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Review: Tree search

function Tree-Search(problem, strategy): a solution or failure

initialize the search tree with --the initial state of problem

loop do

if there are no candidates for expansion

then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state

then return the corresponding solution

else expand the node and add the resulting nodes

to the search tree

end

A strategy is defined by picking the order of node expansion
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Best-first search

Idea:

I use an evaluation function for each node
I estimate of “desirability”
I Expand most desirable unexpanded node

Implementation:

I fringe is a queue sorted in decreasing order of desirability

Special cases:

I greedy search
I A∗ search
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Romania with step costs in km
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Greedy search

Evaluation function h(n)

I Heuristic
I estimate of cost from n to the closest goal
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Greedy search example
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Greedy search example

S. Russel AI #4 April 27, 2016 10 / 1



Properties of greedy search

Complete

I No–can get stuck in loops,

F e.g., with Oradea as goal, Iasi → Neamt → Iasi → Neamt →

I Complete in finite space with repeated-state checking

Time

I O(bm), but a good heuristic can give dramatic improvement

Space

I O(bm)—keeps all nodes in memory

Optimal

I No
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A∗ search

Idea:

I avoid expanding paths that are already expensive

Evaluation function f (n) = g(n) + h(n)

I g(n) = cost so far to reach n
I h(n) = estimated cost to goal from n
I f (n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic

I i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
I Also require h(n) ≥ 0, so h(G ) = 0 for any goal G .
I E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal
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A∗ search example
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A∗ search example
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Optimality of A∗ (standard proof)
Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G .

f (G2) = g(G2) since h(G2) = 0

> g(G ) since G2 is suboptimal

≥ f (n) since h is admissible

Since f (G2) > f (n), A∗ will never select G2 for expansion
S. Russel AI #4 April 27, 2016 19 / 1



Optimality of A∗ (more useful)
Lemma: A∗ expands nodes in order of increasing f value
Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi , where fi < fi+1
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Properties of A∗

Complete

I Yes, unless there are infinitely many nodes with f ≤ f (G )

Time

I Exponential in [relative error in h × length of soln.]

Space

I Keeps all nodes in memory

Optimal

I Yes—cannot expand fi+1 until fi is finished

F A∗ expands all nodes with f (n) < C∗

F A∗ expands some nodes with f (n) = C∗

F A∗ expands no nodes with f (n) > C∗
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Proof of lemma: Consistency

A heuristic is consistent if h(n) ≤ c(n, a, n′) + h(n′)
If h is consistent, we have

f (n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f (n)

I.e., f (n) is nondecreasing along any path.
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Admissible heuristics
E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance (i.e., no. of squares from desired
location of each tile)

h1(S) =

6 h2(S) = 4+0+3+3+1+0+2+1 = 14
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Dominance

If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates h1 and is
better for search
Typical search costs:
d = 14 IDS = 3,473,941 nodes

A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb
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Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no
greater than the optimal solution cost of the real problem
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Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)

I Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2) and is a lower
bound on the shortest (open) tour
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Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h}
I incomplete and not always optimal

A∗ search expands lowest g + h

I complete and optimal
I also optimally efficient (up to tie-breaks, for forward search

Admissible heuristics can be derived from exact solution of relaxed
problems
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