
Outline

CSP examples

Backtracking search for CSPs

Problem structure and problem decomposition

Local search for CSPs

2
0

2
0

-0
3

-3
1

AI #7

Outline

The topic for today is about the constraint satisfaction problems and their
solutions. The famous SAT (Boolean satisfiability) problem belongs to this
family, and so do many puzzles, e.g. from collections of Simon Tatham.

At first we see some typical problems. Next we examine the most tradi-

tional solving method of CSPs: the backtracking. After we deal with the

structure of the problem, which could speed up the solving of the problem.

Finally we present how we can solve problems with local search, and how

effective this method is.



Constraint satisfaction problems (CSPs)

Standard search problem: state is a “black box”—any old data
structure that supports goal test, eval, successor

CSP:

I state is defined by variables Xi with values from domain Di

I goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than standard
search algorithms

2
0

2
0

-0
3

-3
1

AI #7

Constraint satisfaction problems (CSPs)

At a usual search problem we are not interested in the structure of the state.
The search methods that we are interested in have an initial state, and it
is clear which states succeed which. This enables us to write very general
functions which can solve almost every search problem, but a general pro-
gram cannot take into consideration the specialities of specific problems.
At CSP we have several variables which describe the state. The values of
these variables are from given domains. We have one or more constraints
about the variables and their values. We say that a state is a goal state,
if the values of the variables satisfy all the constraints.

We can treat CSP as a very simple language which describes problems

formally. The fact that we can access specific parts of states enables us to

use the specialities of a problem, and restrict the search on the state-space

in order to get the solution earlier.



Example: Map-Coloring

Variables: WA, NT , Q, NSW , V , SA, T

Domains: Di = {red , green, blue}
Constraints: adjacent regions must have different colors,

I e.g., WA 6= NT (if the language allows this), or
I (WA,NT ) ∈ {(red , green), (red , blue), (green, red), (green, blue), . . .}

2
0

2
0

-0
3

-3
1

AI #7

Example: Map-Coloring

One of the most typical example of CSP is the map coloring
(https://en.wikipedia.org/wiki/Graph_coloring). Here we have
countries/regions and we need to colour them in such a way, that the ad-
jacent countries need to be of different colours. By the four colour theorem
we can do this for any planar (2D maps), but it is an NP-hard problem to
decide, whether a given planar map can be coloured with just three colors.

Here we apply the latter problem to Australia, where there are seven re-

gions. The variables are named by their abbreviations. We have the same

set of colours for every region, so all the domains are the same. Finally the

constraints need to express the rule of map colouring. For this we need

to list all the adjacent pairs, and give a constraint so that their values are

different. Can you solve it alone?

https://en.wikipedia.org/wiki/Graph_coloring


Example: Map-Coloring contd.

Solutions are assignments satisfying all constraints, e.g.,
{WA = red ,NT = green,Q = red ,NSW = green,V = red ,SA =
blue,T = green}2

0
2

0
-0

3
-3

1
AI #7

Example: Map-Coloring contd.

This is the solution: all the regions are coloured, and the adjacent regions

are of different colours. We can give this solution not only as a picture,

but as a list of assignments.



Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up
search. E.g., Tasmania is an independent subproblem!

2
0

2
0

-0
3

-3
1

AI #7

Constraint graph

For this map colouring problem all the constraints are binary ones, they

contain two variables. In such cases we can draw a graph, where our

variables will be the nodes of the graph, and each constraint means one

edge of the graph. Now we can take the connected subgraphs, and can

solve the subproblems in parallel.



Varieties of CSPs

Discrete variables

I finite domains; size d =⇒ O(dn) complete assignments

F e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

I infinite domains (integers, strings, etc.)

