
Outline

Games

Perfect play

I minimax decisions
I α–β pruning

Resource limits and approximate evaluation

Games of chance

Games of imperfect information

2
0
2
0
-0
3
-2
2

AI #6

Outline

Today I will talk about games, like chess, torpedo, backgammon or poker.

We will learn how can we - or our programs - play a perfect game. This

includes the minimax and the alpha-beta pruning. We will examine the

cases, when we do not have enough time or memory to store the whole

game-tree, and how to deal with this. We will examine games where chance

has impact on the next step, and the games in which there is some missing

information.



Games vs. search problems

“Unpredictable” opponent ⇒ solution is a strategy

I specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:

I Computer considers possible lines of play (Babbage, 1846)
I Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
I Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;

Shannon, 1950)
I First chess program (Turing, 1951)
I Machine learning to improve evaluation accuracy (Samuel, 1952–57)
I Pruning to allow deeper search (McCarthy, 1956)2

0
2
0
-0
3
-2
2

AI #6

Games vs. search problems

You must be prepared for all the possible moves from the opponent, i.e.
you need a strategy (what the the next step should be at any state). As
for most games there is a time limit, it is not possible to calculate every
scenario, so you need to decide on partial calculations.

The construction of the strategy has a long history. Even without com-

puters many researchers have been thinking in algorithms.



Game tree (2-player, deterministic, turns)

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Game tree (2-player, deterministic, turns)

We have two dimensions: a game may contain some chance and there may

be some hidden information in the game. We will discuss all the cases.



Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

I = best achievable payoff against best play

E.g., 2-ply game:
2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Minimax

Let us discuss this in a more general way. Usually the leaves denote the
score of the game, and sometimes they may have other values than [-1,0,1].
The numbers at the leaves of the tree denote the prize of the first player
(which is paid by the second player). The second player chooses from the
possible moves so that he would have to pay as little as possible.

So from 3, 12 and 8 it selects the minimum value 3 (ans A11 step). In the

other two cases he chooses the move that gives payoff 2. When the first

player needs makes the first move, he can calculate these numbers, so he

needs to choose A1 with 3 to get the best output.



Minimax algorithm

function Minimax-Decision(state) returns an action

state: current state in game

return a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v := -infinity

for (a, s) in Successors(state) do

v := Max(v, Min-Value(s))

return v

function Min-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v := infinity

for (a, s) in Successors(state) do

v := Min(v, Max-Value(s))

return v

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Minimax algorithm

In the algorithm we have a function which examines all the possible moves

of the first player, and selects the one which has the best (maximum) value.

For the two players we have two functions. In both cases if we reach a

leaf we return its value. Otherwise we take the minimum/maximum of the

successor states, which is determined by the other function.



Properties of minimax

Complete

I Yes, if tree is finite (chess has specific rules for this)

Optimal

I Yes, against an optimal opponent. Otherwise??

Time complexity

I O(bm)

Space complexity

I O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games

I ⇒ exact solution completely infeasible

But do we need to explore every path?

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Properties of minimax

The four properties we examined when looking at search algorithms, we
can check again:

• If the game tree is finite, then this program can run in a finite time,
and we are able to determine the best moves. Most of the games
have rules to exclude infinite games.

• If the other player plays in an optimal way, we can get the best
outcome. If the other player is not optimal, we can earn an even
better payoff.

• We need to construct the whole game-tree. The branching factor
and the maximal depth determines the exponential time complexity.

• As we use DFS, linear space is enough.

But for a complex game like at chess the branching factor and the depth

is so big that we cannot explore the whole tree.



α–β pruning example

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

α–β pruning example

Let us see the previous game tree. If the first player calculates the effect

of the first alternative, then he can realize, that he can earn at least 3 at

payoff (if the other steps are better, then even more.)



α–β pruning example

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

α–β pruning example

The very next alternative (2) means, that the opponent can reach at most

2, or otherwise less, if there is a leaf with a smaller payoff. Hence the

first player will not select this alternative, he has a better one as discussed

above. Therefore the numbers at X are not interesting, we can omit them

(prune) totally.



α–β pruning example

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

α–β pruning example

The third alternative at first promises a value 14 (or less, if there are fewer

numbers here). So we need continue the search. The next number is

five. The opponent will select 5 here and not 14, so the value of the third

alternative (for the first player) is 5 or less. As the last number here 2, so

the value of the third alternative for player 1 is 2, therefore the value of

the root is 3.



Why is it called α–β?

α is the best value (to MAX) found so far off the current path

If V is worse than α, MAX will avoid it

I ⇒ prune that branch

Define β similarly for MIN

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Why is it called α–β?

We need to handle two numbers, alpha and beta. alpha can change at

Max nodes (nodes at Max level), and beta at Min level. They denote the

value of the best alternatives of the players. If for the actual Max node we

found a successor whose value is less than alpha, then it is not interesting,

we can go back.



