Artificial Intelligence

Chapter 7

Stuart RUSSEL

reorganized by L. Aszalós

April 27, 2016

Outline

- Knowledge-based agents
- Wumpus world
- Logic in general-models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
- forward chaining
- backward chaining
- resolution

Knowledge bases

Inference engine

Knowledge base

domain-independent algorithms

domain-specific content

- Knowledge base $=$ set of sentences in a formal language
- Declarative approach to building an agent (or other system):
- Tell it what it needs to know
- Then it can Ask itself what to do—answers should follow from the KB
- Agents can be viewed at the knowledge level
- i.e., what they know, regardless of how implemented
- Or at the implementation level
- i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```
function KB-Agent(percept): an action
    static: KB, a knowledge base
        t, a counter, initially 0, indicating time
    Tell(KB, Make-Percept-Sentence(percept))
    action := Ask(KB, Make-Action-Query(t))
    Tell(KB, Make-Action-Sentence(action, t))
    t := t + 1
    return action
```

- The agent must be able to:
- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions

Wumpus world

Wumpus World PEAS description

- Performance measure
- gold +1000 , death $-1000,-1$ per step, -10 for using the arrow
- Environment
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Actuators
- Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors
- Breeze, Glitter, Smell

Wumpus world characterization

- Observable
- No-only local perception
- Deterministic
- Yes-outcomes exactly specified
- Episodic
- No-sequential at the level of actions
- Static
- Yes-Wumpus and Pits do not move
- Discrete
- Yes
- Single-agent
- Yes-Wumpus is essentially a natural feature

Exploring a wumpus world

Other tight spots

- Breeze in $(1,2)$ and $(2,1) \Rightarrow$ no safe actions
- Assuming pits uniformly distributed, $(2,2)$ has pit w/ prob 0.86 , vs. 0.31

- Smell in $(1,1) \Rightarrow$ cannot move
- Can use a strategy of coercion
- shoot straight ahead
\star wumpus was there \Rightarrow dead \Rightarrow safe
* wumpus wasn't there \Rightarrow safe

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
- i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
- $x+2 \geq y$ is a sentence; $x 2+y>$ is not a sentence
- $x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
- $x+2 \geq y$ is true in a world where $x=7, y=1$
- $x+2 \geq y$ is false in a world where $x=0, y=6$

Entailment

- Entailment means that one thing follows from another: $K B \models \alpha$
- Knowledge base $K B$ entails sentence α if and only if
- α is true in all worlds where $K B$ is true
- E.g., the KB containing the Giants won and the Reds won entails Either the Giants won or the Reds won
- E.g., $x+y=4$ entails $4=x+y$
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics
- Note: brains process syntax (of some sort)

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then $K B \models \alpha$ if and only if $M(K B) \subseteq M(\alpha)$
- $K B=$ "Giants won and Reds won", $\alpha=$ "Giants won"

Entailment in the wumpus world

- Situation after detecting nothing in $[1,1]$,
- moving right, breeze in $[2,1]$
- Consider possible models for ?s assuming only pits

- 3 Boolean choices $\Rightarrow 8$ possible models

Wumpus models

Wumpus models

- $K B=$ wumpus-world rules + observations

Wumpus models

- $K B=$ wumpus-world rules + observations
- $\alpha_{1}=$ " $[1,2]$ is safe", $K B \models \alpha_{1}$, proved by model checking

Wumpus models

- $K B=$ wumpus-world rules + observations

Wumpus models

- $K B=$ wumpus-world rules + observations
- $\alpha_{2}=$ " $[2,2]$ is safe", $K B \not \vDash \alpha_{2}$

Inference

- $K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
- Consequences of $K B$ are a haystack; α is a needle.
- Entailment $=$ needle in haystack; inference $=$ finding it
- Soundness: i is sound if
- whenever $K B \vdash_{i} \alpha$, it is also true that $K B \models \alpha$
- Completeness: i is complete if
- whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the $K B$.

Propositional logic: Syntax

- Propositional logic is the simplest logic—illustrates basic ideas
- The proposition symbols P_{1}, P_{2} etc are sentences
- if S is a sentence, $\neg S$ is a sentence (negation)
- if S_{1} and S_{2} are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
- if S_{1} and S_{2} are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
- if S_{1} and S_{2} are sentences, $S_{1} \supset S_{2}$ is a sentence (implication)
- if S_{1} and S_{2} are sentences, $S_{1} \equiv S_{2}$ is a sentence (biconditional)

Propositional logic: Semantics

- Each model specifies true/false for each proposition symbol
- E.g. $P_{1,2}=$ true, $P_{2,2}=$ true, $P_{3,1}=$ false
- With these symbols, 8 possible models, can be enumerated automatically.
- Rules for evaluating truth with respect to a model m :
$\neg S$ is true iff S is false
$S_{1} \wedge S_{2}$ is true iff $\quad S_{1} \quad$ is true and $\quad S_{2} \quad$ is true
$S_{1} \vee S_{2}$ is true iff $\quad S_{1} \quad$ is true or $\quad S_{2} \quad$ is true
$S_{1} \supset S_{2}$ is true iff $\quad S_{1} \quad$ is false or $\quad S_{2} \quad$ is true i.e., is false iff $\quad S_{1}$ is true and S_{2} is false
$S_{1} \equiv S_{2} \quad$ is true iff $\quad S_{1} \supset S_{2}$ is true and $S_{2} \supset S_{1}$ is true
- Simple recursive process evaluates an arbitrary sentence, e.g.,
- $\neg P_{1,2} \wedge\left(P_{2,2} \vee P_{3,1}\right)=$ true $\wedge($ false \vee true $)=$ true \wedge true $=$ true

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \supset Q$	$P \equiv Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus world sentences

- Let $P_{i, j}$ be true if there is a pit in $[i, j]$.
- Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.
- $\neg P_{1,1}$
- $\neg B_{1,1}$
- $B_{2,1}$
- "Pits cause breezes in adjacent squares"
- $B_{1,1} \equiv\left(P_{1,2} \vee P_{2,1}\right)$
- $B_{2,1} \equiv\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)$
- "A square is breezy if and only if there is an adjacent pit"

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
				false			rue	rue			true	fais
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
												-
true	false	true	true	false	true	faise						
true		true	true		true							

- Enumerate rows (different assignments to symbols),
- if $K B$ is true in row, check that α is too

Inference by enumeration

- Depth-first enumeration of all models is sound and complete

