Artificial Intelligence Chapter 4, Sections 1-2

Stuart RUSSEL

reorganized by L. Aszalós

April 27, 2016

► < ∃ ►</p>

Outline

- Best-first search
- A* search
- Heuristics

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Review: Tree search

A strategy is defined by picking the order of node expansion

- 4 回 ト - 4 回 ト

• Idea:

・ロト ・聞ト ・ヨト ・ヨト

• Idea:

use an evaluation function for each node

∃ →

イロン イヨン イヨン イ

• Idea:

- use an evaluation function for each node
- estimate of "desirability"

► < ∃ ►</p>

• Idea:

- use an evaluation function for each node
- estimate of "desirability"
- Expand most desirable unexpanded node

< ∃ >

Idea:

- use an evaluation function for each node
- estimate of "desirability"
- Expand most desirable unexpanded node

• Implementation:

Idea:

- use an evaluation function for each node
- estimate of "desirability"
- Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Idea:

- use an evaluation function for each node
- estimate of "desirability"
- Expand most desirable unexpanded node
- Implementation:
 - fringe is a queue sorted in decreasing order of desirability
- Special cases:

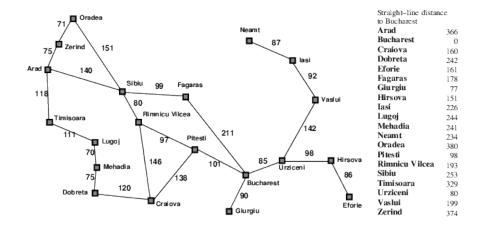
Idea:

- use an evaluation function for each node
- estimate of "desirability"
- Expand most desirable unexpanded node
- Implementation:
 - fringe is a queue sorted in decreasing order of desirability
- Special cases:
 - greedy search

Idea:

- use an evaluation function for each node
- estimate of "desirability"
- Expand most desirable unexpanded node
- Implementation:
 - fringe is a queue sorted in decreasing order of desirability
- Special cases:
 - greedy search
 - A* search

Romania with step costs in km



Greedy search

• Evaluation function h(n)

Image: A math and A

Greedy search

- Evaluation function h(n)
 - Heuristic

・ロト ・日下・ ・日下

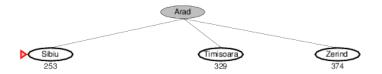
Greedy search

- Evaluation function h(n)
 - Heuristic
 - estimate of cost from n to the closest goal

< E.

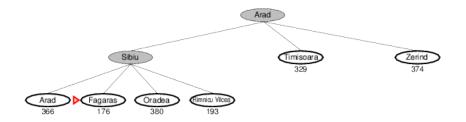
∃ →

・ロト ・回 ・ ・ 回 ・ ・



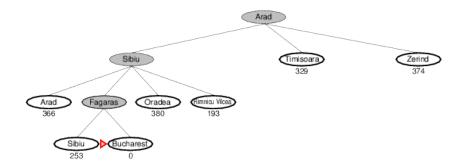
∃ →

・ロト ・回 ・ ・ 回 ・ ・



∃ →

・ロト ・回 ・ ・ 回 ・ ・



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Complete

Image: A math a math

- Complete
 - ▶ No-can get stuck in loops,

-

< A > < 3

- Complete
 - No-can get stuck in loops,
 - ★ e.g., with Oradea as goal, Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow

- Complete
 - No-can get stuck in loops,
 - * e.g., with Oradea as goal, Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow
 - Complete in finite space with repeated-state checking

- Complete
 - No-can get stuck in loops,
 - * e.g., with Oradea as goal, Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow
 - Complete in finite space with repeated-state checking
- Time

- Complete
 - No-can get stuck in loops,
 - Complete in finite space with repeated-state checking
- Time
 - $O(b^m)$, but a good heuristic can give dramatic improvement

- Complete
 - No-can get stuck in loops,
 - * e.g., with Oradea as goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
 - Complete in finite space with repeated-state checking
- Time
 - $O(b^m)$, but a good heuristic can give dramatic improvement
- Space

- Complete
 - No-can get stuck in loops,
 - Complete in finite space with repeated-state checking
- Time
 - $O(b^m)$, but a good heuristic can give dramatic improvement
- Space
 - ► O(b^m)—keeps all nodes in memory

- Complete
 - No-can get stuck in loops,
 - Complete in finite space with repeated-state checking
- Time
 - $O(b^m)$, but a good heuristic can give dramatic improvement
- Space
 - ► O(b^m)—keeps all nodes in memory
- Optimal