The α–β algorithm

function Alpha-Beta-Decision(state) returns an action

return a in Actions(state) maximizing

Min-Value(Result(a, state), -infinity, infinity)

function Max-Value(state, alpha, beta) returns a utility value

state: current state in game

alpha: the value of the best alternative for MAX along the path to state

beta: the value of the best alternative for MIN along the path to state

if Terminal-Test(state) then return Utility(state)

v:= -infinity

for (a, s) in Successors(state) do

v := Max(v, Min-Value(s, alpha, beta))

if v >= beta then return v

alpha := Max(alpha, v)

return v

function Min-Value(state, alpha, beta) same as Max-Value but
with roles of alpha and beta reversed

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

The α–β algorithm

We start with alpha set to −∞, and beta set to ∞. We check all the
successors of the root.

At terminal nodes (leaves) we send back the value assigned to the node.

Otherwise we take the values of the successors, and the value of the actual

nodes will be the maximum of the known such values. If it possible we

update (raise) the value of alpha. As the previous slides demonstrated, if

the value of the node is bigger than beta, we need to escape immediately.



Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)}
I ⇒ doubles solvable depth

A simple example of the value of reasoning about which computations
are relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Properties of α–β

The most important property is that we do not delete any important nodes:
the result with and without deletion has to be the same.

We can increase the number of deleted nodes. For this we need to order

the moves carefully. We can half the exponent in the complexity. So if

we have a fixed time to search, we can double the height of the (visited)

search tree. This means we get a lot without any extra work, simply based

on logical reasoning. But the number of remaining nodes is still huge.



Resource limits

Standard approach:

I Use Cutoff-Test instead of Terminal-Test
I e.g., depth limit (perhaps add quiescence search)

Use Eval instead of Utility

I i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second

I ⇒ 106 nodes per move ≈ 358/2

I ⇒ α–β reaches depth 8 ⇒ pretty good chess program

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Resource limits

We cannot visit the whole search tree, so lets cut off its upper part and
focus on that instead. Instead of testing terminality we can check the
cut property, e.g. we can add a depth limit (cut at a given depth level),
or cut, when the values of the nodes doesnt change too much. So we
have no leaves – i.e. final states – just inner states. Here it is unclear
who is the winner, or more precisely who can be a winner later. Therefore
we will use an evaluation function, which estimates the desirability of the
state/position.

Could this help? A small calculation shows if we have slower computer,

within 100 second it can search the game tree of the chess 8 levels deep,

which the state of the art of the eighties.



Evaluation functions

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

e.g., w1 = 9 with f1(s) = (number of white queens) – (number of black
queens), etc.

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Evaluation functions

If you are not a novice in chess, you may know that a queen equals

9 pawns, a rook equals 5 pawns, etc. (chess piece relative value:

https://en.wikipedia.org/wiki/Chess_piece_relative_value)

We can add to these values the value of the right to

move and their positional advantages. Usually we assign

a weight to such properties, and the evaluation function

(https://en.wikipedia.org/wiki/Evaluation_function) is

their sum. The minimax and the alpha-beta pruning will use these values

when the cut-test holds, and we cannot go further.

https://en.wikipedia.org/wiki/Chess_piece_relative_value
https://en.wikipedia.org/wiki/Evaluation_function


Digression: Exact values don’t matter

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:

I payoff in deterministic games acts as an ordinal utility function2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Digression: Exact values don’t matter

If we use a monotone transformation, we get back the same result, the

Maxs step will be the same.



Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining
perfect play for all positions involving 8 or fewer pieces on
the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov
in a six-game match in 1997. Deep Blue searches 200 million
positions per second, uses very sophisticated evaluation, and
undisclosed methods for extending some lines of search up to
40 ply.

Othello: human champions refuse to compete against computers, who
are too good.

Go: human champions refuse to compete against computers, who
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves. (from 2004)

2
0
2
0
-0
3
-2
2

AI #6
Deterministic games, minimax

Deterministic games in practice

In the nineties, computers became fast enough to be good opponents

in games. Usually the programmers included databases of openings and

endgames. For chess the Deep Blue was a computer-monster. Fifteen years

ago there was no hope to write good Go programs. But four years ago, deep

learning (https://en.wikipedia.org/wiki/Deep_learning) became

good enough.

https://en.wikipedia.org/wiki/Deep_learning


Nondeterministic games: backgammon

2
0
2
0
-0
3
-2
2

AI #6
Nondeterministic games

Nondeterministic games: backgammon

In backgammon (https://en.wikipedia.org/wiki/Backgammon) we

have to throw dice and they determine the possible moves.

https://en.wikipedia.org/wiki/Backgammon


Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:
2
0
2
0
-0
3
-2
2

AI #6
Nondeterministic games

Nondeterministic games in general

In these games chance has a role: coin, dice, card-shuffling. We can treat

chance as a player, it has its own moves. Here, after the first player makes

a move, we toss a coin, and based on that result the second player may

make his move too. We can see the values of the leaves of the game tree,

and we can calculate the previous nodes. For the nodes that correspond

to chance, we need to take into account the probability and the value of

the successor nodes.



Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like Minimax, except we must also handle chance nodes:

...

if state is a MAX node then

return the highest ExpectiMinimax-Value of Successors(state)

if state is a MIN node then

return the lowest ExpectiMinimax-Value of Successors(state)

if state is a chance node then

return average of ExpectiMinimax-Value of Successors}(state)

...

2
0
2
0
-0
3
-2
2

AI #6
Nondeterministic games

Algorithm for nondeterministic games

We need to multiply the values and probabilities (which gives the expected

value) to get the value of a node that corresponds to chance. This is the

only modification of the minimax method.



Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice

I Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)
I

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

As depth increases, probability of reaching a given node shrinks

I ⇒ value of lookahead is diminished

α–β pruning is much less effective

I TDGammon uses depth-2 search + very good Eval
I ≈ world-champion level

2
0
2
0
-0
3
-2
2

AI #6
Nondeterministic games

Nondeterministic games in practice

Let us take backgammon! We have 2 dice (36 possibilities), but the order
does not matter (-15 possibilities). As in general around 20 moves are
possible, we get huge numbers, even if the depth is just 4. So we have a
bulky tree, hence the probability of a given path is extremely small. There
is no reason to search in depth. As we need to calculate with every possible
events, we cannot prune too much.

The best program of the last century made a shallow search, but used a

very good evaluation function. The program used artificial neural network

to construct this function, and played millions of matches against itself, to

improve it.



Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff2
0
2
0
-0
3
-2
2

AI #6
Nondeterministic games

Digression: Exact values DO matter

If we calculate the values of two similar trees, where the transition is

monotone, we get different answers. So we need a linear transformation,

and at the cutoff we need to use the payoffs.



Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game

Idea: compute the minimax value of each action in each deal then
choose the action with highest expected value over all deals

Special case: if an action is optimal for all deals, it’s optimal.

GIB, current best bridge program, approximates this idea by

1 generating 100 deals consistent with bidding information
2 picking the action that wins most tricks on average

2
0
2
0
-0
3
-2
2

AI #6
Games of imperfect information

Games of imperfect information

At a typical card game you dont know the cards of the opponents and the

order in the deck. But you can calculate the possibility that your opponent

has two pairs in poker at the beginning. There are too many possible deals,

we cannot take into account all of them. Hence typically we generate a

sample which is suited to yours cards (and any other visible cards), and test

all kind of steps on this sample. Then we choose the step with the highest

payoff. GIB (https://en.wikipedia.org/wiki/Computer_bridge)

used the same approach around 2000.

https://en.wikipedia.org/wiki/Computer_bridge


Example

Four-card bridge/whist/hearts hand, MAX to play first

2
0
2
0
-0
3
-2
2

AI #6
Games of imperfect information

Example

Let us see a simple card game where the players see all the cards and must

follow the suit (if possible). Here the payoff is zero. If the second player

has ♦4 instead of ♥4, the payoff is the same. If the first player does not

know that the opponent has ♦4 or ♥4, it cannot choose the right card in

the last step, so in both cases the average payoff is −0.5



Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:

I take the left fork and you’ll find a mound of jewels;
I take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

I take the left fork and you’ll be run over by a bus;
I take the right fork and you’ll find a mound of jewels.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

I guess correctly and you’ll find a mound of jewels;
I guess incorrectly and you’ll be run over by a bus.2

0
2
0
-0
3
-2
2

AI #6
Games of imperfect information

Commonsense example

If you dont like card games, we can give the same problem using different

terminology.



Proper analysis

Intuition that the value of an action is the average of its values

I in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

I Acting to obtain information
I Signalling to one’s partner
I Acting randomly to minimize information disclosure

2
0
2
0
-0
3
-2
2

AI #6
Games of imperfect information

Proper analysis

Our intuition is wrong. If you have missing information you decide on

your information/belief state. We need to work with beliefs, and based on

this we can construct a game-tree. To write a good opponent we need to

acquire as much information as possible, and confuse the opponents.



Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

I perfection is unattainable ⇒ must approximate
I good idea to think about what to think about
I uncertainty constrains the assignment of values to states
I optimal decisions depend on information state, not real state

Games are to AI as grand prix racing is to automobile design

2
0
2
0
-0
3
-2
2

AI #6
Games of imperfect information

Summary

Everybody likes to play games, many final thesis were written about AI

methods in concrete games. Here we can tests new ideas, and the limits

enforce the construction of new methods. Most of the games have a

contest: comparing the programs.