F e.g., job scheduling, variables are start/end days for each job
F need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3
F linear constraints solvable, nonlinear undecidable

Continuous variables

I e.g., start/end times for Hubble Telescope observations
I linear constraints solvable in poly time by LP methods2

0
2

0
-0

3
-3

1
AI #7

Varieties of CSPs

We have finitely many variables, this is common at CSPs. But the size/type
of the domain can vary. For puzzles (like map colouring) we have finite
domains only. If the size of the biggest domain is d , then the problem has
exponential complexity: O(dn).

In some cases we have discrete variables, but the domain is infinite.

When building a house, the bricklayer must work earlier than the room-

painter, and the walls must dry several days before painting. We

can uses variables for the start and end dates, and add constraints

to the technological limits. This take us to the operational research

(https://en.wikipedia.org/wiki/Operations_research). If the

constraints are linear then we can get a solution, otherwise we cannot

solve all the problems, just some specific ones.

https://en.wikipedia.org/wiki/Operations_research


Varieties of CSPs

Discrete variables

I finite domains; size d =⇒ O(dn) complete assignments

F e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

I infinite domains (integers, strings, etc.)

F e.g., job scheduling, variables are start/end days for each job
F need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3
F linear constraints solvable, nonlinear undecidable

Continuous variables

I e.g., start/end times for Hubble Telescope observations
I linear constraints solvable in poly time by LP methods2

0
2

0
-0

3
-3

1
AI #7

Varieties of CSPs

Moreover we have a third option, when our variables are continu-
ous. A famous example for this case is the Hubble Telescope. Ini-
tially, it took two weeks for to optimally sort the astronomers’ re-
quests for one week. Now a local search solves it almost opti-
mally within 10 minutes. For linear problems/constraints the Sim-
plex method (https://en.wikipedia.org/wiki/Simplex_algorithm)
is the favoured solving method.

In the following we will work with finite domains.

https://en.wikipedia.org/wiki/Simplex_algorithm


Varieties of constraints

Unary constraints involve a single variable,

I e.g., SA 6= green

Binary constraints involve pairs of variables,

I e.g., SA 6= WA

Higher-order constraints involve 3 or more variables,

I e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green

I often representable by a cost for each variable assignment →
constrained optimization problems

2
0

2
0

-0
3

-3
1

AI #7

Varieties of constraints

We can classify constraints according to different criteria. One such as-

pect is the number of different variables in one constraint. We can have

unary, binary and higher order constraints. The other aspect is whether

the constraint need to hold, or can we treat the cases when this constraint

does not hold as solution. The former is the hard, the latter is the soft

constraint. If the problem contains soft constraints, then usually we add

cost to each constraint, and we can calculate the total cost of solutions.

This means that we can treat this kind of problems as an optimization

problem.



Example: Cryptarithmetic

Variables: {F T U W R O X1 X2 X3}
Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints:

I ldiff (F ,T ,U,W ,R,O)
I O + O = R + 10 · X1, etc.2

0
2

0
-0

3
-3

1
AI #7

Example: Cryptarithmetic

Maybe you know the SEND+MORE=MONEY problem. This one is a

simpler problem. The letters denote numbers, different letter different

numbers. What is value of the letters, so that the calculation is correct?

We can reformulate it as a diophantine equation 200T + 20W + 2O =

1000F + 100O + 10U + R, and we interested in its solution. But we

can formulate by columns as: 2O = R + 10X1, X1 + 2W = U + 10X2,

X2+2T = O+10X3, X3 = F . Here F , T , U, W , R and O denote numbers,

so their domain is {0, ..., 9}, more precisely we cannot start number with 0,

so the domain of T and F is {1, ..., 9}, and Xi s are carries, so the domain

here is {0, 1}. The constraint different letters denote different numbers is

not described yet. It can be given as pairwise inequalities—as you have

seen at the map colouring problem—or using the all-different construction

which was given here as ldiff.



