Artificial Intelligence

Chapter 4, Sections 3-4

Stuart RUSSEL

reorganized by L. Aszalós

April 27, 2016

Outline

- Hill-climbing
- Simulated annealing
- Genetic algorithms (briefly)
- Local search in continuous spaces (very briefly)

Iterative improvement algorithms

- In many optimization problems, path is irrelevant;

Iterative improvement algorithms

- In many optimization problems, path is irrelevant;
- the goal state itself is the solution

Iterative improvement algorithms

- In many optimization problems, path is irrelevant;
- the goal state itself is the solution
- Then state space $=$ set of "complete" configurations;

Iterative improvement algorithms

- In many optimization problems, path is irrelevant;
- the goal state itself is the solution
- Then state space $=$ set of "complete" configurations;
- find optimal configuration, e.g., TSP

Iterative improvement algorithms

- In many optimization problems, path is irrelevant;
- the goal state itself is the solution
- Then state space $=$ set of "complete" configurations;
- find optimal configuration, e.g., TSP
- or, find configuration satisfying constraints, e.g., timetable

Iterative improvement algorithms

- In many optimization problems, path is irrelevant;
- the goal state itself is the solution
- Then state space $=$ set of "complete" configurations;
- find optimal configuration, e.g., TSP
- or, find configuration satisfying constraints, e.g., timetable
- In such cases, can use iterative improvement algorithms;

Iterative improvement algorithms

- In many optimization problems, path is irrelevant;
- the goal state itself is the solution
- Then state space $=$ set of "complete" configurations;
- find optimal configuration, e.g., TSP
- or, find configuration satisfying constraints, e.g., timetable
- In such cases, can use iterative improvement algorithms;
- keep a single "current" state, try to improve it

Iterative improvement algorithms

- In many optimization problems, path is irrelevant;
- the goal state itself is the solution
- Then state space $=$ set of "complete" configurations;
- find optimal configuration, e.g., TSP
- or, find configuration satisfying constraints, e.g., timetable
- In such cases, can use iterative improvement algorithms;
- keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

- Start with any complete tour, perform pairwise exchanges

Example: Travelling Salesperson Problem

- Start with any complete tour, perform pairwise exchanges

- Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Move a queen to reduce number of conflicts

Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Move a queen to reduce number of conflicts

$h=5$

$h=2$

- Almost always solves n-queens problems almost instantaneously for very large n, e.g., $n=1$ million

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing(problem)
    returns a state that is a local maximum
    current: a node
    neighbor: a node
    current := Make-Node(Initial-State[problem])
    loop do
    neighbor := a highest-valued successor of current
    if Value[neighbor] <= Value[current]
        then return State[current]
        current:=neighbor
    end
```


Hill-climbing contd.

- Useful to consider state space landscape

Hill-climbing contd.

- Useful to consider state space landscape

- Random-restart hill climbing overcomes local maxima—trivially complete

Hill-climbing contd.

- Useful to consider state space landscape

- Random-restart hill climbing overcomes local maxima—trivially complete
- Random sideways moves

Hill-climbing contd.

- Useful to consider state space landscape

- Random-restart hill climbing overcomes local maxima-trivially complete
- Random sideways moves
- escape from shoulders :-)

Hill-climbing contd.

- Useful to consider state space landscape

- Random-restart hill climbing overcomes local maxima-trivially complete
- Random sideways moves
- escape from shoulders :-)
- loop on flat maxima :-(

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function Simulated-Annealing(problem, schedule)
```

 returns a solution state
 schedule: a mapping from time to 'temperature'"
 current: a node
 next: a node
 T: ''temperature') controlling prob. of downward steps
 current := Make-Node(Initial-State[problem])
 for \(t=1\) to infinity do
 \(\mathrm{T}=\) schedule[t]
 if \(\mathrm{T}=0\) then return current
 next := a randomly selected successor of current
 Delta_E := Value[next]- Value[current]
 if Delta_E > 0 then current := next
 else current:= next, only with probability \(\exp \left(\right.\) Delta \(\left._{2} \mathrm{E} / \mathrm{T}\right)\)

Properties of simulated annealing

- At fixed "temperature" T, state occupation probability reaches

Properties of simulated annealing

- At fixed "temperature" T, state occupation probability reaches
- Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

Properties of simulated annealing

- At fixed "temperature" T, state occupation probability reaches
- Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

- T decreased slowly enough \Longrightarrow always reach best state x^{*}

Properties of simulated annealing

- At fixed "temperature" T, state occupation probability reaches
- Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

- T decreased slowly enough \Longrightarrow always reach best state x^{*}
- because $e^{\frac{E\left(x^{*}\right)}{k T}} / e^{\frac{E(x)}{k T}}=e^{\frac{E\left(x^{*}\right)-E(x)}{k T}} \gg 1$ for small T

Properties of simulated annealing

- At fixed "temperature" T, state occupation probability reaches
- Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

- T decreased slowly enough \Longrightarrow always reach best state x^{*}
- because $e^{\frac{E\left(x^{*}\right)}{k T}} / e^{\frac{E(x)}{k T}}=e^{\frac{E\left(x^{*}\right)-E(x)}{k T}} \gg 1$ for small T
- Is this necessarily an interesting guarantee???

