2020-03-22

Al #6

L Outline

Today | will talk about games, like chess, torpedo, backgammon or poker.
We will learn how can we - or our programs - play a perfect game. This
includes the minimax and the alpha-beta pruning. We will examine the
cases, when we do not have enough time or memory to store the whole
game-tree, and how to deal with this. We will examine games where chance
has impact on the next step, and the games in which there is some missing
information.



2020-03-22

Al #6

L Games vs. search problems

You must be prepared for all the possible moves from the opponent, i.e.
you need a strategy (what the the next step should be at any state). As
for most games there is a time limit, it is not possible to calculate every
scenario, so you need to decide on partial calculations.

The construction of the strategy has a long history. Even without com-
puters many researchers have been thinking in algorithms.



2020-03-22

Al #6
Deterministic games, minimax

L Game tree (2-player, deterministic, turns)

We have two dimensions: a game may contain some chance and there may
be some hidden information in the game. We will discuss all the cases.



2020-03-22

Al #6

L Deterministic games, minimax

LMinimax

Let us discuss this in a more general way. Usually the leaves denote the
score of the game, and sometimes they may have other values than [-1,0,1].
The numbers at the leaves of the tree denote the prize of the first player
(which is paid by the second player). The second player chooses from the
possible moves so that he would have to pay as little as possible.

So from 3, 12 and 8 it selects the minimum value 3 (ans A1l step). In the
other two cases he chooses the move that gives payoff 2. When the first
player needs makes the first move, he can calculate these numbers, so he
needs to choose Al with 3 to get the best output.



2020-03-22

Al #6

L Deterministic games, minimax

L Minimax algorithm

In the algorithm we have a function which examines all the possible moves
of the first player, and selects the one which has the best (maximum) value.
For the two players we have two functions. In both cases if we reach a
leaf we return its value. Otherwise we take the minimum/maximum of the
successor states, which is determined by the other function.



2020-03-22

Al #6

L Deterministic games, minimax

LF’roperties of minimax

The four properties we examined when looking at search algorithms, we
can check again:

o If the game tree is finite, then this program can run in a finite time,
and we are able to determine the best moves. Most of the games
have rules to exclude infinite games.

e |f the other player plays in an optimal way, we can get the best
outcome. If the other player is not optimal, we can earn an even
better payoff.

e We need to construct the whole game-tree. The branching factor
and the maximal depth determines the exponential time complexity.

e As we use DFS, linear space is enough.

But for a complex game like at chess the branching factor and the depth
is so big that we cannot explore the whole tree.



2020-03-22

Al #6
L Deterministic games, minimax s dv\é/’“
La—ﬂ pruning example

Let us see the previous game tree. If the first player calculates the effect
of the first alternative, then he can realize, that he can earn at least 3 at
payoff (if the other steps are better, then even more.)



2020-03-22

Al #6

L Deterministic games, minimax s »

L

a—f pruning example XX

The very next alternative (2) means, that the opponent can reach at most
2, or otherwise less, if there is a leaf with a smaller payoff. Hence the
first player will not select this alternative, he has a better one as discussed
above. Therefore the numbers at X are not interesting, we can omit them
(prune) totally.



2020-03-22

Al #6

L Deterministic games, minimax w :

La—ﬂ pruning example X

The third alternative at first promises a value 14 (or less, if there are fewer
numbers here). So we need continue the search. The next number is
five. The opponent will select 5 here and not 14, so the value of the third
alternative (for the first player) is 5 or less. As the last number here 2, so
the value of the third alternative for player 1 is 2, therefore the value of
the root is 3.



2020-03-22

Al #6
L Deterministic games, minimax

L Why is it called a—3?

We need to handle two numbers, alpha and beta. alpha can change at
Max nodes (nodes at Max level), and beta at Min level. They denote the
value of the best alternatives of the players. If for the actual Max node we
found a successor whose value is less than alpha, then it is not interesting,

we can go back.



2020-03-22

Al #6

L Deterministic games, minimax

L The a—0 algorithm

We start with alpha set to —oco, and beta set to co. We check all the
successors of the root.

At terminal nodes (leaves) we send back the value assigned to the node.
Otherwise we take the values of the successors, and the value of the actual
nodes will be the maximum of the known such values. If it possible we
update (raise) the value of alpha. As the previous slides demonstrated, if
the value of the node is bigger than beta, we need to escape immediately.



2020-03-22

Al #6

L Deterministic games, minimax

- Properties of a—3

The most important property is that we do not delete any important nodes:
the result with and without deletion has to be the same.

We can increase the number of deleted nodes. For this we need to order
the moves carefully. We can half the exponent in the complexity. So if
we have a fixed time to search, we can double the height of the (visited)
search tree. This means we get a lot without any extra work, simply based
on logical reasoning. But the number of remaining nodes is still huge.



2020-03-22

Al #6

L Deterministic games, minimax

L Resource limits

We cannot visit the whole search tree, so lets cut off its upper part and
focus on that instead. Instead of testing terminality we can check the
cut property, e.g. we can add a depth limit (cut at a given depth level),
or cut, when the values of the nodes doesnt change too much. So we
have no leaves — i.e. final states — just inner states. Here it is unclear
who is the winner, or more precisely who can be a winner later. Therefore
we will use an evaluation function, which estimates the desirability of the
state/position.

