
Outline

Brains
Neural networks
Perceptrons
Multilayer perceptrons
Applications of neural networks

2
0

2
0

-0
5

-1
0

AI #12

Outline

Today we will be looking at neural networks. This is the basis of the famed

deep learning. We first deal with the brain – which motivated this subject –

and the neurons in it. Then we shift our focus of study to the corresponding

perceptron. We will see that each perceptron has its limitations, but if we

connect enough together, we can achieve almost everything. This is the

essence of the theory behind deep learning. Finally, we examine a specific

application and its effectiveness.



Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

2
0

2
0

-0
5

-1
0

AI #12

Brains

The brain is made up of neurons. A neuron is a brain cell that collects, pro-

cesses, and propagates electrical signals. Signals are transmitted through

synapses, this is the connection of neurons.



McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai ← g(ini ) = g

∑
j

Wj ,iaj



A gross oversimplification of real neurons, but its purpose is to develop
understanding of what networks of simple units can do2

0
2

0
-0

5
-1

0
AI #12

McCulloch–Pitts “unit”

In the 1940s, a simple mathematical model of the neuron was completed,
which can be seen here. Since then, more accurate models have been
developed for brain studies, but this simple model can be used well at
solving artificial intelligence tasks.
The neural network can be treated as a directed graph. The vertices
here are named as “unit”s and correspond to a neuron each. Weighted
edges indicate connections between neurons. The weighted sum of the
activations (aj) arriving at the vertex is taken, and then the activation
function is applied to it, and this gives the output of the unit.

An addition – according to which there is an imaginary input of a0 = −1

and a corresponding weight – proved to be effective.



Activation

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location2
0

2
0

-0
5

-1
0

AI #12

Activation

What do we expect from our unit, the perceptron? If we get “good” results,

the output should be 1 (or close to it); and accordingly if we get a “bad”

input, the output should be 0 (or a nearby number). This can be achieved

with a sign function or with a step function, but we will see later that

the differentiability of the function is useful for us. The linear activation

function is not recommended, because the combination of these kinds of

functions will also be a linear function, which we cannot use to approach

all functions. Therefore, in addition to the sigmoid function shown in the

figure, tanh is the most common activation function today.



Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented

2
0

2
0

-0
5

-1
0

AI #12

Implementing logical functions

In the 1940s it was proven that the basic logic functions can implemented

with these units, so by properly connecting them any logic circuit could be

implemented! All we need to do is move the activation function left and

right, which we can do with W0. Notice that the negation is solved using

W1 = −1!



Network structures

Feed-forward networks:

I single-layer perceptrons
I multi-layer perceptrons

Feed-forward networks implement functions, have no internal state
Recurrent networks:

I Hopfield networks have symmetric weights Wi,j = Wj,i

F g(x) = sign(x), ai = ±1; holographic associative memory

I Boltzmann machines use stochastic activation functions,

F ≈ MCMC in Bayes nets

I recurrent neural nets have directed cycles with delays

F =⇒ have internal state (like flip-flops), can oscillate etc.2
0

2
0

-0
5

-1
0

AI #12

Network structures

How these perceptrons be connected? One option is to only move forward,
the edges pointing from left to right (feed-forward network). Then we could
substitute each value ai into a function of the additional perceptrons and
finally get a piece of a very complicated function. That is, the output is a
function of the current input, i.e. the network has no state/memory.

In case of a recurrent grid, it is possible that the output of the perceptron

is one of its own inputs. With this, short-term memory can be realized,

but our model becomes significantly more complicated.



Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

2
0

2
0

-0
5

-1
0

AI #12

Feed-forward example

Consider a very simple graph. The output of node 5 is obtained from the

formula. Substituting the occurrences of a3 and a4 by their functions, we

get a formula in which only input 1 and input 2 are included, so in reality

the output will be a function of these. On the other hand, if we change

the weights that were treated as constants in the function until now, we

get other functions, so the weights are the parameters of the resulting

function. This change is the basis of learning. The question is: can we

change the weights in such a way that we get the function we need?



