Artificial Intelligence

Chapter 3

Stuart RUSSEL

reorganized by L. Aszalós

March 23, 2016

Outline

- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms

Problem-solving agents

Restricted form of general agent:
function Simple-Problem-Solving-Agent(percept): action static: seq: an action sequence, initially empty state: some description of the current world stat goal: a goal, initially null problem: a problem formulation

```
state = Update-State(state, percept)
    if seq is empty then
        goal = Formulate-Goal(state)
    problem = Formulate-Problem(state, goal)
    seq = Search(problem)
    action = Recommendation(seq, state)
    seq = Remainder(seq, state)
    return action
```


Problem-solving agents

Note: this is offline problem solving; solution executed "eyes closed." Online problem solving involves acting without complete knowledge.

Example: Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

- Formulate goal: be in Bucharest
- Formulate problem:
- states: various cities
- actions: drive between cities
- Find solution: sequence of cities, e.g. Arad, Sibiu, Fagaras, Bucharest

Example: Romania

Problem types

- Deterministic, fully observable \Longrightarrow single-state problem

Problem types

- Deterministic, fully observable \Longrightarrow single-state problem
- Agent knows exactly which state it will be in; solution is a sequence

Problem types

- Deterministic, fully observable \Longrightarrow single-state problem
- Agent knows exactly which state it will be in; solution is a sequence
- Non-observable \Longrightarrow conformant problem

Problem types

- Deterministic, fully observable \Longrightarrow single-state problem
- Agent knows exactly which state it will be in; solution is a sequence
- Non-observable \Longrightarrow conformant problem
- Agent may have no idea where it is; solution (if any) is a sequence

Problem types

- Deterministic, fully observable \Longrightarrow single-state problem
- Agent knows exactly which state it will be in; solution is a sequence
- Non-observable \Longrightarrow conformant problem
- Agent may have no idea where it is; solution (if any) is a sequence
- Nondeterministic and/or partially observable \Longrightarrow contingency problem

Problem types

- Deterministic, fully observable \Longrightarrow single-state problem
- Agent knows exactly which state it will be in; solution is a sequence
- Non-observable \Longrightarrow conformant problem
- Agent may have no idea where it is; solution (if any) is a sequence
- Nondeterministic and/or partially observable \Longrightarrow contingency problem
- percepts provide new information about current state solution is a contingent plan or a policy often interleave search, execution

Problem types

- Deterministic, fully observable \Longrightarrow single-state problem
- Agent knows exactly which state it will be in; solution is a sequence
- Non-observable \Longrightarrow conformant problem
- Agent may have no idea where it is; solution (if any) is a sequence
- Nondeterministic and/or partially observable \Longrightarrow contingency problem
- percepts provide new information about current state solution is a contingent plan or a policy often interleave search, execution
- Unknown state space \Longrightarrow exploration problem ("online")

Example: vacuum world

- Single-state, start in \#5.

Example: vacuum world

- Single-state, start in \#5.
- [Right,Suck]

Example: vacuum world

- Single-state, start in \#5.
- [Right,Suck]
- Conformant, start in $\{1,2,3,4,5,6,7,8\}$, Rigth goes to $\{2,4,6,8\}$

Example: vacuum world

- Single-state, start in \#5.
- [Right,Suck]
- Conformant, start in $\{1,2,3,4,5,6,7,8\}$, Rigth goes to $\{2,4,6,8\}$
- [Right,Suck,Left,Suck]

Example: vacuum world

- Single-state, start in \#5.
- [Right,Suck]
- Conformant, start in $\{1,2,3,4,5,6,7,8\}$, Rigth goes to $\{2,4,6,8\}$
- [Right,Suck,Left,Suck]
- Contingency, start in \#5

Example: vacuum world

- Single-state, start in \#5.
- [Right,Suck]
- Conformant, start in $\{1,2,3,4,5,6,7,8\}$, Rigth goes to $\{2,4,6,8\}$
- [Right,Suck,Left,Suck]
- Contingency, start in \#5
- Murphy law: Suck can dirty a clean carpet;

Example: vacuum world

- Single-state, start in \#5.
- [Right,Suck]
- Conformant, start in $\{1,2,3,4,5,6,7,8\}$, Rigth goes to $\{2,4,6,8\}$
- [Right,Suck,Left,Suck]
- Contingency, start in \#5
- Murphy law: Suck can dirty a clean carpet;
- local sensing: dirt, location only