Real-world CSPs

Assignment problems

I e.g., who teaches what class

Timetabling problems

I e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables2
0

2
0

-0
3

-3
1

AI #7

Real-world CSPs

The CSP problems are not artificial ones, we meet them in real life. For
example, constructing a timetable for this faculty is a such a problem, at
first the departments need to decide who teaches which class (each teachers
is knowledgeable in some specific topics, and a teacher has a limited time
frame), and if we have all these constraints, the administration needs to
give the lectures a place (room) and time. Of course at the same time we
cannot have two classes in the same room, and a teacher/student cannot
have 2 classes at the same time.

Here you can see other problems. Of course, with real-world problems we

usually need to use real-valued variables, which make the problem harder.



Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far

Initial state: the empty assignment, ∅
Successor function: assign a value to an unassigned variable that does
not conflict with current assignment. =⇒ fail if no legal assignments
(not fixable!)

Goal test: the current assignment is complete

1 This is the same for all CSPs!
2 Every solution appears at depth n with n variables =⇒ use

depth-first search
3 Path is irrelevant, so can also use complete-state formulation
4 b = (n − `)d at depth `, hence n!dn leaves!!!!2

0
2

0
-0

3
-3

1
AI #7

Standard search formulation (incremental)

We have variables (without value) and we want to give value of them to
satisfy the constraints. We do this step-by-step, where in each step we
assign a value to one variable. This looks like a search problem. For this
we need a state space, which is the set of partial assignments of variables.
At the starting state there are no assigned variables and the successor
function add to a value to some variable if it does not conflict with any
constraints. If all variables are assigned (and hence all the constraints are
fulfilled), we have a solution, hence it is the goal state.

We can use this method for any CSP (with finite domain). From the

construction it is obvious, that all the solutions are at depth level n, where

we have n variables. In this case d = m (the deepest level is n), so the

depth-limited search is not helpful, so the best choice here is the depth

first search.



Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far

Initial state: the empty assignment, ∅
Successor function: assign a value to an unassigned variable that does
not conflict with current assignment. =⇒ fail if no legal assignments
(not fixable!)

Goal test: the current assignment is complete

1 This is the same for all CSPs!
2 Every solution appears at depth n with n variables =⇒ use

depth-first search
3 Path is irrelevant, so can also use complete-state formulation
4 b = (n − `)d at depth `, hence n!dn leaves!!!!2

0
2

0
-0

3
-3

1
AI #7

Standard search formulation (incremental)

What is the branching factor at level l? We have n−l unassigned variables,

and if the size of the biggest domain is d , then we have (n−l)d possibilities.

If we multiply these values for l = 0, . . . , n then we get the n!dn which is a

huge number even for simple problems. In the case of the cryptarithmetic

problem before (TWO+TWO=FOUR) gives 3.63× 1016.



Backtracking search

Variable assignments are commutative,

I i.e., [WA = red then NT = green] same as [NT = green then
WA = red ]

Only need to consider assignments to a single variable at each node

I =⇒ b = d and there are dn leaves

Depth-first search for CSPs with single-variable assignments is called
backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

2
0

2
0

-0
3

-3
1

AI #7

Backtracking search

Fortunately it does not matter in what order our variables get their values,
or using the mathematical terminology the variable assignment is commu-
tative. This means that in one step we do not need to take into account all
unassigned variables, just select one of them! This decreases the previous
complexity to dn, so the number below decreases to 1010.

Using DFS with single variable assignment is called backtracking search.

Without any improvement we can solve the n-queen problem (place n

queens on n × n table without any two in conflict) for 25 queens.



Backtracking search

function Backtracking-Search(csp): solution/failure

return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment,csp): soln/failure

if assignment is complete then return assignment

var := Select-Unassigned-Variable(Variables[csp],

assignment, csp)

for each value in Order-Domain-Values(var,

assignment, csp) do

if value is consistent with assignment

given Constraints[csp] then

add {var = value} to assignment

result := Recursive-Backtracking(assignment,

csp)

if result != failure then return result

remove {var = value} from assignment

return failure

2
0

2
0

-0
3

-3
1

AI #7

Backtracking search

Let us see its implementation! We need to call a recursive function, where
the value of the first argument (the assignments) is empty at first.