- Complete
 - No-can get stuck in loops,
 - Complete in finite space with repeated-state checking
- Time
 - ▶ O(b^m), but a good heuristic can give dramatic improvement
- Space
 - ► O(b^m)—keeps all nodes in memory
- Optimal
 - ► No

• Idea:

▲口> ▲圖> ▲屋> ▲屋>

• Idea:

avoid expanding paths that are already expensive

Image: A math a math

• Idea:

- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)

< A > < 3

Idea:

- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n

< 🗇 🕨 < 🖃 🕨

Idea:

- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost to goal from n

► < ∃ ►</p>

Idea:

- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through n to goal

Image: A image: A

Idea:

- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through *n* to goal
- A* search uses an **admissible** heuristic

• • = • •

Idea:

- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through *n* to goal
- A* search uses an **admissible** heuristic
 - i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the *true* cost from *n*.

Image: A Image: A

Idea:

- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through n to goal
- A* search uses an **admissible** heuristic
 - i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the *true* cost from *n*.
 - Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.

Image: A Image: A

Idea:

- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through n to goal
- A* search uses an admissible heuristic
 - i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the *true* cost from *n*.
 - Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.
 - E.g., $h_{SLD}(n)$ never overestimates the actual road distance

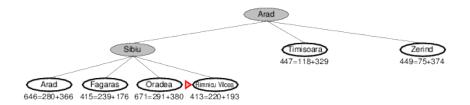
< 回 > < 三 > < 三 >

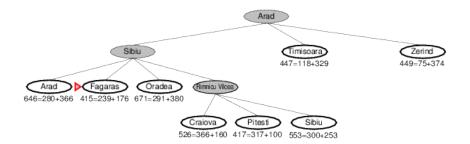
Idea:

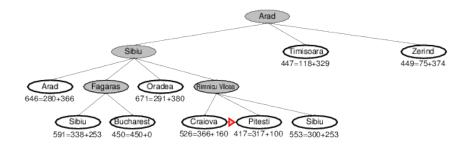
- avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through n to goal
- A* search uses an admissible heuristic
 - i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the *true* cost from *n*.
 - Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.
 - E.g., $h_{SLD}(n)$ never overestimates the actual road distance
- Theorem: A* search is optimal

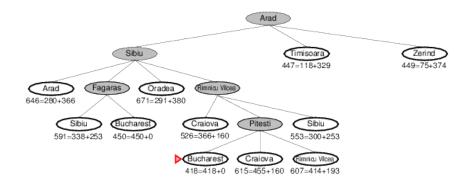
一日、

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト





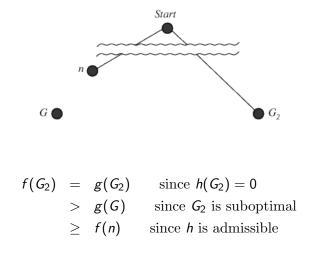




<ロ> (日) (日) (日) (日) (日)

Optimality of A^* (standard proof)

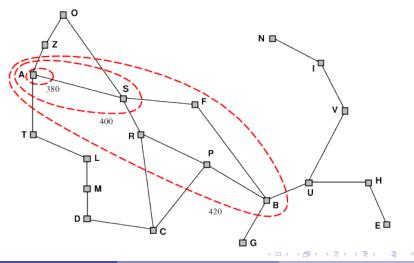
Suppose some suboptimal goal G_2 has been generated and is in the queue. Let *n* be an unexpanded node on a shortest path to an optimal goal *G*.



Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Optimality of A^* (more useful)

Lemma: A^* expands nodes in order of increasing f value Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$



• Complete

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$

Image: A math a math

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time

Image: A math a math

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time
 - Exponential in [relative error in $h \times$ length of soln.]

Image: A = 1

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time
 - Exponential in [relative error in $h \times$ length of soln.]
- Space

→ ★ Ξ:

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time
 - Exponential in [relative error in $h \times$ length of soln.]
- Space
 - Keeps all nodes in memory

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time
 - Exponential in [relative error in $h \times$ length of soln.]
- Space
 - Keeps all nodes in memory
- Optimal

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time
 - Exponential in [relative error in $h \times$ length of soln.]
- Space
 - Keeps all nodes in memory
- Optimal
 - Yes—cannot expand f_{i+1} until f_i is finished

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time
 - Exponential in [relative error in $h \times$ length of soln.]
- Space
 - Keeps all nodes in memory
- Optimal
 - Yes—cannot expand f_{i+1} until f_i is finished
 - ★ A^* expands all nodes with $f(n) < C^*$

.