Example: vacuum world

- Single-state, start in \#5.
- [Right,Suck]
- Conformant, start in $\{1,2,3,4,5,6,7,8\}$, Rigth goes to $\{2,4,6,8\}$
- [Right,Suck,Left,Suck]
- Contingency, start in \#5
- Murphy law: Suck can dirty a clean carpet;
- local sensing: dirt, location only
- [Right, if dirt then Suck]

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"

A solution is a sequence of actions leading from the initial state to a goal state

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"
- successor function $S(x)=$ set of action-state pairs

A solution is a sequence of actions leading from the initial state to a goal state

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"
- successor function $S(x)=$ set of action-state pairs
- e.g. $S($ Arad $)=\{<$ Arad-Zerind, Zerind $\rangle, \ldots\}$

A solution is a sequence of actions leading from the initial state to a goal state

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"
- successor function $S(x)=$ set of action-state pairs
- e.g. $S($ Arad $)=\{<$ Arad-Zerind, Zerind $\rangle, \ldots\}$
- goal test, can be

A solution is a sequence of actions leading from the initial state to a goal state

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"
- successor function $S(x)=$ set of action-state pairs
- e.g. $\mathrm{S}($ Arad $)=\{<$ Arad-Zerind, Zerind $\rangle, \ldots\}$
- goal test, can be
- explicit, e.g. $x=$ "at Bucharest"

A solution is a sequence of actions leading from the initial state to a goal state

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"
- successor function $S(x)=$ set of action-state pairs
- e.g. $S($ Arad $)=\{<$ Arad-Zerind, Zerind $\rangle, \ldots\}$
- goal test, can be
- explicit, e.g. $x=$ "at Bucharest"
- implicit, e.g. NoDirt(x)

A solution is a sequence of actions leading from the initial state to a goal state

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"
- successor function $S(x)=$ set of action-state pairs
- e.g. $\mathrm{S}($ Arad $)=\{<$ Arad-Zerind, Zerind $\rangle, \ldots\}$
- goal test, can be
- explicit, e.g. $x=$ "at Bucharest"
- implicit, e.g. NoDirt(x)
- path cost (additive)

A solution is a sequence of actions leading from the initial state to a goal state

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"
- successor function $S(x)=$ set of action-state pairs
- e.g. $\mathrm{S}($ Arad $)=\{<$ Arad-Zerind, Zerind $\rangle, \ldots\}$
- goal test, can be
- explicit, e.g. $x=$ "at Bucharest"
- implicit, e.g. NoDirt(x)
- path cost (additive)
- e.g. sum of distances, number of actions executed, etc.

A solution is a sequence of actions leading from the initial state to a goal state

Single-state problem formulation

A problem is defined by four items:

- initial state e.g. "at Arad"
- successor function $S(x)=$ set of action-state pairs
- e.g. $\mathrm{S}($ Arad $)=\{<$ Arad-Zerind, Zerind $>, \ldots\}$
- goal test, can be
- explicit, e.g. $x=$ "at Bucharest"
- implicit, e.g. NoDirt(x)
- path cost (additive)
- e.g. sum of distances, number of actions executed, etc.
- $c(x, a, y)$ is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state

Selecting a state space

- Real world is absurdly complex

Selecting a state space

- Real world is absurdly complex
- \Rightarrow state space must be abstracted for problem solving

Selecting a state space

- Real world is absurdly complex
- \Rightarrow state space must be abstracted for problem solving
- $($ Abstract $)$ state $=$ set of real states

Selecting a state space

- Real world is absurdly complex
- \Rightarrow state space must be abstracted for problem solving
- (Abstract) state $=$ set of real states
- (Abstract) action $=$ complex combination of real actions

Selecting a state space

- Real world is absurdly complex
- \Rightarrow state space must be abstracted for problem solving
- (Abstract) state $=$ set of real states
- (Abstract) action $=$ complex combination of real actions
- e.g. "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.

