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Knowledge-based agents

Wumpus world

Logic in general—models and entailment

Propositional (Boolean) logic

Equivalence, validity, satisfiability

Inference rules and theorem proving

I forward chaining
I backward chaining
I resolution
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Outline

Today we will focus on knowledge, how can we manage it, store and

retrieve it, and how can we conclude new information from the old. How

can we teach it to an agent? To see the challenges we use a simple game:

the Wumpus world. Next we give a short session about logic, the main

concepts, and its mechanicasition.



Knowledge bases

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):

I Tell it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level

I i.e., what they know, regardless of how implemented

Or at the implementation level

I i.e., data structures in KB and algorithms that manipulate them
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Knowledge bases

For us a knowledge base is just a set of formulae, the statements are
given in a specific artificial (formal) language. As it is a set, we can
broaden this base by adding new formulae, i.e. we tell the new formulae to
the agent/knowledge base. Similarly we can narrow this base by deleting
formulae, but it is easier if the agent drops any old formulae that contradict
the new knowledge. The agent can use this knowledge base by asking it
about the next action.

We can treat the knowledge base and its inference engine (which knows

the logic) as a black box, we tell it the facts and rules, make queries

from it, while we have no interest in its internal structure. But you can

treat the KB and IE as a programming problem: what data structures are

needed for efficient knowledge handling, and what algorithms are needed

to implement the ability to suggest the next action.



A simple knowledge-based agent

function KB-Agent(percept): an action

static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept))

action := Ask(KB, Make-Action-Query(t))

Tell(KB, Make-Action-Sentence(action, t))

t := t + 1

return action

The agent must be able to:

I Represent states, actions, etc.
I Incorporate new percepts
I Update internal representations of the world
I Deduce hidden properties of the world
I Deduce appropriate actions
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A simple knowledge-based agent

From a birds-eye view the program of a knowledge agent is very simple.
As an input it needs the actual perception, and its memory contains the
KB and a timer. It adds the actual perception (as a set of formulae) to
the KB. Next it asks the KB about the next action (based on the time),
and tells the KB that the agent is executing this action now. The time
updates, and the next action becomes the output.

We see from the list below, what complexity is hidden in the function calls

in the listing.



Wumpus world
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Wumpus world

Let take the this game, where you need to find the gold, and avoid from

the monster called Wumpus. You are in a dark maze, and there are traps

everywhere. Fortunately, you can recognize these based on a breeze and

the smell of the monster.



Wumpus World PEAS description

Performance measure

I gold +1000, death -1000, -1 per step, -10 for using the arrow

Environment

I Squares adjacent to wumpus are smelly
I Squares adjacent to pit are breezy
I Glitter iff gold is in the same square
I Shooting kills wumpus if you are facing it
I Shooting uses up the only arrow
I Grabbing picks up gold if in same square
I Releasing drops the gold in same square

Actuators

I Left turn, Right turn, Forward, Grab, Release, Shoot

Sensors

I Breeze, Glitter, Smell
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Wumpus World PEAS description

If we want to compare the different agents that want to acquire the trea-

sure, we need some measurement to compare them. We can use the

well-known measure of performance, so we need to score each action. The

rules of the game are detailed here. To give a complete description we

need to list all the possible actions and the different kinds of percepts.



Wumpus world characterization

Observable

I No—only local perception

Deterministic

I Yes—outcomes exactly specified

Episodic

I No—sequential at the level of actions

Static

I Yes—Wumpus and Pits do not move

Discrete

I Yes

Single-agent

I Yes—Wumpus is essentially a natural feature
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Wumpus world characterization

We have seen at the beginning of the semester, the different types of the

environments given different kinds of challenges. Lets see the exact type

for this game! We can see that this is a simple problem, just the partial

observability and episodic nature cause some difficulties.



Exploring a wumpus world
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Exploring a wumpus world

Let us assume we start the adventure at the bottom left, and in this room

there is no trap, so we alive at the beginning. We do not smell anything,

and feel no breeze in here, so in the neighbouring squares there is no

Wumpus and no trap. It is safe to discover some adjacent room.



Exploring a wumpus world
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Exploring a wumpus world

In the next room we feel the breeze, so in some (or more) adjacent rooms

have a trap. So it is not safe to move forward, therefore we go back,

and try the other direction, but there we catch the smell of the Wumpus.