```
function TT-Entails?(KB,alpha): true or false
    inputs: KB, the knowledge base, a sentence in propositional logic
        alpha, the query, a sentence in propositional logic
    symbols := a list of the proposition symbols in KB and alpha
    return TT-Check-All(KB, alpha, symbols, [])
function TT-Check-All(KB, alpha, symbols, model): true or false
    if Empty?(symbols) then
        if PL-True?(KB, model) then return PL-True?(alpha, model)
        else return true
    else do
        P := First(symbols);
        rest := Rest(symbols)
        return TT-Check-All(KB, alpha, rest, Extend(P, true, model)) and
        TT-Check-All(KB, alpha, rest, Extend(P, false, model}))
```

- $O\left(2^{n}\right)$ for n symbols; problem is co-NP-complete

Logical equivalence

Two sentences are logically equivalent iff true in same models: $\alpha \Leftrightarrow \beta$ if and only if $\alpha=\beta$ and $\beta \models \alpha$

$$
\begin{aligned}
(\alpha \wedge \beta) & \Leftrightarrow(\beta \wedge \alpha) \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \Leftrightarrow(\beta \vee \alpha) \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \Leftrightarrow(\alpha \wedge(\beta \wedge \gamma)) \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \Leftrightarrow(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \Leftrightarrow \alpha \text { double-negation elimination } \\
(\alpha \supset \beta) & \Leftrightarrow(\neg \supset \supset \neg \alpha) \text { contraposition } \\
(\alpha \supset \beta) & \Leftrightarrow(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \equiv \beta) & \Leftrightarrow((\alpha \supset \beta) \wedge(\beta \supset \alpha)) \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \Leftrightarrow(\neg \alpha \vee \neg \beta) \text { De Morgan } \\
\neg(\alpha \vee \beta) & \Leftrightarrow(\neg \alpha \wedge \neg \beta) \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \Leftrightarrow((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \Leftrightarrow((\alpha \vee \beta) \wedge(\alpha \vee \gamma))
\end{aligned}
$$

Validity and satisfiability

- A sentence is valid if it is true in all models,
- e.g., True, $\quad A \vee \neg A, \quad A \supset A, \quad(A \wedge(A \supset B)) \supset B$
- Validity is connected to inference via the Deduction Theorem:
- $K B \models \alpha$ if and only if $(K B \supset \alpha)$ is valid
- A sentence is satisfiable if it is true in some model
- e.g., $A \vee B, \quad C$
- A sentence is unsatisfiable if it is true in no models
- e.g., $A \wedge \neg A$
- Satisfiability is connected to inference via the following:
- $K B \models \alpha$ if and only if ($K B \wedge \neg \alpha$) is unsatisfiable
- i.e., prove α by reductio ad absurdum

Proof methods

- Proof methods divide into (roughly) two kinds:
- Application of inference rules
- Legitimate (sound) generation of new sentences from old
- Proof $=$ a sequence of inference rule applications
- Can use inference rules as operators in a standard search alg.
- Typically require translation of sentences into a normal form
- Model checking
- truth table enumeration (always exponential in n)
- improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
- heuristic search in model space (sound but incomplete)
- e.g., min-conflicts-like hill-climbing algorithms

Forward and backward chaining

- Horn Form (restricted)
- $\mathrm{KB}=$ conjunction of Horn clauses
- Horn clause =
\star proposition symbol; or
\star (conjunction of symbols) \supset symbol
- E.g., $C \wedge(B \supset A) \wedge(C \wedge D \supset B)$
- Modus Ponens (for Horn Form): complete for Horn KBs
-

$$
\frac{\alpha_{1}, \ldots, \alpha_{n}, \quad \alpha_{1} \wedge \cdots \wedge \alpha_{n} \supset \beta}{\beta}
$$

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward chaining

- Idea: fire any rule whose premises are satisfied in the $K B$, add its conclusion to the $K B$, until query is found

- $P \supset Q, L \wedge M \supset P, B \wedge L \supset M, A \wedge P \supset L, A \wedge B \supset L, A, B$

Forward chaining algorithm