Selecting a state space

- Real world is absurdly complex
- \Rightarrow state space must be abstracted for problem solving
- (Abstract) state $=$ set of real states
- (Abstract) action $=$ complex combination of real actions
- e.g. "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"

Selecting a state space

- Real world is absurdly complex
- \Rightarrow state space must be abstracted for problem solving
- (Abstract) state $=$ set of real states
- (Abstract) action $=$ complex combination of real actions
- e.g. "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
- (Abstract) solution $=$ set of real paths that are solutions in the real world

Selecting a state space

- Real world is absurdly complex
- \Rightarrow state space must be abstracted for problem solving
- (Abstract) state $=$ set of real states
- (Abstract) action $=$ complex combination of real actions
- e.g. "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
- (Abstract) solution $=$ set of real paths that are solutions in the real world
- Each abstract action should be "easier" than the original problem!

Example: vacuum world state space graph

- states

Example: vacuum world state space graph

- states
- integer dirt and robot locations (ignore dirt etc.)

Example: vacuum world state space graph

- states
- integer dirt and robot locations (ignore dirt etc.)
- actions

Example: vacuum world state space graph

- states
- integer dirt and robot locations (ignore dirt etc.)
- actions
- Left, Right, Suck, NoOp

Example: vacuum world state space graph

- states
- integer dirt and robot locations (ignore dirt etc.)
- actions
- Left, Right, Suck, NoOp
- goal test

Example: vacuum world state space graph

- states
- integer dirt and robot locations (ignore dirt etc.)
- actions
- Left, Right, Suck, NoOp
- goal test
- no dirt

Example: vacuum world state space graph

- states
- integer dirt and robot locations (ignore dirt etc.)
- actions
- Left, Right, Suck, NoOp
- goal test
- no dirt
- path cost

Example: vacuum world state space graph

- states
- integer dirt and robot locations (ignore dirt etc.)
- actions
- Left, Right, Suck, NoOp
- goal test
- no dirt
- path cost
- 1 per action (0 for NoOp)

Example: The 8-puzzle

7	2	4
1		6
5		6
8	3	1
Start State		

1	2	3
4	5	6
7	8	
7	Goal State	

- states

Note: optimal solution of n-Puzzle family is NP-hard

Example: The 8-puzzle

7	2	4
5		6
8	3	1

1	2	3
4	5	6
7	8	
Goal State		

- states
- integer locations of tiles (ignore intermediate positions)

Note: optimal solution of n-Puzzle family is NP-hard

Example: The 8-puzzle

7	2	4
5		6
8	3	1
Start State		

1	2	3
4	5	6
7	8	
7	8	
Goal State		

- states
- integer locations of tiles (ignore intermediate positions)
- actions

Note: optimal solution of n-Puzzle family is NP-hard

Example: The 8-puzzle

7	2	4
5		6
7	3	1
Start State		

1	2	3
4	5	6
7	8	
Goal State		

- states
- integer locations of tiles (ignore intermediate positions)
- actions
- move blank left, right, up, down (ignore unjamming etc.)

Note: optimal solution of n-Puzzle family is NP-hard

Example: The 8-puzzle

7	2	4
5		6
7	3	1
Start State		

1	2	3
4	5	6
7	8	
Goal State		

- states
- integer locations of tiles (ignore intermediate positions)
- actions
- move blank left, right, up, down (ignore unjamming etc.)
- goal test

Note: optimal solution of n-Puzzle family is NP-hard

Example: The 8-puzzle

7	2	4
5		6
7	3	1
Start State		

1	2	3
4	5	6
7	8	
Goal State		

- states
- integer locations of tiles (ignore intermediate positions)
- actions
- move blank left, right, up, down (ignore unjamming etc.)
- goal test
- = goal state (given)

Note: optimal solution of n-Puzzle family is NP-hard

Example: The 8-puzzle

7	2	4
5		6
7	3	1
Start State		

1	2	3
4	5	6
7	8	
7		
Goal State		

- states
- integer locations of tiles (ignore intermediate positions)
- actions
- move blank left, right, up, down (ignore unjamming etc.)
- goal test
- = goal state (given)
- path cost

Note: optimal solution of n-Puzzle family is NP-hard

Example: The 8-puzzle

7	2	4
5		6
7	3	1
Start State		

1	2	3
4	5	6
7	8	
7		
Goal State		

- states
- integer locations of tiles (ignore intermediate positions)
- actions
- move blank left, right, up, down (ignore unjamming etc.)
- goal test
- = goal state (given)
- path cost
- 1 per move