What do we do now? If we know the logic, we can prove that the trap

(pit) must be in a unique room, so the other room is safe, you we continue

our adventure.



Exploring a wumpus world
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Exploring a wumpus world

As all neighbours are safe, we can discover the unknown rooms and find

the gold.



Other tight spots

Breeze in (1,2) and (2,1) ⇒ no safe actions

Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86,
vs. 0.31

Smell in (1,1) ⇒ cannot move

Can use a strategy of coercion
I shoot straight ahead

F wumpus was there ⇒ dead ⇒ safe
F wumpus wasn’t there ⇒ safe
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Other tight spots

There are cases when logic is not enough, we cannot prove anything. If
we feel breeze in both rooms neighbouring the starting square, we cannot
deduce the position of pit(s). The probabilistic reasoning could help in this
case, so that we need to avoid the middle of the labyrinth (but it does not
guarantee anything.)

If we fell a breeze or a smell at the starting point, we cannot move safely.

But if we feel a smell only, we can use our arrow. If the Wumpus is in some

direction, by shooting that way we kill it, so this direction now becomes

safe. Otherwise it was safe before, anyway. So now we can go in that

direction.



Logic in general

Logics are formal languages for representing information such that
conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;

I i.e., define truth of a sentence in a world

E.g., the language of arithmetic

I x + 2 ≥ y is a sentence; x2 + y > is not a sentence
I x + 2 ≥ y is true iff the number x + 2 is no less than the number y
I x + 2 ≥ y is true in a world where x = 7, y = 1
I x + 2 ≥ y is false in a world where x = 0, y = 6
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Logic in general

Now let us refresh our knowledge about logic. There are different kinds

of logics, you have learned about two: zero-order and first-order. In the

following we will use the zero-order approach for this toy-problem, but for

real life problems the first-order approach gives simpler/shorter formulae,

we can handle problems in a more compact way. The syntax is the grammar

of the logic, or other artificial languages. It contains the rules of what is

a well formed formula. GIven a syntax, we can construct a parser which

gives back the structure of the formula. The syntax of the arithmetic gives

that the first example is a real statement, but the second (x2 + y >) is

not.



Logic in general

Logics are formal languages for representing information such that
conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;

I i.e., define truth of a sentence in a world

E.g., the language of arithmetic

I x + 2 ≥ y is a sentence; x2 + y > is not a sentence
I x + 2 ≥ y is true iff the number x + 2 is no less than the number y
I x + 2 ≥ y is true in a world where x = 7, y = 1
I x + 2 ≥ y is false in a world where x = 0, y = 6
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Logic in general

The grammar gives meaning to the formula. Usually we do it in a recursive

way. In case of arithmetics we need to give meaning to + and ≥. The

standard interpretation assigns the function addition and the relation less-

or-equal to these signs. Moreover the arithmetic is about numbers. What

do we need to understand about these numbers? Are they natural numbers,

integers, rational fractions, real or complex numbers? The domain of the

variables is part of the definition of the interpretation. As we use variables

in arithmetics, and their values is not fixed, they can change, so there is

no reason to fix these values in the interpretation. But these values can

create a valuation together. This is the reason why an interpretation and

a valuation together gives a model in first-order logic.



Entailment

Entailment means that one thing follows from another: KB |= α

Knowledge base KB entails sentence α if and only if

I α is true in all worlds where KB is true

E.g., the KB containing the Giants won and the Reds won entails
Either the Giants won or the Reds won

E.g., x + y = 4 entails 4 = x + y

Entailment is a relationship between sentences (i.e., syntax) that is
based on semantics

Note: brains process syntax (of some sort)
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Entailment

We can treat the word entailment as a synonym of logical consequence.
Maybe you remember its definition, and the property given here. There
is a hidden implication in this property, and not an equivalence. If KB is
true in some world (understand this as in a model, or an interpretation),
then formula alpha must be true. If KB is false in some world, then that
world is not interesting for us, although formula alpha can be true here.
The entailment does not hold if there exists a world, where KB is true and
formula alpha is false.
Here you can find some cases where the entailment holds.