Properties of simulated annealing

- At fixed "temperature" T, state occupation probability reaches
- Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

- T decreased slowly enough \Longrightarrow always reach best state x^{*}
- because $e^{\frac{E\left(x^{*}\right)}{k T}} / e^{\frac{E(x)}{k T}}=e^{\frac{E\left(x^{*}\right)-E(x)}{k T}} \gg 1$ for small T
- Is this necessarily an interesting guarantee???
- Devised by Metropolis et al., 1953, for physical process modelling

Properties of simulated annealing

- At fixed "temperature" T, state occupation probability reaches
- Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

- T decreased slowly enough \Longrightarrow always reach best state x^{*}
- because $e^{\frac{E\left(x^{*}\right)}{k T}} / e^{\frac{E(x)}{k T}}=e^{\frac{E\left(x^{*}\right)-E(x)}{k T}} \gg 1$ for small T
- Is this necessarily an interesting guarantee???
- Devised by Metropolis et al., 1953, for physical process modelling
- Widely used in VLSI layout, airline scheduling, etc.

Local beam search

- Idea: keep k states instead of 1 ; choose top k of all their successors

Local beam search

- Idea: keep k states instead of 1 ; choose top k of all their successors
- Not the same as k searches run in paralle!!

Local beam search

- Idea: keep k states instead of 1 ; choose top k of all their successors
- Not the same as k searches run in parallel!
- Searches that find good states recruit other searches to join them

Local beam search

- Idea: keep k states instead of 1 ; choose top k of all their successors
- Not the same as k searches run in parallel!
- Searches that find good states recruit other searches to join them
- Problem: quite often, all k states end up on same local hill

Local beam search

- Idea: keep k states instead of 1 ; choose top k of all their successors
- Not the same as k searches run in paralle!!
- Searches that find good states recruit other searches to join them
- Problem: quite often, all k states end up on same local hill
- Idea: choose k successors randomly, biased towards good ones

Local beam search

- Idea: keep k states instead of 1 ; choose top k of all their successors
- Not the same as k searches run in paralle!!
- Searches that find good states recruit other searches to join them
- Problem: quite often, all k states end up on same local hill
- Idea: choose k successors randomly, biased towards good ones
- Observe the close analogy to natural selection!

Genetic algorithms

- stochastic local beam search + generate successors from pairs of states

Fitness Selection
Pairs
Cross-Over

Genetic algorithms contd.

- GAs require states encoded as strings (GPs use programs)
- Crossover helps iff substrings are meaningful components

GAs \neq evolution: e.g., real genes encode replication machinery!

Continuous state spaces

- Suppose we want to site three airports in Romania:

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space,

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space,
- e.g., empirical gradient considers $\pm \delta$ change in each coordinate

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space,
- e.g., empirical gradient considers $\pm \delta$ change in each coordinate
- Gradient methods compute

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)
$$

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space,
- e.g., empirical gradient considers $\pm \delta$ change in each coordinate
- Gradient methods compute

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)
$$

- to increase/reduce f, e.g., by $x \leftarrow x+\alpha \nabla f(x)$

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space,
- e.g., empirical gradient considers $\pm \delta$ change in each coordinate
- Gradient methods compute

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)
$$

- to increase/reduce f, e.g., by $x \leftarrow x+\alpha \nabla f(x)$
- Sometimes can solve for $\nabla f(x)=0$ exactly (e.g., with one city).

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space,
- e.g., empirical gradient considers $\pm \delta$ change in each coordinate
- Gradient methods compute

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)
$$

- to increase/reduce f, e.g., by $x \leftarrow x+\alpha \nabla f(x)$
- Sometimes can solve for $\nabla f(x)=0$ exactly (e.g., with one city).
- Newton-Raphson $(1664,1690)$

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space,
- e.g., empirical gradient considers $\pm \delta$ change in each coordinate
- Gradient methods compute

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)
$$

- to increase/reduce f, e.g., by $x \leftarrow x+\alpha \nabla f(x)$
- Sometimes can solve for $\nabla f(x)=0$ exactly (e.g., with one city).
- Newton-Raphson $(1664,1690)$
\star iterates $x \leftarrow x-H_{f}^{-1}(x) \nabla f(x)$

Continuous state spaces

- Suppose we want to site three airports in Romania:
- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space,
- e.g., empirical gradient considers $\pm \delta$ change in each coordinate
- Gradient methods compute

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)
$$

- to increase/reduce f, e.g., by $x \leftarrow x+\alpha \nabla f(x)$
- Sometimes can solve for $\nabla f(x)=0$ exactly (e.g., with one city).
- Newton-Raphson $(1664,1690)$
\star iterates $x \leftarrow x-H_{f}^{-1}(x) \nabla f(x)$
\star to solve $\nabla f(x)=0$, where $H_{i j}=\partial^{2} f / \partial x_{i} \partial x_{j}$