If the assignment is complete, we are ready. Otherwise we need to select

somehow an unassigned variable, and based on a given order we need to try

all the elements of the domain. If this value is consistent (conforms to the

constraints), we keep it, we add this assignment to the other assignments,

and the function call itself (recursion). If this was successful, we return the

solution. Otherwise we reverse the last assignment, and try the next value

for the actual variable. If we cannot assign any value to this variable, we

need so send back failure to the caller function.



Backtracking example

2
0

2
0

-0
3

-3
1

AI #7

Backtracking example

Let us see the map of Australia! At first there are no coloured regions.



Backtracking example

2
0

2
0

-0
3

-3
1

AI #7

Backtracking example

If we first select Western Australia, we can use any of the colours to colour

it.



Backtracking example

2
0

2
0

-0
3

-3
1

AI #7

Backtracking example

Let us take the first case, when this region is red. If we next select the

Northern Territory, we can only use two colours, the red cannot be used

here, as two neighbouring regions cannot be of same colour.



Backtracking example

2
0

2
0

-0
3

-3
1

AI #7

Backtracking example

If we use green for Northern Territory and next select Queensland, the are

two ways to colour it, etc.



Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1 Which variable should be assigned next?
2 In what order should its values be tried?
3 Can we detect inevitable failure early?
4 Can we take advantage of problem structure?

2
0

2
0

-0
3

-3
1

AI #7

Improving backtracking efficiency

You may remember: we need to select an unassigned variable, and give an
ordering to the values. How can we do this in a clever way?
If in the last line on the previous slide Queensland is coloured blue, we
cannot finish the colouring as we cannot use ony of the colours for South
Australia. How can we detect such cases when we have hundreds or thou-
sands of variables?

We can use heuristics. There are different heuristics than the ones we

used at best-first kind searches. There we evaluated states, based on the

distance from a goal state.



Minimum remaining values

Minimum remaining values (MRV):

choose the variable with the fewest legal values

2
0

2
0

-0
3

-3
1

AI #7

Minimum remaining values

At MRV heuristics we sort variables based on values suited to the con-
straints. Let us take the case, when Western Australia is red and Northern
Territory is green. For South Australia we can only use the blue, i.e. 1 op-
tion. Queensland can be coloured red and blue, i.e. 2 options. New South
Wales, Victoria and Tasmania can be coloured at this state in all three
ways. So South Australia has the minimal legal values, so this heuristic
gives back this variable. This means at this step we will colour it blue.

If there is a variable which has no legal values, this heuristic finds it, and

hence we know that we need to go back. If some variable has only one

legal value, we will use it immediately. So this heuristic help us to find

dead ends as soon as possible, to avoid discovering hopeless states.



Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:

choose the variable with the most constraints on remaining variables

2
0

2
0

-0
3

-3
1

AI #7

Degree heuristic

At the construction of the faculty timetable the biggest lectures are fixed

first. A small seminar can be moved easily in case of a conflict, but a

lecture with many practices/labs has many dependencies to consider. In

the case of CSP this observation, experience gives the degree heuristic.

We can use it, if the MRV does not select a unique variable.



Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:

choose the variable with the most constraints on remaining variables

2
0

2
0

-0
3

-3
1

AI #7

Degree heuristic

At the coloring problem in the starting state all the regions can have all

three colours. South Australia has 5 adjacent uncoloured region, Western

Australia has 2, etc. The winner here is South Australia with 5, so we need

to colour this region first. The other regions of mainland have two colour

options left (red and green), because all are adjacent with South Australia.

So the MRV heuristic cannot decide. Victoria and Western Australia have

one non-coloured neighbours each, so based on degree heuristic we need to

choose between Northern Territory, Queensland and New South Wales. In

this case the Northern Territory was selected and coloured to green. The

MRV heuristic could select between Western Australia and Queensland,

because here we can only use one colour (red). And we can continue this

process using these two heuristics.