Single-layer perceptrons

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of
cliff

2
0

2
0

-0
5

-1
0

AI #12

Single-layer perceptrons

The perceptrons of feed-forward networks are usually organized into layers,

each layer receiving input signals only from the previous layer, i.e. the per-

ceptrons of a given layer are independent of each other. A special version

of this network is where there is only one layer. Then each perceptron is

independent of all the others. By changing the weights and parameters,

we can specify which input to take into account, so we can modify the

function shown on the right: shift, rotate, stretch (within certain limits).



Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957,
1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:∑
j Wjxj > 0 or W · x > 0

Minsky & Papert (1969) pricked the neural network balloon

2
0

2
0

-0
5

-1
0

AI #12

Expressiveness of perceptrons

Let g be the step function. We have already seen that the AND, OR, NOT
function can be expressed with a single perceptron. Similarly, it can be
seen that this holds for the function majority. However, the XOR function
cannot be expressed. Why not? The activation function fires when its
argument is greater than 0. Its argument is a weighted sum that can be
rewritten into a vector product. It turns out that the perceptron essentially
acts as a linear separator, i.e. it fires on one side of the hyperplane, and
not on the other side. In the case of AND, OR and NOT, the cases of true
and false can be easily separated by a hyperplane. In the case of XOR,
however, such a plane does not exist.

Nevertheless, perceptrons should not be considered useless. The majority

function can be easily expressed with a perceptron, and even teaching this

function to a precepton can be done very quickly. A decision diagram for

the same task would be very large, and even its teaching would not yield

encouraging results.



Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err2 ≡ 1

2
(y − hW(x))2

Perform optimization search by gradient descent:

∂E

∂Wj
= Err × ∂Err

∂Wj
= Err × ∂

∂Wj

y − g

 n∑
j=0

Wjxj


= −Err × g ′(in)× xj

Simple weight update rule:

Wj ←Wj + α× Err × g ′(in)× xj

E.g., +ve error =⇒ increase network output
I =⇒ increase weights on +ve inputs, decrease on -ve inputs

2
0

2
0

-0
5

-1
0

AI #12

Perceptron learning

“Teaching” here means trying to minimize the error measured on the teach-

ing set by choosing the appropriate parameters (weights). So consider the

n-dimensional space given by the parameters and find the point where the

value of the error function is minimal. To do this, calculate the sum of

squares of the difference between the results obtained and those expected.

Derivatives according to parameters help to move in the best direction.

Each weight should be updated using the formula shown here.



Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set

Perceptron learns majority function easily, DTL is hopeless
DTL learns restaurant function easily, perceptron cannot represent it

2
0

2
0

-0
5

-1
0

AI #12

Perceptron learning contd.

The two examples shown here illustrate how a decision diagram and a per-

ceptron perform. The perception learns the majority function very quickly,

while the decision diagram is not able to learn it. In the case of the restau-

rant problem mentioned earlier, the perceptron can’t learn it because this

task is not linearly separable.



Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

2
0

2
0

-0
5

-1
0

AI #12

Multilayer perceptrons

In case of multilayer neural networks, each pair of perceptrons of two

adjacent levels is connected. The number of perceptrons of intermediate

(hidden) levels is usually set manually, there is no universal recipe for all

problems.



Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)

2
0

2
0

-0
5

-1
0

AI #12

Expressiveness of MLPs

Any continuous function can be described by a two-layer network, and any
function by a three-layer network. Be careful, because this mathematical
result does not mention the number of perceptrons in the hidden layer,
which could be infinite!

As you can see, a ridge can be formed with two functions, and a bump can

be formed from two ridges. And with a sufficient number and appropriate

size of humps, any function can be approximated.