Note: optimal solution of n-Puzzle family is NP-hard

Example: robotic assembly

- states

Example: robotic assembly

- states
- real-valued coordinates of robot joint angles

Example: robotic assembly

- states
- real-valued coordinates of robot joint angles
- parts of the object to be assembled

Example: robotic assembly

- states
- real-valued coordinates of robot joint angles
- parts of the object to be assembled
- actions

Example: robotic assembly

- states
- real-valued coordinates of robot joint angles
- parts of the object to be assembled
- actions
- continuous motions of robot joints

Example: robotic assembly

- states
- real-valued coordinates of robot joint angles
- parts of the object to be assembled
- actions
- continuous motions of robot joints
- goal test

Example: robotic assembly

- states
- real-valued coordinates of robot joint angles
- parts of the object to be assembled
- actions
- continuous motions of robot joints
- goal test
- complete assembly with no robot included!

Example: robotic assembly

- states
- real-valued coordinates of robot joint angles
- parts of the object to be assembled
- actions
- continuous motions of robot joints
- goal test
- complete assembly with no robot included!
- path cost

Example: robotic assembly

- states
- real-valued coordinates of robot joint angles
- parts of the object to be assembled
- actions
- continuous motions of robot joints
- goal test
- complete assembly with no robot included!
- path cost
- time to execute

Tree search algorithms

- Basic idea:
- offline, simulated exploration of state space
- by generating successors of already-explored states
\star (a.k.a. expanding states)
function Tree-Search(problem, strategy): a solution or failure initialize the search tree with --the initial state of prob loop do
if there are no candidates for expansion
then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state
then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Tree search example

Tree search example

Tree search example

Implementation: states vs.nodes

- A state is a (representation of) a physical configuration

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Implementation: states vs.nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Implementation: states vs.nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree
- includes parent, children, depth, path cost $\mathrm{g}(\mathrm{x})$

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Implementation: states vs.nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree
- includes parent, children, depth, path cost $\mathrm{g}(\mathrm{x})$
- States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Implementation: general tree search

```
function Tree-Search(problem, fringe): a solution, or failure
    fringe = Insert(Make-Node(Initial-State[problem]), fringe)
    loop do
    if fringe is empty then return failure
    node = Remove-Front(fringe)
    if Goal-Test(problem, State(node)) then return node
    fringe = InsertAll(Expand(node, problem), fringe)
```


Implementation: general tree search

```
function Expand(node, problem)): a set of nodes
    successors = the empty set
    for each action, result in
        Successor-Fn(problem, State[node]) do
    s = a new Node
    Parent-Node[s] = node
    Action[s] = action
    State[s] = result
    Path-Cost[s] = Path-Cost[node] +
        Step-Cost(State[node],action,result)
    Depth[s] = Depth[node] + 1
    add s to successors
```

 return successors

Search strategies

- A strategy is defined by picking the order of node expansion

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded
- space complexity

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded
- space complexity
- maximum number of nodes in memory

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded
- space complexity
- maximum number of nodes in memory
- optimality

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded
- space complexity
- maximum number of nodes in memory
- optimality
- does it always find a least-cost solution?

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded
- space complexity
- maximum number of nodes in memory
- optimality
- does it always find a least-cost solution?
- Time and space complexity are measured in terms of

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded
- space complexity
- maximum number of nodes in memory
- optimality
- does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded
- space complexity
- maximum number of nodes in memory
- optimality
- does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution

Search strategies

- A strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness
- does it always find a solution if one exists?
- time complexity
- number of nodes generated/expanded
- space complexity
- maximum number of nodes in memory
- optimality
- does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search

Breadth-first search

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e. new successors go at end

Breadth-first search

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e. new successors go at end

Breadth-first search

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e. new successors go at end

Breadth-first search

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e. new successors go at end

Properties of breadth-first search

- Complete?

Properties of breadth-first search

- Complete?
- Yes (if b is finite)

Properties of breadth-first search

- Complete?
- Yes (if b is finite)
- Time?

Properties of breadth-first search

- Complete?
- Yes (if b is finite)
- Time?
- $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e. \exp. in d

Properties of breadth-first search

- Complete?
- Yes (if b is finite)
- Time?
- $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e. \exp. in d
- Space?