Least constraining value

Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

2
0

2
0

-0
3

-3
1

AI #7

Least constraining value

You may remember, if you selected a variable, we need to try all the possi-
bilities (values), but we need to determine a suitable order. At this heuristic
we want to lift a minimal barrier for the following steps, to allow for the
longest sequence of assignments. At the picture before the branching we
have coloured Western Australia and Northern Territory. Let us assume,
that the next selected region is Queensland. We have two options as the
Northern Territory is green: red and blue.

By coloring Queensland we restrict the possibilities of South Australia and

New South Wales. If we colour it to red, the only possibility of South

Australia (blue) remains, and New South Wales lost the colour red.



Least constraining value

Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

2
0

2
0

-0
3

-3
1

AI #7

Least constraining value

If we colour Queensland to blue, South Australia has no remaining colours,
and New South Wales lost the colour blue.
Summing up: if we sum the lost colours, we get 1 for each case, but the
colour blue prevent us from solve the problem. With red we can get a
solution.
These heuristics are independent, you can use any combination of them.
aima-python contains a program, where you can play with these combi-
nations. If you apply all of them the n-queens problem can be solved for
1000 queens.

https://github.com/aimacode/aima-python/blob/master/csp.ipynb

https://github.com/aimacode/aima-python/blob/master/csp.ipynb


Forward checking

Idea: Keep track of remaining legal values for unassigned variables

I Terminate search when any variable has no legal values
2

0
2

0
-0

3
-3

1
AI #7

Forward checking

If we assign a value to a variable, then we can take into the account the

direct consequences of this step. So let us store the remaining possibilities!

At first when there are no assigned variables, all regions have three options.



Forward checking

Idea: Keep track of remaining legal values for unassigned variables

I Terminate search when any variable has no legal values
2

0
2

0
-0

3
-3

1
AI #7

Forward checking

If Western Australia is coloured red, then its neighbours cannot be red, so

we need to delete this option from Northern Territory and South Australia.



Forward checking

Idea: Keep track of remaining legal values for unassigned variables

I Terminate search when any variable has no legal values
2

0
2

0
-0

3
-3

1
AI #7

Forward checking

If the second region is Queensland and it is coloured green, then the adja-

cent regions (Northern Territory, South Australia and New South Wales)

cannot be green, so we need to delete this option from them.



Forward checking

Idea: Keep track of remaining legal values for unassigned variables

I Terminate search when any variable has no legal values

2
0

2
0

-0
3

-3
1

AI #7

Forward checking

If the third region Victoria is coloured blue, then the adjacent regions

(South Australia and New South Wales) cannot be blue, so we delete

these options. Therefore there is no options left for South Australia, so we

need to go back.



Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

2
0

2
0

-0
3

-3
1

AI #7

Constraint propagation

The forward checking only uses the direct consequences (only considers
one step). We can construct all the logical consequences of one step.
After the second step of the previous example we could realize that two
adjacent regions (Northern Territory and South Australia) can both only
be blue, which leads to a contradiction.

We construct the consequence is small steps. Our tool for this is the arc

consistency.



Arc consistency

Simplest form of propagation makes each arc consistent
X → Y is consistent iff for every value x of X there is some allowed y

2
0

2
0

-0
3

-3
1

AI #7

Arc consistency

A non-symmetric arc X → Y (between variables X and Y ) is consistent, if

for every value x ∈ X there is some allowed y ∈ Y . Let denote South Aus-

tralia by X and New South Wales by Y . X has only one value (blue) and

in Y there is a suitable (i.e. different) value, red. So the arc consistency

holds in this direction.



Arc consistency

Simplest form of propagation makes each arc consistent
X → Y is consistent iff for every value x of X there is some allowed y

2
0

2
0

-0
3

-3
1

AI #7

Arc consistency

If we take the opposite direction (New South Wales is X and South Aus-

tralia is Y ), then if X is red, the blue in Y is OK. But if X is blue, Y

does not contain a suitable value. Hence we cannot colour X (New South

Wales) blue, because it cannot give a solution. Therefore we delete this

option here.