In general, the formula alpha and formulae in KB are based on syntax. The

concept of logical consequence belongs to semantics. We need to check

that in all model of KB whether the formula alpha is true. In zero-order

case we have used truth-table for this. In first-order logic usually a KB has

infinitely many models, so we cannot list all of them.



Models

Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

M(α) is the set of all models of α

Then KB |= α if and only if M(KB) ⊆ M(α)

KB = “Giants won and Reds won”, α = “Giants won”
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Models

In the following we will use zero-order logic, so concepts model and inter-

pretation overlap. We can take the set of interpretations where a formula

(or a set of formulae) is true, i.e. the set of its (or their) models. We can

draw up the entailment as a subset property between the models.



Entailment in the wumpus world

Situation after detecting nothing in [1,1],

moving right, breeze in [2,1]

Consider possible models for ?s assuming only pits

3 Boolean choices ⇒ 8 possible models

2
0

2
0

-0
4

-0
5

AI #8
Logical agents

Entailment in the wumpus world

As we refresh the theory, lets see them in practice. In our example the start-

ing position is safe, and in the adjacent room we feel a breeze. What can

we say about the rooms nearby, which way can we continue our journey?

(They are denoted with a question mark.) Can you conclude something

alone now?



Wumpus models
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Wumpus models

We have three question marks, we can use three boolean variables to

describe the situation. There is either a trap or not in one given room, so

these are two options; and we have 3 rooms, so it gives 222=8 cases. You

can see all the cases here.



Wumpus models

KB = wumpus-world rules + observations
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Wumpus models

We coloured cases that comply with the rules of this game red.



Wumpus models

KB = wumpus-world rules + observations

α1 = “[1,2] is safe”, KB |= α1, proved by model checking
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Wumpus models

If the formula α1 denotes that the room above the starting position is

safe, its model has four elements. M(KB) is a subset of M(α), so the

entailment holds. We solved this question by checking the models.



Wumpus models

KB = wumpus-world rules + observations

α2 = “[2,2] is safe”, KB 6|= α2
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Wumpus models

We can ask whether the room next to previous one is safe (α2).

There are four models of this statement, and we can see, that M(KB) is

not a subset of M(α2) there are interpretations, where KB is true and

formula alpha is false, so the entailment does not hold.



Inference

KB `i α = sentence α can be derived from KB by procedure i

Consequences of KB are a haystack; α is a needle.

I Entailment = needle in haystack; inference = finding it

Soundness: i is sound if

I whenever KB `i α, it is also true that KB |= α

Completeness: i is complete if

I whenever KB |= α, it is also true that KB `i α

Preview: we will define a logic (first-order logic) which is expressive
enough to say almost anything of interest, and for which there exists
a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows
from what is known by the KB.2

0
2

0
-0

4
-0

5
AI #8

Logical agents

Inference

The last 30 years produced many results for solving SAT problems, which
are tightly connected to entailment, so the situation is actually better than
described in the AIMA book.

The logical consequence (entailment, model checking) belong to seman-

tics. In logic there is a concept of syntactic consequence, inference or

calculus, which belongs to the syntax. We can imagine the situation such

that if we treat KB as a haystack, then the formula alpha is the needle.

At entailment we know that there is a needle in the haystack. At inference

we need to construct the proof, i.e. we need to find the needle in the

haystack.



Inference

KB `i α = sentence α can be derived from KB by procedure i

Consequences of KB are a haystack; α is a needle.

I Entailment = needle in haystack; inference = finding it
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I whenever KB |= α, it is also true that KB `i α

Preview: we will define a logic (first-order logic) which is expressive
enough to say almost anything of interest, and for which there exists
a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows
from what is known by the KB.2
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Inference

The connection between entailment and inference is a serious question.
An inference is sound, when if you prove something, then it is true. (If we
construct the inference rules carefully, then the calculus will be automat-
ically be sound.) The reverse direction, when something is true, then we
can prove it (that is, we can construct a proof for it) is much harder. But
for zero-order logic we have a complete method, and so do we for some
specific first-order logic

We prefer the sound and complete calculus.



Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P1, P2 etc are sentences

I if S is a sentence, ¬S is a sentence (negation)
I if S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
I if S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)
I if S1 and S2 are sentences, S1 ⊃ S2 is a sentence (implication)
I if S1 and S2 are sentences, S1 ≡ S2 is a sentence (biconditional)

2
0

2
0

-0
4

-0
5

AI #8
Logical agents

Propositional logic: Syntax

In the introductory logic course we have used this notation.



Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. P1,2=true, P2,2=true, P3,1=false

I With these symbols, 8 possible models, can be enumerated
automatically.

Rules for evaluating truth with respect to a model m:

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true
S1 ⊃ S2 is true iff S1 is false or S2 is true

i.e., is false iff S1 is true and S2 is false
S1 ≡ S2 is true iff S1 ⊃ S2 is true and S2 ⊃ S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

I ¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true = true
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Propositional logic: Semantics

The rules of the semantics are the same, we just use 0 and 1 instead of

false and true.



Truth tables for connectives

P Q ¬P P ∧ Q P ∨ Q P ⊃ Q P ≡ Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true
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Truth tables for connectives

This is same, we just use 0 and 1 instead of false and true.



Wumpus world sentences

Let Pi ,j be true if there is a pit in [i , j ].

Let Bi ,j be true if there is a breeze in [i , j ].

I ¬P1,1

I ¬B1,1

I B2,1

“Pits cause breezes in adjacent squares”

I B1,1 ≡ (P1,2 ∨ P2,1)
I B2,1 ≡ (P1,1 ∨ P2,2 ∨ P3,1)

“A square is breezy if and only if there is an adjacent pit”
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Wumpus world sentences

So let us see logic in action. We introduce variables to denote whether a
room has a trap/pit; and whether in a room there is a breeze. Using these
variables we can write (with variables only), that we did not feel anything
at the starting position, and in the next room there is a breeze.

You may formulate the rule according to the traps, that if in a room there

is a trap, then in all the adjacent rooms there is a breeze. Now it is better

to use a different point of view: if there is a breeze in the room, then in

some adjacent room there is a trap. But this is not enough, we need to

add that if in a room there is no breeze, then in all adjacent rooms there

is no trap. If you use de Morgan rule, you can join the two implications

into a equivalence (biconditional). Let us denote these 5 formula here with

R1,...,R5!



Truth tables for inference

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB
false false false false false false false true true true true false false
false false false false false false true true true false true false false
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Enumerate rows (different assignments to symbols),

I if KB is true in row, check that α is too
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Truth tables for inference

We have 7 variables, so we need a truth table with 128 rows. We have

columns for R1,...,R5 and KB (which is the conjunction of R1,...,R5). We

are interested in the rows, where KB is true. 3 such rows are exist, and

we need to check whether formula α is true here (for any formula α).



Inference by enumeration

Depth-first enumeration of all models is sound and complete

function TT-Entails?(KB,alpha): true or false

inputs: KB, the knowledge base, a sentence in propositional logic

alpha, the query, a sentence in propositional logic

symbols := a list of the proposition symbols in KB and alpha

return TT-Check-All(KB, alpha, symbols, [])

function TT-Check-All(KB, alpha, symbols, model): true or false

if Empty?(symbols) then

if PL-True?(KB, model) then return PL-True?(alpha, model)

else return true

else do

P := First(symbols);

rest := Rest(symbols)

return TT-Check-All(KB, alpha, rest, Extend(P, true, model)) and

TT-Check-All(KB, alpha, rest, Extend(P, false, model}))

O(2n) for n symbols; problem is co-NP-complete
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Inference by enumeration

If we use a computer, we do not need to construct a traditional truth-

table. We can list all the interpretations in a recursive way. It looks like

a DFS, where all the leaves are at level n. If we reach a leaf of this tree,

we need to check whether this interpretation is model of KB. If not, go

back. Otherwise we need to check whether it is a model of formula alpha.

If not, we found a counter example, and we can stop the whole process.

Otherwise we need to discover the remaining parts of the tree. This tree

has 2n leaves, and in the worst case we need to visit all of them.