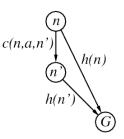
- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time
 - Exponential in [relative error in $h \times$ length of soln.]
- Space
 - Keeps all nodes in memory
- Optimal
 - Yes—cannot expand f_{i+1} until f_i is finished
 - ★ A^* expands all nodes with $f(n) < C^*$
 - * A^* expands some nodes with $f(n) = C^*$

- 4 同 1 - 4 三 1 - 4 三

- Complete
 - Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time
 - Exponential in [relative error in $h \times$ length of soln.]
- Space
 - Keeps all nodes in memory
- Optimal
 - Yes—cannot expand f_{i+1} until f_i is finished
 - ★ A^* expands all nodes with $f(n) < C^*$
 - * A^* expands some nodes with $f(n) = C^*$
 - * A^* expands no nodes with $f(n) > C^*$

- 4 同 1 - 4 三 1 - 4 三

Proof of lemma: Consistency



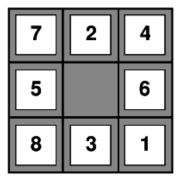
A heuristic is **consistent** if $h(n) \le c(n, a, n') + h(n')$ If *h* is consistent, we have

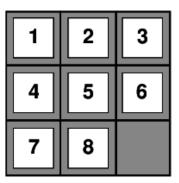
$$f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') \geq g(n) + h(n) = f(n)$$

I.e., f(n) is nondecreasing along any path.

S. Russel

- E.g., for the 8-puzzle:
 - $h_1(n) =$ number of misplaced tiles
 - h₂(n) = total Manhattan distance (i.e., no. of squares from desired location of each tile)

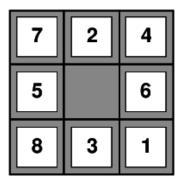


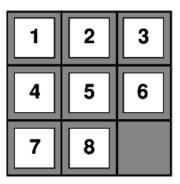


Goal State

A (1) > A (2) > A

- E.g., for the 8-puzzle:
 - $h_1(n) =$ number of misplaced tiles
 - h₂(n) = total Manhattan distance (i.e., no. of squares from desired location of each tile)

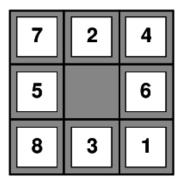


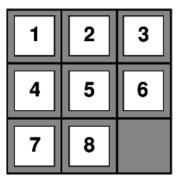


Goal State

A (1) > A (2) > A

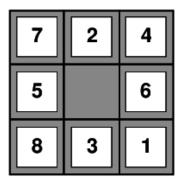
- E.g., for the 8-puzzle:
 - $h_1(n) =$ number of misplaced tiles
 - h₂(n) = total Manhattan distance (i.e., no. of squares from desired location of each tile)

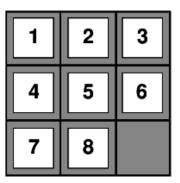




Goal State

- E.g., for the 8-puzzle:
 - $h_1(n) =$ number of misplaced tiles
 - h₂(n) = total Manhattan distance (i.e., no. of squares from desired location of each tile)





Goal State

 $h_1(S) = 6 h_2(S) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 **dominates** h_1 and is better for search

Typical search costs:

$$\begin{array}{ll} d = 14 & {\rm IDS} = 3,473,941 \mbox{ nodes} \\ & {\rm A}^*(h_1) = 539 \mbox{ nodes} \\ & {\rm A}^*(h_2) = 113 \mbox{ nodes} \\ d = 24 & {\rm IDS} \approx 54,000,000,000 \mbox{ nodes} \\ & {\rm A}^*(h_1) = 39,135 \mbox{ nodes} \\ & {\rm A}^*(h_2) = 1,641 \mbox{ nodes} \\ & {\rm Given any admissible heuristics} \ h_a, \ h_b, \end{array}$$

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

• Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem

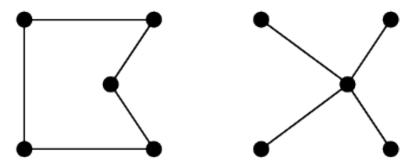
- Admissible heuristics can be derived from the *exact* solution cost of a relaxed version of the problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution

- Admissible heuristics can be derived from the *exact* solution cost of a relaxed version of the problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution

- Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution
- Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

- Well-known example: travelling salesperson problem (TSP)
 - Find the shortest tour visiting all cities exactly once



• Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Summary

- Heuristic functions estimate costs of shortest paths
- Good heuristics can dramatically reduce search cost
- Greedy best-first search expands lowest *h*}
 - incomplete and not always optimal
- A^* search expands lowest g + h
 - complete and optimal
 - also optimally efficient (up to tie-breaks, for forward search
- Admissible heuristics can be derived from exact solution of relaxed problems