Arc consistency

Simplest form of propagation makes each arc consistent
X → Y is consistent iff for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked2
0

2
0

-0
3

-3
1

AI #7

Arc consistency

Changes can spread, so we need check the neighbours. Victoria is adjacent

to New South Wales, and as New South Wales can only be red, Victoria

needs to be a different colour (we need to delete the red here).



Arc consistency

Simplest form of propagation makes each arc consistent
X → Y is consistent iff for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

2
0

2
0

-0
3

-3
1

AI #7

Arc consistency

Arc consistency could detect the contradiction mentioned before (Northern

Territory and South Australia). To preserve the (arc) consistency is not a

costly process, so we can apply this after each assignment.



Arc consistency algorithm

function AC-3(csp): the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1,X2,...,Xn}

local var.: queue, a queue of arcs,

initially all the arcs in csp

while queue is not empty do

(Xi, Xj) := Remove-First(queue)

if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do

add (Xk, Xi) to queue

2
0

2
0

-0
3

-3
1

AI #7

Arc consistency algorithm

What are the necessary checks we need to do? The literature knows
methods from AC-1 to AC-8. The most known/applied is the AC-3. aima-
python contains this, its variant and AC-4. This function use a queue
(similarly to the BFS), which contains any related pairs of variables (in
both direction).

We process this queue, and if it is possible to delete any values from some

domain, we need to take the neighbours of the modified domain, and add

new arcs to the end of the queue. If the queue becomes empty, we are

done.



Arc consistency algorithm

function Remove-Inconsistent-Values(Xi, Xj):

return true iff succeeds

removed := false

for each x in Domain[Xi] do

if no value y in Domain[Xj] allows

(x, y) to satisfy the constraint Xi <-> Xj

then delete x from Domain[Xi]; removed := true

return removed

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)2
0

2
0

-0
3

-3
1

AI #7

Arc consistency algorithm

The Remove-Inconsistent-Values function is based on the definition

of arc consistency (if some constraint does not hold for x and y , we delete

x from its domain. This function contains a double cycle on domains (size

d), and one arc can get back into the queue d times. The number of arcs

is proportional to n2. So complexity of the arc consistency is quadratic in

size of variables.



Problem structure

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph2
0

2
0

-0
3

-3
1

AI #7

Problem structure

Previously we said that if the problem can be broken down into subprob-

lems, then we solve subproblems independently and in parallel. As we

describe problems as graphs, the subproblems are subgraphs, more pre-

cisely the connected components of the graph of the problem.



Problem structure contd.

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · dc , linear in n

E.g., n = 80, d = 2, c = 20

I 280 = 4 billion years at 10 million nodes/sec
I 4 · 220 = 0.4 seconds at 10 million nodes/sec

2
0

2
0

-0
3

-3
1

AI #7

Problem structure contd.

A simple calculation: the original problem has n variables, its subproblems

have c , and the biggest domain has d values. The original dn is reduced

to n/c × dc , which is linear in n. Lets see this with numbers: if we are

able to break down the almost unsolvable problem into four similarly sized

subproblems, then we can get a solution almost immediately.



Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and
the complexity of reasoning.2

0
2

0
-0

3
-3

1
AI #7

Tree-structured CSPs

Let see the very special case, when the constraint-graph has no cycles, i.e.

it is a tree. In this case the complexity of the solution method is linear in

n, while the general method is exponential in n. This special structure can

be used in further chapters.