Logical equivalence

Two sentences are logically equivalent iff true in same models: α⇔ β if
and only if α |= β and β |= α

(α ∧ β) ⇔ (β ∧ α) commutativity of ∧
(α ∨ β) ⇔ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ⇔ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ⇔ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ⇔ α double-negation elimination
(α ⊃ β) ⇔ (¬β ⊃ ¬α) contraposition
(α ⊃ β) ⇔ (¬α ∨ β) implication elimination
(α ≡ β) ⇔ ((α ⊃ β) ∧ (β ⊃ α)) biconditional elimination
¬(α ∧ β) ⇔ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ⇔ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ⇔ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ⇔ ((α ∨ β) ∧ (α ∨ γ))
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Logical equivalence

We want to show a slightly better method, which was great to implement

in the seventies and thus construct a new (logical) programming language.

However, it needs a long path. The logical equivalence is a known concept

from the introductory logic course, and we learned how to rewrite most of

these rules.



Validity and satisfiability

A sentence is valid if it is true in all models,

I e.g., True, A ∨ ¬A, A ⊃ A, (A ∧ (A ⊃ B)) ⊃ B

Validity is connected to inference via the Deduction Theorem:

I KB |= α if and only if (KB ⊃ α) is valid

A sentence is satisfiable if it is true in some model

I e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no models

I e.g., A ∧ ¬A

Satisfiability is connected to inference via the following:

I KB |= α if and only if (KB ∧ ¬α) is unsatisfiable
I i.e., prove α by reductio ad absurdum2
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Validity and satisfiability

Similarly we have looked at the concepts of satisfiable, unsatisfiable and

valid formulae. The definition was different, but the listed properties hold.

The last lines gives our definition as a property, and this will be used in

the following.



Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules

I Legitimate (sound) generation of new sentences from old
I Proof = a sequence of inference rule applications
I Can use inference rules as operators in a standard search alg.
I Typically require translation of sentences into a normal form

Model checking

I truth table enumeration (always exponential in n)
I improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
I heuristic search in model space (sound but incomplete)
I e.g., min-conflicts-like hill-climbing algorithms2
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Proof methods

There are two ways to prove (logical or syntactic) consequences. The first
is based on syntax, it uses inference rules and constructs a sequence of
formulae (sometimes in tree format). As we have a limited number of
inference rules we can apply some search method. To reduce the number
of inference rules we rewrite the original formulae into normal forms.
The other way is the model checking. We do not need to generate all the
interpretations, the DPLL method from 1963 works well, and this method
was improved in several way (Wikipedia Boolean Satisfiability problem).

The local search can be used to solve such problems. Unfortunately it is

not a complete method. (GSAT, WalkSAT)



Forward and backward chaining

Horn Form (restricted)

I KB = conjunction of Horn clauses
I Horn clause =

F proposition symbol; or
F (conjunction of symbols) ⊃ symbol

I E.g., C ∧ (B ⊃ A) ∧ (C ∧ D ⊃ B)

Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⊃ β
β

Can be used with forward chaining or backward chaining.

I These algorithms are very natural and run in linear time2
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Forward and backward chaining

If we take a specific logic, we can get an effective method. This is really
interesting in first-order logic, but it takes several lectures to understand
every detail. Therefore we show the essence in zero-order logic. To use
these methods we need to rewrite our formula into conjunctive normal
form. But not all CNF formulae are good for us. We need all elementary
disjunctions (or clause) to contains at least one positive literal. If the
whole clause is that literal, i.e. propositional variable, we call it a fact.
If it contains exactly one positive literal, then it can be rewritten into
implication form, where there is no negation. We can use the MP as
the only inference rule. This is enough for us, as this will be a complete
calculus for Horn clauses.

The question is: how will we use this rule? Two different approaches give

two methods: forward and backward chaining. These methods have linear

complexity.



Forward chaining

Idea: fire any rule whose premises are satisfied in the KB, add its
conclusion to the KB, until query is found

P ⊃ Q, L ∧M ⊃ P, B ∧ L ⊃ M, A ∧ P ⊃ L, A ∧ B ⊃ L, A, B
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Forward chaining

In forward chaining we attack at full width, if there is an implication whose
premises are true (occurs in KB), then we add the suffix of the implication
to the KB too. We repeat this process until the query is found, or the rule
is not applicable to get any new formulae.

To understand these methods, we take this set of Horn clauses, and visu-

alise them as a directed graph.