```
function PL-FC-Entails?(KB,q): true or false
    inputs: KB, the knowledge base, a set of propositional Horn clauses
            q, the query, a proposition symbol
    local variables: count, a table, indexed by clause, initially the number of pre
        inferred, a table, indexed by symbol, each entry initially fal
        agenda, a list of symbols, initially the symbols known in KB
    while agenda is not empty do
        p := Pop(agenda)
        unless inferred[p] do
            inferred[p] := true
            for each Horn clause c in whose premise p appears do
                decrement count[c]
                if count[c] = O then do
                        if Head[c] = q then return true
                        Push(Head[c], agenda)
    return false
```

Forward chaining example

Proof of completeness

- FC derives every atomic sentence that is entailed by $K B$
- FC reaches a fixed point where no new atomic sentences are derived
- Consider the final state as a model m, assigning true/false to symbols
- Every clause in the original $K B$ is true in m
\star Proof: Suppose a clause $a_{1} \wedge \ldots \wedge a_{k} \supset b$ is false in m
\star Then $a_{1} \wedge \ldots \wedge a_{k}$ is true in m and b is false in m
\star Therefore the algorithm has not reached a fixed point!
- Hence m is a model of $K B$
- If $K B \models q, q$ is true in every model of $K B$, including m
- General idea: construct any model of $K B$ by sound inference, check α

Backward chaining

- Idea: work backwards from the query q :
- to prove q by BC,
* check if q is known already, or
\star prove by $B C$ all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
- has already been proved true, or
- has already failed

Backward chaining example

Forward vs. backward chaining

- FC is data-driven, cf. automatic, unconscious processing,
- e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
- e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Resolution

- Conjunctive Normal Form (CNF—universal)
- conjunction of disjunctions of literals
- clause $=$ disjunction of literals
- E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$
- Resolution inference rule (for CNF): complete for propositional logic

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}
$$

- where ℓ_{i} and m_{j} are complementary literals. E.g.,

$$
\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
$$

*Resolution is sound and complete for propositional logic

Conversion to CNF

- $B_{1,1} \equiv\left(P_{1,2} \vee P_{2,1}\right)$
- Eliminate \equiv, replacing $\alpha \equiv \beta$ with $(\alpha \supset \beta) \wedge(\beta \supset \alpha)$.

$$
\left(B_{1,1} \supset\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \supset B_{1,1}\right)
$$

- Eliminate \supset, replacing $\alpha \supset \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

- Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

- Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution algorithm

Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable

```
function PL-Resolution(KB, alpha): true or false
    input: KB, the knowledge base, a sentence in propositional logic
            alpha, the query, a sentence in propositional logic
    clauses := the set of clauses in the CNF representation of (KB and not alpha)
    new := {}
    loop do
        for each C_i, C_j in clauses do
            resolvents := PL-Resolve(C_i, C_j)
            if resolvents contains the empty clause then return true
            new := new union resolvents
    if new subset of clauses then return false
    clauses := clauses union new
```


Resolution example

$$
K B=\left(B_{1,1} \equiv\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1}, \alpha=\neg P_{1,2}
$$

Summary

- Logical agents apply inference to a knowledge base
- to derive new information and make decisions
- Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Forward, backward chaining are linear-time, complete for Horn clauses
- Resolution is complete for propositional logic
- Propositional logic lacks expressive power