Back-propagation learning

Output layer: same as for single-layer perceptron,

Wj ,i ←Wj ,i + α× aj ×∆i

where ∆i = Err i × g ′(ini )

Hidden layer: back-propagate the error from the output layer:

∆j = g ′(inj)
∑
i

Wj ,i∆i

Update rule for weights in hidden layer:

Wk,j ←Wk,j + α× ak ×∆j

I (Most neuroscientists deny that back-propagation occurs in the brain)

2
0

2
0

-0
5

-1
0

AI #12

Back-propagation learning

If we work with a multi-layer neural network, the last layer is taught the

same way as for perceptrons. We introduce the concept of modified error

(∆i ). In case of hidden layers, we have no information about what inputs

the elements of the teaching set will have and what the output will be, so

we can only estimate these quantities from the output layer. However, the

formula will be similar to the previous one.



Back-propagation derivation

The squared error on a single example is defined as

E =
1

2

∑
i

(yi − ai )
2

I where the sum is over the nodes in the output layer.

∂E

∂Wj ,i
= −(yi − ai )

∂ai
∂Wj ,i

= −(yi − ai )
∂g(ini )

∂Wj ,i

= −(yi − ai )g
′(ini )

∂ini
∂Wj ,i

= −(yi − ai )g
′(ini )

∂

∂Wj ,i

∑
j

Wj ,iaj


= −(yi − ai )g

′(ini )aj = −aj∆i

2
0

2
0

-0
5

-1
0

AI #12

Back-propagation derivation

If the output layer contains more than one perceptron, then the errors for

each perceptron are added together to give the total error. With the help

of the derivatives belonging to the given weight we can distribute this error

amongst the perceptrons of the previous layer (back-propagation) and we

can update the weights of the edges. In the previous layer, by processing

these errors, we can go a step back the same way, and so on.



Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

Typical problems: slow convergence, local minima

2
0

2
0

-0
5

-1
0

AI #12

Back-propagation learning contd.

Consider a graph where the intermediate hidden layer contains 4 percep-
trons. It can be seen from the figure that the network has found the perfect
solution with a training set containing 100 examples.

Nevertheless, the method is not omnipotent, convergence is sometimes

very slow and may even get stuck at local extremes.



Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

MLPs are quite good for complex pattern recognition tasks,

I but resulting hypotheses cannot be understood easily

2
0

2
0

-0
5

-1
0

AI #12

Back-propagation learning contd.

Here you can see the effectiveness of teaching the neural network and the

decision diagram in case of the restaurant example. Neural networks are

usually used for complex pattern recognition.



Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error
Current best (kernel machines, vision algorithms) ≈ 0.6% error

2
0

2
0

-0
5

-1
0

AI #12

Handwritten digit recognition

An example of pattern recognition is the recognition of handwritten digits.

A public dataset with thousands of digits is freely available. The top row

contains digits that are easy to recognize, while the bottom row contains

problematic digits. Several methods can be used to solve this problem.

The kNN method can be used as a classification problem, where k = 3.

A three-layer neural network – its parameters (number of perceptrons per

level) is given in its name – gave a better result. A four-layer neural network

achieved even better results. We can also see in comparison what was the

best result 15 years ago with a more complicated network.



Summary

Most brains have lots of neurons;
each neuron ≈ linear–threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive
Multi-layer networks are sufficiently expressive; can be trained by
gradient descent, i.e., error back-propagation
Many applications: speech, driving, handwriting, fraud detection, etc.
Engineering, cognitive modelling, and neural system modelling

I subfields have largely diverged

2
0

2
0

-0
5

-1
0

AI #12

Summary

Our brains contain a lot of neurons, which we now treat as a linear separa-

tor. A perceptron (the mathematical model of the neuron) is not expressive

enough on its own, but if we connect a lot of these, it becomes very ca-

pable for a range of purposes. We can think of this neural network as a

function that can be fine-tuned by choosing its parameters (weights). The

common teaching method is back-propagation. The neural network is used

in many places and is becoming more prevalent. Although the teaching

is very resource intensive, the use of the finished neural network is very

simple, it is even actively used by some of the apps found on our mobile

phones.