Forward chaining algorithm

function PL-FC-Entails?(KB,q): true or false

inputs: KB, the knowledge base, a set of propositional Horn clauses

q, the query, a proposition symbol

local variables: count, a table, indexed by clause, initially the number of premises

inferred, a table, indexed by symbol, each entry initially false

agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do

p := Pop(agenda)

unless inferred[p] do

inferred[p] := true

for each Horn clause c in whose premise p appears do

decrement count[c]

if count[c] = 0 then do

if Head[c] = q then return true

Push(Head[c], agenda)

return false
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Forward chaining algorithm

If we store and regularly update how many premises of a clause is

false/unknown, and sort them based on this number, we can easily de-

termine the next implication to apply the rule MP to. If we cannot apply

MP again to get something new, we stop.



Forward chaining example
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Forward chaining example

In the beginning we have two facts, A and B. The numbers at the impli-

cations denote the number of their premises.



Forward chaining example
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Forward chaining example

As we selected fact A, we decrease the counter of implications containing

A as a hypothesis.



Forward chaining example
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Forward chaining example

Next we select B, and decrease the counters related to B. Now one counter

becomes zero (A ∧ B ⊃ L), so the consequence L is added to the agenda.



Forward chaining example
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Forward chaining example

Now L is selected, and we decrease the related counters. One counter

reaches zero again (B ∧ L ⊃ M), so we add M to the agenda.



Forward chaining example
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Forward chaining example

By selecting M, a counter again reaches zero, so P is added to the agenda.



Forward chaining example
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Forward chaining example

Selecting P, Q is added to agenda, and there is an option to add L, but L

has value, so we omit L.



Forward chaining example

2
0

2
0

-0
4

-0
5

AI #8
Logical agents

Forward chaining example

We can only choose Q, but this was the query, so we can stop.



Proof of completeness

FC derives every atomic sentence that is entailed by KB

I FC reaches a fixed point where no new atomic sentences are derived
I Consider the final state as a model m, assigning true/false to symbols
I Every clause in the original KB is true in m

F Proof: Suppose a clause a1 ∧ . . . ∧ ak ⊃ b is false in m
F Then a1 ∧ . . . ∧ ak is true in m and b is false in m
F Therefore the algorithm has not reached a fixed point!

I Hence m is a model of KB
I If KB |= q, q is true in every model of KB, including m

General idea: construct any model of KB by sound inference, check α

2
0

2
0

-0
4

-0
5

AI #8
Logical agents

Proof of completeness

This method adds new facts to the KB – these facts are logical conse-
quences of KB –, but we have finitely many variables, so this process must
stop at some point, because there are no more new facts, i.e. we reach a
fixpoint. Based on the extended KB we can construct an interpretation.

It is easy to prove, that all the statements in KB are true for this interpre-

tation, so it is a model of it.



Backward chaining

Idea: work backwards from the query q:

I to prove q by BC,

F check if q is known already, or
F prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

I has already been proved true, or
I has already failed
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Backward chaining

If KB has many consequences the forward chaining is a long process. Let

us go in the opposite direction. Let the query q be a question that we

want to prove. If q is known, we are ready. Otherwise we try to prove an

implication with suffix q, so we need to prove (question) all the hypotheses.

It is a search problem, but we need to do it in an effective way: we do not

ask something twice.



Backward chaining example
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Backward chaining example

Our facts are A and B and we want to know whether Q is consequence of

the KB. So let our question be Q.



Backward chaining example
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Backward chaining example

As Q is not a fact in the KB, does there exists an implication with suffix

Q? The answer is yes, P ⊃ Q is such an implication. So we have a

subquestion P.



Backward chaining example
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Backward chaining example

As P is not a fact, we have 2 subsubquestions L and M.



Backward chaining example
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Backward chaining example

To answer L we need to ask P and A. P is already a subquestion, we do

not ask it again. A is a fact, so the sub-sub question A is answered.



Backward chaining example
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Backward chaining example

But L can be answered by A and B (an alternative answer). A has been

answered and B is a fact, so it is also answered.



Backward chaining example
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Backward chaining example

This means, that L is ready.



Backward chaining example
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Backward chaining example

To answer M, we need to ask L and B, but both of them are ready,



Backward chaining example
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Backward chaining example

so M is answered.