Properties of breadth-first search

- Complete?
- Yes (if b is finite)
- Time?
- $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e. \exp. in d
- Space?
- $O\left(b^{d+1}\right)$ (keeps every node in memory)

Properties of breadth-first search

- Complete?
- Yes (if b is finite)
- Time?
- $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e. \exp. in d
- Space?
- $O\left(b^{d+1}\right)$ (keeps every node in memory)
- Optimal?

Properties of breadth-first search

- Complete?
- Yes (if b is finite)
- Time?
- $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e. exp. in d
- Space?
- $O\left(b^{d+1}\right)$ (keeps every node in memory)
- Optimal?
- Yes (if cost $=1$ per step); not optimal in general

Properties of breadth-first search

- Complete?
- Yes (if b is finite)
- Time?
- $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e. \exp. in d
- Space?
- $O\left(b^{d+1}\right)$ (keeps every node in memory)
- Optimal?
- Yes (if cost $=1$ per step); not optimal in general
- Space is the big problem; can easily generate nodes at $100 \mathrm{MB} / \mathrm{sec}$, so $24 \mathrm{hrs}=8640 \mathrm{~GB}$.

Uniform-cost search

- Expand least-cost unexpanded node

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal
- Complete?

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal
- Complete?
- Yes, if step cost $\geq \epsilon$

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal
- Complete?
- Yes, if step cost $\geq \epsilon$
- Time?

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal
- Complete?
- Yes, if step cost $\geq \epsilon$
- Time?
- Number of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left\lceil C^{*} / \epsilon\right\rceil}\right)$ where C^{*} is the cost of the optimal solution

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal
- Complete?
- Yes, if step cost $\geq \epsilon$
- Time?
- Number of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right]}\right)$ where C^{*} is the cost of the optimal solution
- Space?

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal
- Complete?
- Yes, if step cost $\geq \epsilon$
- Time?
- Number of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right]}\right)$ where C^{*} is the cost of the optimal solution
- Space?
- Number of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left\lceil C^{*} / \epsilon\right\rceil}\right)$

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal
- Complete?
- Yes, if step cost $\geq \epsilon$
- Time?
- Number of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right]}\right)$ where C^{*} is the cost of the optimal solution
- Space?
- Number of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left\lceil C^{*} / \epsilon\right\rceil}\right)$
- Optimal?

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe = queue ordered by path cost, lowest first
- Equivalent to breadth-first if step costs all equal
- Complete?
- Yes, if step cost $\geq \epsilon$
- Time?
- Number of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right]}\right)$ where C^{*} is the cost of the optimal solution
- Space?
- Number of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$
- Optimal?
- Yes, nodes expanded in increasing order of $g(n)$

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Depth-first search

Expand deepest unexpanded node Implementation: fringe $=$ LIFO queue, i.e. put successors at front

Properties of depth-first search

- Complete?

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,
- Modify to avoid repeated states along path,

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,
- Modify to avoid repeated states along path,
- \Rightarrow complete in finite spaces

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,
- Modify to avoid repeated states along path,
- \Rightarrow complete in finite spaces
- Time?

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,
- Modify to avoid repeated states along path,
- \Rightarrow complete in finite spaces
- Time?
- $O\left(b^{m}\right)$: terrible if m is much larger than d, but if solutions are dense, may be much faster than breadth-first

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,
- Modify to avoid repeated states along path,
- \Rightarrow complete in finite spaces
- Time?
- $O\left(b^{m}\right)$: terrible if m is much larger than d, but if solutions are dense, may be much faster than breadth-first
- Space?

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,
- Modify to avoid repeated states along path,
- \Rightarrow complete in finite spaces
- Time?
- $O\left(b^{m}\right)$: terrible if m is much larger than d, but if solutions are dense, may be much faster than breadth-first
- Space?
- $O(b m)$, i.e. linear space!

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,
- Modify to avoid repeated states along path,
- \Rightarrow complete in finite spaces
- Time?
- $O\left(b^{m}\right)$: terrible if m is much larger than d, but if solutions are dense, may be much faster than breadth-first
- Space?
- $O(b m)$, i.e. linear space!
- Optimal?