Algorithm for tree-structured CSPs

1 Choose a variable as root, order variables from root to leaves such
that every node’s parent precedes it in the ordering

2 For j from n down to 2, apply RemoveInconsistent(Parent(Xj),Xj)

3 For j from 1 to n, assign Xj consistently with Parent(Xj)2
0

2
0

-0
3

-3
1

AI #7

Algorithm for tree-structured CSPs

We can start from anywhere, select any variable as

the root of the sequence. Use topological ordering

(https://en.wikipedia.org/wiki/Topological_sorting) for

the tree! Next go backwards and delete from the parents domain what is

inconsistent with any of its children. Finally assign a value to the variables

from the root.

https://en.wikipedia.org/wiki/Topological_sorting


Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree
Cutset size c =⇒ runtime O(dc · (n − c)d2), very fast for small c

2
0

2
0

-0
3

-3
1

AI #7

Nearly tree-structured CSPs

What can we do if our graph is not a tree? If it is almost a tree, then
there is a solution. Delete nodes from the cycles. In case of Australia we
have several cycles, and South Australia is part of all of them. If we delete
this region, we can get a tree (without branching). How can we delete
a node/variable? Assign a value to it, and take the direct consequences
(delete the corresponding values from the neighbours domains).
If we needed to delete c variables, we can have cd assignments of these
variables, and for the remaining part the complexity is (n − c)d2. If c is
small, this will be small too.

This was a different improvement of the backtracking search. But we have

a totally different method to solve CSPs.



Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with “complete”
states, i.e., all variables assigned

To apply to CSPs:

I allow states with unsatisfied constraints
I operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:

I choose value that violates the fewest constraints
I i.e., hillclimb with h(n) = total number of violated constraints

2
0

2
0

-0
3

-3
1

AI #7

Iterative algorithms for CSPs

Similarly to search problems, we can use the local search to find the solu-
tion. In this case a state will be a complete assignment. Here the partial
assignments—which were an essential part of the backtracking method—
cannot be used.
Any (e.g. a random) assignment will not necessarily be an valid solution,
it would probably violate several constraints. But any complete assign-
ment means for us a state, and changing values of some variables give a
successor state. We assign heuristic functions based on a number of vio-
lated constraints, and we can use the most typical local search methods:
hill-climbing, simulated annealing, etc.

The method min-conflicts performs very well for many tasks. Here we have

a cycle, which ends if there are no more conflicts. Otherwise in this cycle

we need to randomly select a conflicted variable, and choose its best value

based on this heuristic.



Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

2
0

2
0

-0
3

-3
1

AI #7

Example: 4-Queens

We need four variables, the i th variable gives the row of the queen in the

i th column (they need to be in different columns and in different rows). So

one queen could move up and down only. Our heuristic gives the number

of attacks (denoted by lines). At the beginning this is 5. If we move the

second queen to the uppermost row, this decreases to 2. If then we move

the third queen into the lowermost row, we get a solution.



Performance of min-conflicts
Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10, 000, 000)
The same appears to be true for any randomly-generated CSP except in a
narrow range of the ratio

R =
number of constraints

number of variables

2
0

2
0

-0
3

-3
1

AI #7

Performance of min-conflicts

This methods work very well for a large number of queens, and gives a
solution in a very short amount of time.

At randomly generated CSPs if we have a small number of constraints

(according to the number of variables) we can solve problems easily. If

we have many constraints, then the problem becomes unsolvable (over-

constrained), which can be detected easily, but not with min-conflicts. We

have a ratio, when the solution of the problem is really hard.



Summary

CSPs are a special kind of problem:

I states defined by values of a fixed set of variables
I goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice2
0

2
0

-0
3

-3
1

AI #7

Summary

CSP is a special kind of problem, the problem has an inner structure, which
can described with variables, and we have constraints about the values of
these variables. The available values of a variable defines a domain for
each variable.
The main solving method is backtracking, which is a systematic search
(DFS with one variable assignment). We can apply several heuristics to
speed up the search. The forward checking considers only one step, while
the constraint propagation considers several ones.
We can improve with the analysis of the problem structure: subproblems,
(near) tree-like problems. The tree structured CSPs can be solved very
fast.

The min-conflicts local search method is also very effective in practice.


