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Outline

Hill-climbing

Simulated annealing

Genetic algorithms (briefly)

Local search in continuous spaces (very briefly)

S. Russel AI #5 April 27, 2016 2 / 13



Iterative improvement algorithms

In many optimization problems, path is irrelevant;

I the goal state itself is the solution

Then state space = set of “complete” configurations;

I find optimal configuration, e.g., TSP
I or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;

I keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
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Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with
thousands of cities
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Example: n-queens

Put n queens on an n× n board with no two queens on the same row,
column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves n-queens problems almost instantaneously for
very large n, e.g., n = 1 million
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Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem)

returns a state that is a local maximum

current: a node

neighbor: a node

current := Make-Node(Initial-State[problem])

loop do

neighbor := a highest-valued successor of current

if Value[neighbor] <= Value[current]

then return State[current]

current:=neighbor

end
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Hill-climbing contd.

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima—trivially
complete

Random sideways moves

I escape from shoulders :-)
I loop on flat maxima :-(
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Simulated annealing
Idea: escape local maxima by allowing some “bad” moves but gradually
decrease their size and frequency

function Simulated-Annealing(problem, schedule)

returns a solution state

schedule: a mapping from time to ‘‘temperature’’

current: a node

next: a node

T: ‘‘temperature’’ controlling prob. of downward steps

current := Make-Node(Initial-State[problem])

for t=1 to infinity do

T = schedule[t]

if T=0 then return current

next := a randomly selected successor of current

Delta_E := Value[next]- Value[current]

if Delta_E > 0 then current := next

else current:= next, only with probability exp(Delta_E/T)
S. Russel AI #5 April 27, 2016 8 / 13



Properties of simulated annealing

At fixed “temperature” T , state occupation probability reaches

I Boltzman distribution
p(x) = αe

E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗

I because e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT � 1 for small T

Is this necessarily an interesting guarantee???

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

I Not the same as k searches run in parallel!
I Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!
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Genetic algorithms

stochastic local beam search + generate successors from pairs of
states
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Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

GAs 6= evolution: e.g., real genes encode replication machinery!
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Continuous state spaces

Suppose we want to site three airports in Romania:

I 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
I objective function f (x1, y2, x2, y2, x3, y3) = sum of squared distances

from each city to nearest airport

Discretization methods turn continuous space into discrete space,

I e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute

∇f =

(
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

)
to increase/reduce f , e.g., by x ← x + α∇f (x)

Sometimes can solve for ∇f (x) = 0 exactly (e.g., with one city).

I Newton–Raphson (1664, 1690)

F iterates x ← x − H−1
f (x)∇f (x)

F to solve ∇f (x) = 0, where Hij = ∂2f /∂xi∂xj
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