Could this help? A small calculation shows if we have slower computer,
within 100 second it can search the game tree of the chess 8 levels deep,
which the state of the art of the eighties.



2020-03-22

Al #6

L Deterministic games, minimax

L Evaluation functions

If you are not a novice in chess, you may know that a queen equals
9 pawns, a rook equals 5 pawns, etc. (chess piece relative value:
https://en.wikipedia.org/wiki/Chess_piece_relative_value)
We <can add to these values the value of the right to
move and their positional advantages. Usually we assign
a weight to such properties, and the evaluation function
(https://en.wikipedia.org/wiki/Evaluation_function) is
their sum. The minimax and the alpha-beta pruning will use these values
when the cut-test holds, and we cannot go further.


https://en.wikipedia.org/wiki/Chess_piece_relative_value
https://en.wikipedia.org/wiki/Evaluation_function

2020-03-22

Digression: Exact values don't matter

Al #6
Deterministic games, minimax

I—Digression: Exact values don't matter

If we use a monotone transformation, we get back the same result, the
Maxs step will be the same.



2020-03-22

Al #6
Deterministic games, minimax

L Deterministic games in practice

In the nineties, computers became fast enough to be good opponents
in games. Usually the programmers included databases of openings and
endgames. For chess the Deep Blue was a computer-monster. Fifteen years
ago there was no hope to write good Go programs. But four years ago, deep
learning (https://en.wikipedia.org/wiki/Deep_learning) became
good enough.


https://en.wikipedia.org/wiki/Deep_learning

2020-03-22

Al #6
L_Nondeterministic games

L—Nondeterministic games: backgammon

In backgammon (https://en.wikipedia.org/wiki/Backgammon) we
have to throw dice and they determine the possible moves.


https://en.wikipedia.org/wiki/Backgammon

2020-03-22

Al #6
L Nondeterministic games

L Nondeterministic games in general

In these games chance has a role: coin, dice, card-shuffling. We can treat
chance as a player, it has its own moves. Here, after the first player makes
a move, we toss a coin, and based on that result the second player may
make his move too. We can see the values of the leaves of the game tree,
and we can calculate the previous nodes. For the nodes that correspond
to chance, we need to take into account the probability and the value of
the successor nodes.



2020-03-22

Algorithm for

Al #6
L Nondeterministic games

I—Algorithm for nondeterministic games

We need to multiply the values and probabilities (which gives the expected
value) to get the value of a node that corresponds to chance. This is the
only modification of the minimax method.



2020-03-22

Al #6
L Nondeterministic games

L Nondeterministic games in practice

Let us take backgammon! We have 2 dice (36 possibilities), but the order
does not matter (-15 possibilities). As in general around 20 moves are
possible, we get huge numbers, even if the depth is just 4. So we have a
bulky tree, hence the probability of a given path is extremely small. There
is no reason to search in depth. As we need to calculate with every possible
events, we cannot prune too much.

The best program of the last century made a shallow search, but used a
very good evaluation function. The program used artificial neural network
to construct this function, and played millions of matches against itself, to

improve it.



2020-03-22

Digression: Exact values DO matter

Al #6
L Nondeterministic games

I—Digression: Exact values DO matter

If we calculate the values of two similar trees, where the transition is
monotone, we get different answers. So we need a linear transformation,
and at the cutoff we need to use the payoffs.



2020-03-22

Al #6
L Games of imperfect information

L Games of imperfect information

At a typical card game you dont know the cards of the opponents and the
order in the deck. But you can calculate the possibility that your opponent
has two pairs in poker at the beginning. There are too many possible deals,
we cannot take into account all of them. Hence typically we generate a
sample which is suited to yours cards (and any other visible cards), and test
all kind of steps on this sample. Then we choose the step with the highest
payoff. GIB (https://en.wikipedia.org/wiki/Computer_bridge)
used the same approach around 2000.


https://en.wikipedia.org/wiki/Computer_bridge

2020-03-22

L Games of imperfect information i-p:: o i ch)
iioipc g e R
L Example - Rl

ElazcceazozFlas

&

Let us see a simple card game where the players see all the cards and must
follow the suit (if possible). Here the payoff is zero. If the second player
has {4 instead of ©4, the payoff is the same. If the first player does not
know that the opponent has >4 or ©4, it cannot choose the right card in
the last step, so in both cases the average payoff is —0.5



2020-03-22

Commonsense example

Al #6
L Games of imperfect information

L Commonsense example

If you dont like card games, we can give the same problem using different
terminology.



2020-03-22

Proper analysis

Al #6
L Games of imperfect information

LProper analysis

Our intuition is wrong. If you have missing information you decide on
your information/belief state. We need to work with beliefs, and based on
this we can construct a game-tree. To write a good opponent we need to
acquire as much information as possible, and confuse the opponents.



2020-03-22

Al #6
L Games of imperfect information

LSummary

Everybody likes to play games, many final thesis were written about Al
methods in concrete games. Here we can tests new ideas, and the limits
enforce the construction of new methods. Most of the games have a
contest: comparing the programs.