Properties of depth-first search

- Complete?
- No: fails in infinite-depth spaces, spaces with loops,
- Modify to avoid repeated states along path,
- \Rightarrow complete in finite spaces
- Time?
- $O\left(b^{m}\right)$: terrible if m is much larger than d, but if solutions are dense, may be much faster than breadth-first
- Space?
- $O(b m)$, i.e. linear space!
- Optimal?
- No

Depth-limited search

$=$ depth-first search with depth limit I, i.e. nodes at depth I have no successors
Recursive implementation:
function Depth-Limited-Search(problem, limit):
soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

Depth-limited search

```
function Recursive-DLS(node, problem, limit):
                        soln/fail/cutoff
    cutoff-occurred? = false
    if Goal-Test(problem, State[node]) then return node
    else if Depth[node] = limit then return cutoff
    else
    for each successor in Expand(node, problem) do
        result = Recursive-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? = true
        else if result != failure then return result
    if cutoff-occurred? then return cutoff
    else return failure
```


Iterative deepening search

```
function Iterative-Deepening-Search(problem): a solution
    for depth = O to infinity do
    result = Depth-Limited-Search(problem, depth)
    if result != cutoff then return result
    end
```


Iterative deepening search $I=0$

Iterative deepening search $/=1$

Iterative deepening search $/=2$

Iterative deepening search $/=3$

Properties of iterative deepening search

- Complete?

Properties of iterative deepening search

- Complete?
- Yes

Properties of iterative deepening search

- Complete?
- Yes
- Time?

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$
- Optimal?

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$
- Optimal?
- Yes, if step cost $=1$

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$
- Optimal?
- Yes, if step cost $=1$
- Can be modified to explore uniform-cost tree

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$
- Optimal?
- Yes, if step cost $=1$
- Can be modified to explore uniform-cost tree
- Numerical comparison for $b=10$ and $d=5$, solution at far right leaf:

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$
- Optimal?
- Yes, if step cost $=1$
- Can be modified to explore uniform-cost tree
- Numerical comparison for $b=10$ and $d=5$, solution at far right leaf:
- $\mathrm{N}($ IDS $)=50+400+3,000+20,000+100,000=123,450$

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$
- Optimal?
- Yes, if step cost $=1$
- Can be modified to explore uniform-cost tree
- Numerical comparison for $b=10$ and $d=5$, solution at far right leaf:
- $N($ IDS $)=50+400+3,000+20,000+100,000=123,450$
- $\mathrm{N}(\mathrm{BFS})=10+100+1,000+10,000+100,000+999,990=$ 1,111,100

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$
- Optimal?
- Yes, if step cost $=1$
- Can be modified to explore uniform-cost tree
- Numerical comparison for $b=10$ and $d=5$, solution at far right leaf:
- $N($ IDS $)=50+400+3,000+20,000+100,000=123,450$
- $\mathrm{N}(\mathrm{BFS})=10+100+1,000+10,000+100,000+999,990=$ 1,111,100
- IDS does better because other nodes at depth d are not expanded

Properties of iterative deepening search

- Complete?
- Yes
- Time?
- $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space?
- $O(b d)$
- Optimal?
- Yes, if step cost $=1$
- Can be modified to explore uniform-cost tree
- Numerical comparison for $b=10$ and $d=5$, solution at far right leaf:
- $N($ IDS $)=50+400+3,000+20,000+100,000=123,450$
- $\mathrm{N}(\mathrm{BFS})=10+100+1,000+10,000+100,000+999,990=$ 1,111,100
- IDS does better because other nodes at depth d are not expanded
- BFS can be modified to apply goal test when a node is generated

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes*	Yes *	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	b^{m}	b^{\prime}	b^{d}
Space	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	$b m$	$b l$	$b d$
Optimal?	Yes	Yes	No	No	Yes*

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

function Graph-Search(problem, fringe): a solution, or failure
closed = an empty set
fringe = Insert(Make-Node(Initial-State[problem]), fringe)
loop do
if fringe is empty then return failure
node $=$ Remove-Front (fringe)
if Goal-Test(problem, State[node]) then return node
if State[node] is not in closed then
add State[node] to closed
fringe = InsertAll(Expand(node, problem), fringe)
end

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms
- Graph search can be exponentially more efficient than tree search