Backward chaining example
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Backward chaining example

Similarly P and Q will be answered, and this concludes the search. From

the description, BC seems longer, but when asking the relevant questions,

it is usually faster than the FC.



Forward vs.˜backward chaining

FC is data-driven, cf. automatic, unconscious processing,

I e.g., object recognition, routine decisions
I May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,

I e.g., Where are my keys? How do I get into a PhD program?
I Complexity of BC can be much less than linear in size of KB
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Forward vs.˜backward chaining

We use FC when we have no goals, just incoming data, and we need to
manage these data in an autonomous way.

At BC we have some goal, and we search for answers. Typically the di-

agnostic (why this car does not start?), and classifying (so what is this

animal?) problems are solved in this way.



Resolution

Conjunctive Normal Form (CNF—universal)

I conjunction of disjunctions of literals
I clause = disjunction of literals
I E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Resolution inference rule (for CNF): complete for propositional logic

`1 ∨ · · · ∨ `k , m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals. E.g.,

I

P1,3 ∨ P2,2, ¬P2,2

P1,3

*Resolution is sound and complete for propositional logic

2
0

2
0

-0
4

-0
5

AI #8
Logical agents

Resolution

We use Horn clauses in the following, but in clause form. For this we need
to rewrite our formula into CNF form.
The resolution rule is a small modification of MP. For zero-order logic the
resolution is a sound and complete method.

The formula below the line is called resolvent.



Conversion to CNF

B1,1 ≡ (P1,2 ∨ P2,1)

I Eliminate ≡, replacing α ≡ β with (α ⊃ β) ∧ (β ⊃ α).
I

(B1,1 ⊃ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⊃ B1,1)

I Eliminate ⊃, replacing α ⊃ β with ¬α ∨ β.
I

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

I Move ¬ inwards using de Morgan’s rules and double-negation:
I

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

I Apply distributivity law (∨ over ∧) and flatten:
I

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)2
0

2
0

-0
4

-0
5

AI #8
Logical agents

Conversion to CNF

The slide Logical equivalence contains the necessary rules to rewrite any

formula into CNF form. We need to rewrite formulae R1,. . . ,R5 into CNF

form, see the example.



Resolution algorithm

Proof by contradiction, i.e., show KB ∧ ¬α unsatisfiable

function PL-Resolution(KB, alpha): true or false

input: KB, the knowledge base, a sentence in propositional logic

alpha, the query, a sentence in propositional logic

clauses := the set of clauses in the CNF representation of (KB and not alpha)

new := {}

loop do

for each C_i, C_j in clauses do

resolvents := PL-Resolve(C_i, C_j)

if resolvents contains the empty clause then return true

new := new union resolvents

if new subset of clauses then return false

clauses := clauses union new
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Resolution algorithm

We take the negation of the formula α and the KB (in CNF) form, and

construct all the resolvents. If we get a contradiction (an empty clause),

we can stop, we have proved the entailment. Otherwise check that we have

reached the fixpoint. If we have, we cannot prove the entailment, but we

can construct a counterexample based on the extended KB. Otherwise,

extend the KB with the set of resolvents and start over.



Resolution example

KB = (B1,1 ≡ (P1,2 ∨ P2,1)) ∧ ¬B1,1, α = ¬P1,2
2
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Resolution example

Here we have a restricted KB, and just one consequence. We need to

rewrite the KB and the negation of formula alpha into CNF, and apply

every possible resolution. We have reached the empty clause, so we are

ready.



Summary

Logical agents apply inference to a knowledge base

I to derive new information and make decisions

Basic concepts of logic:

I syntax: formal structure of sentences
I semantics: truth of sentences wrt models
I entailment: necessary truth of one sentence given another
I inference: deriving sentences from other sentences
I soundess: derivations produce only entailed sentences
I completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses

Resolution is complete for propositional logic

Propositional logic lacks expressive power
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Summary

To manage knowledge bases we need to use logic, logical rules.
We refreshed the necessary concepts from introductory logic.
To be able to solve the simple game (Wumpus) we need to be able to
manage information at a high-level.
We have seen effective methods: FC and BC that are used in the real life.
(Clips & Prolog). Instead of MP we can use the resolution too.

For large problems zero-order logic is not enough, we need to use first-order

logic (and the corresponding Horn formulae).


