains a pit
- $B_{i j}=$ true iff $[i, j]$ is breezy
- Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Specifying the probability model

The full joint distribution is $\mathcal{P}\left(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}\right)$
Apply product rule: $\mathcal{P}\left(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}\right) \mathcal{P}\left(P_{1,1}, \ldots, P_{4,4}\right)$ (Do it this way to get $P($ Effect \mid Cause $)$.)
First term: 1 if pits are adjacent to breezes, 0 otherwise Second term: pits are placed randomly, probability 0.2 per square:

$$
\mathcal{P}\left(P_{1,1}, \ldots, P_{4,4}\right)=\prod_{i, j=1,1}^{4,4} \mathcal{P}\left(P_{i, j}\right)=0.2^{n} \times 0.8^{16-n}
$$

for n pits.

Observations and query

- We know the following facts:
- $b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
- known $=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
- Query is $\mathcal{P}\left(P_{1,3} \mid\right.$ known, b)
- Define Unknown $=P_{i j}$ other than $P_{1,3}$ and Known
- For inference by enumeration, we have

$$
\mathcal{P}\left(P_{1,3} \mid \text { known }, b\right)=\alpha \sum_{\text {unknown }} \mathcal{P}\left(P_{1,3}, \text { unknown, known, } b\right)
$$

- Grows exponentially with number of squares!

Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define Unknown $=$ Fringe \cup Other

- $\mathcal{P}\left(b \mid P_{1,3}\right.$, Known, Unknown $)=\mathcal{P}\left(b \mid P_{1,3}\right.$, Known, Fringe $)$

Manipulate query into a form where we can use this!

Using conditional independence contd.

$$
\mathcal{P}\left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathcal{P}\left(P_{1,3}, \text { unknown, known, } b\right)=
$$

$\alpha \sum_{\text {unknown }} \mathcal{P}\left(b \mid P_{1,3}\right.$, known, unknown $) \mathcal{P}\left(P_{1,3}\right.$, known, unknown $)=$
$\alpha \sum_{\text {fringe }} \sum_{\text {other }} \mathcal{P}\left(b \mid\right.$ known, $P_{1,3}$, fringe, other $) \mathcal{P}\left(P_{1,3}\right.$, known, fringe, other $)=$
$\alpha \sum_{\text {fringe }} \sum_{\text {other }} \mathcal{P}\left(b \mid\right.$ known, $P_{1,3}$, fringe $) \mathcal{P}\left(P_{1,3}\right.$, known, fringe, other $)=$
$\alpha \sum_{\text {fringe }} \mathcal{P}\left(b \mid\right.$ known, $P_{1,3}$, fringe $) \sum_{\text {other }} \mathcal{P}\left(P_{1,3}\right.$, known, fringe, other $)=$
$\alpha \sum_{\text {fringe }} \mathcal{P}\left(b \mid\right.$ known, $P_{1,3}$, fringe $) \sum_{\text {other }} \mathcal{P}\left(P_{1,3}\right) P($ known $) P($ fringe $) P($ other $)=$

Using conditional independence contd.

$\alpha \sum_{\text {fringe }} \mathcal{P}\left(b \mid\right.$ known, $P_{1,3}$, fringe $) \sum_{\text {other }} \mathcal{P}\left(P_{1,3}\right) P($ known $) P($ fringe $) P($ other $)=$ $\alpha P($ known $) \mathcal{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathcal{P}\left(b \mid\right.$ known, $P_{1,3}$, fringe $) P($ fringe $) \sum_{\text {other }} P($ other $)=$

$$
\alpha^{\prime} \mathcal{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathcal{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) P(\text { fringe })
$$

Using conditional independence contd.

$0.2 \times 0.2=0.04$

$0.2 \times 0.8=0.16$

$0.8 \times 0.2=0.16$

$0.2 \times 0.2=0.04$

$0.2 \times 0.8=0.16$
$\mathcal{P}\left(P_{1,3} \mid\right.$ known,$\left.b\right)=\alpha^{\prime}\langle 0.2(0.04+0.16+0.16), 0.8(0.04+0.16)\rangle$ $\approx\langle 0.31,0.69\rangle$
$\mathcal{P}\left(P_{2,2} \mid\right.$ known,$\left.b\right) \approx\langle 0.86,0.14\rangle$

Summary

Probability is a rigorous formalism for uncertain knowledge Joint probability distribution specifies probability of every atomic event Queries can be answered by summing over atomic events For nontrivial domains, we must find a way to reduce the joint size Independence and conditional independence provide the tools

